Strategic
Software
Engineering

Software Engineering
Beyond the Code

Filipe Ximenes

ApPress:

Strategic Software
Engineering

Filipe Ximenes

Apress

Strategic Software Engineering: Software Engineering Beyond the Code

Filipe Ximenes
Recife, Pernambuco, Brazil

ISBN-13 (pbk): 979-8-8688-0994-1 ISBN-13 (electronic): 979-8-8688-0995-8
https://doi.org/10.1007/979-8-8688-0995-8

Copyright © 2024 by Filipe Ximenes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Gryftin Winklerv

Cover image designed by Freepik (www.freepik.com)
Nlustrations designed by Pedro Barcelar and Jason Santos

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLCisa
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book can be
found here: https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

To Isadora, Regina, Marcos, and Rafael

Table of Contents

About the Author ... ————— ix
About the Technical Reviewercccccnisnmnsssnnnssssnsssssnsssssnsssssssssnns Xi
Acknowledgments.........cccnmsnienmsmnisssasnmssssssnsssssssssnssssasnsssssnsns s snsnns Xiii
Introduction ... ———————— XV
Chapter 1: Self-Management.............ccisnisnmmnmssssanmmmnnesnsnsssmssssssnans 1
1.1 Keep Track of YOUr ACHIVITIESccoerereeeeueuesereserssssssesssessessssesessssssssssssesssssssas 3
1.2 KNOW the PriOFItIES......cceeeeeeeerrreereseseesessesesesssssssese s ssssssessssssssssssssssssas 6
1.3 Make YOur Work ViSible...........ocoueureereresensencssssesessssssnsesesesessssssssesessssssnsnsenens 10
1.4 ASK FOF HEIP....neeeeet et senannnneas 14
1.5 Get Used 10 SAYINg NOc.cccoveeeeerecerereeeece e sesssssesassenens 18
1.6 Problem-Solving MINdSet............ccoeoerermrieeeceesesessssse s s sesesssesensnsenens 21
1.7 OWN YOUF CATEIcovveeeeucaeenasssssnseesesessesssssssesssssssnssssssssessassssssssnsssnsnnennas 25
1.8 Take Control of YOUr TIME......c.coueuveererereneeaeesssesesssssssse e sesnssssssssesssssensnsenens 31
1.9 Be Strategic During Meetingsccoerureeeeucesesererssssnesesesessssssssssessssssnsssenens 35
1.10 Effective Text CommuniCation..........cooeeeeuceveserenssneresesesse s sesesssssensnsenens 39
1,11 REPOIING et ss e s sas s e e s s nenanannnas 43
1.12 Keep Up with TEChNOIOQYc.cvevvereerereneenceesenesssssensesesesessssssssesesssssensnsenens 45
1.13 References and Further Readingccoceoeeeeerererccrereseseeessseseseseseneeenens 49
Chapter 2: Technical Disciplinec.cccisnssssasssssssasssssssssasssssssasssssssssans 51
2.1 Development FIOW ... seees 29
Understand the BUSINESS.........ccccoerireeeecenesesesssenseresesessesssssesesssssssssesssssssssans a9

TABLE OF CONTENTS

Understand the Code Context...........ccorureeuecssnesessssseneresesessssssssesesssssessssenenes 56
Plan @ SOIULION........ccoerireeeccce e es 56
Validate YOur SolUution...........cccoeeeccsenesessnsssesesesessssssssssessssssssssesesessssssssens 58
M@KE [EWOTK........oeeeeereeeeecce st ssnnn s es 59
311 7 Ty (o] ST SS T S 60
Fill in the GAPS......ccoerererereeucesesasssssssesesesssssasssesssssssssssesessssssssssssssssssssssssnsaes 60
Create and Update DOCS........ccoceurrrerrererireesensssesessssssssesesesesssssssssessssssssssssenes 61
2.2 UNBIOCKING FIOW.......eoeeeeeeeeecceeees e s ssssse e sns s aasansnens 61
Look for Similar Situations Within the Project..........ccccovneecienencnrrccnne 61
Consult Your Preferred LLM...........ooocomreeeeecceeensse s ssesssseenes 62
Quick Search on the Internet..........cocoveeeecrineecre s 63
Double-Check Your Mental Models..........ccccocoeeeeeernrrenerereneesensssesesssssenesseens 63
Reach Out to the TE@AMcccoceeeicererereeeccese s es 64
Read the DOCSccceeerireeececcena et sssss s ss s e e assssnssssneaes 64
Go Deeper Into the Code.........oceururreererineeeecesesees s enes 65
Seek EXternal Help ...t es 65
Debug the Source Code [If It’s Available]..........ccovrmererereeeecerereeeresereeeenes 65
2.3 BUQ-FIXING FIOW ...t sssse e assnsnens 66
1. Understand the Problem and the Context...........coceoeeereneeecsesenensneseneccnene 66
2. BEPIrOTUCEeoeeecerreeeencce s ssssse e sesnsss s e s s sssse s ns s s ssassnsssnssssnsaee 66
3. Write @ RegresSion TEStccouveererereeseaessesessssssssesesesesssssssesassssssnsssesenes 67
4. Find the ROOt CAUSEcceeererereeeeaceenesssssssesesesessssssssssesssssssssesessssessassens 67
0. FIX the BUQ vt sssss s 68
2.4 Debugging TECHNIQUESceueueueeeeeerrrrreeresesssasassssesesssssssseesesessssssssssensnens 68
Add Breakpoints [or Print Statements]...........cccceerneeeenenesesnsseee e 68
Read the Stack TraCe.......cccoeeueeerrrrrrereresesseaessesasssssssseesesesssss s ssassssssnssseneaes 69
Change One Thing at @ TIMEe.........ccceeemrereeeecenesesssese e sesssss s sesessssssnsssesenes 70
Comment ThINGS QUL ...t es 70

TABLE OF CONTENTS

Compare Similar Parts of the Codecccorrreeecieresennnreeereseseee e 70
Write a Simplified Version of the Feature..........cccocoeveeenrrcecncnceeecsceen 71
Rubber Duck Debugging........coceeeerereeseucssesessssssnseresesssssasssssssssssssssssssesssseasaes 71
Pair Programming..........coceeeeermereresessescssssssssssssssesesesssssassssssssssssssssssssssssasans 71
Record Your FINAINGS......ccccoereerereneeeecsseses s sesessssssssenessssssssssesessssessas 72
P2 £ T (o T OSSR 72
2.6 Refactoring Patternsccoveecieneeeenscc e sseseenes 77
IMProve NamMNgccceeeeeeerrccre st as s sesasssseses s ssnensaas 17
Rule Of TRIEE ... 78
Principle of ProXimityccooveeeerineeecsseses e sesessenenas 78
Leveling ADSTraCtioNccoueeeucerenereesesne s ses e aeenes 79
Highlight the Success Path...........oooeecieeeeeeee e 79
2.7 Automated TestS..... ..o 80
2.8 Test-Driven Development (TDD)ccoerereeermrenesnccsenesesssssese s ssseseenes 87
2.9 Reviewing Teammates’ Codecoeuerrrmrerereseesesesssssessssssnesesesssssassssesssses 89
2.10 Submitting Your Code for REVIEW...........cceererereemencseesiseresc e 94
2.11 Pair Programmingcccceeeeeeeecsssesesssssssesesssssssssssssssssssssssessssssessasssssssssnes 98
2.12 Collaborative DeSigcceeeeeucrsereesnssrnereresessssssssssassssssssessesssssssssssssnenes 101
2.13 Documentation..........ccueeeeeneeescccssss s 105
Documenting Codeccoeurrrmrerereneenessesesssssssssesesessessssesessssssssssssensessasas 109
Documenting INtErfacesccoceereeeecesenesenrrrree e snenenas 110
Documenting the RepoSItOryceceeeeeeererercereseeeese e eseses e sesnensaas 111
Documenting ArchiteCture.........ccovoveeeeeeeeeerrree e 112
Documenting Operation...........ccceceeeeecesesesssssssseresesessessssssessssssssssssessessasas 113
Frequently Asked Questions (FAQ).........ccccrururenerenesenerenesese e 114
2.14 RemOVe TOIl......eeeeeeeeeccseee s 115
A LT [0 Vo PSS 119
2.16 References and Further Readingcccceerereeeeessenesssssencreseneese e seseseenes 123

vii

TABLE OF CONTENTS

Chapter 3: Risk Managementc.cccusnsmmmmsnssesnsnmssssasnsssssasnsssssssans 125
3.1 Own Risk Management...........cccoveeeceneneenrnnerese e ssssssse e sesssse s 127
3.2 Mitigate RiSKucueucucerereenrarenecaceseresessaseecasesesesssssseseensssesessssssessssasensnce 130
3.3 Trust NOThiNg.....ceveeeececeeeee et 137
3.4 AVOid OVEreNQINEEIING ...covvrvreererereesenesssssssssssssseereseessssssssssssssssnsessssssensassens 140
3.5 Technical Debt........c.ccceeerie s 145
3.6 Consider the Non-functional Requirements..........cocoeeeevereeerererccrerencenennnns 150
3.7 ODSEIVADIIILYcoveeeeeeeeeeeersissee e sesas s ss s snsa e s s enensansans 152
3.8 PerfOrmMaNnCeccccucucecceceseeese ettt 158
3.9 Learn from MiIStaKesccoccururerereneneneri e 167
3.10 References and Further Readingccceveeerereneeeecnsnesennses e 170

Chapter 4: Strategic Teamworkccccoussssanmssmsssnsnsssssasssssssasssssssssnns 17
4.1 The Success of the Team Is the Success of the Product..............ccoeu.ee. 172
4.2 Your Success Is the Success of Your Team ... 176
4.3 0wn the Product ... 179
4.4 Collaborate...........coccururucurureeenesisesese e 182
4.5 Block Noise and Keep FOCUS.........eeucuereneeerrrrnereresessssessseassssssssesesesnssssssens 186
4.6 Disagree and COMMIL...........ccoceerereeeeucssesessnsssnesesesessesssssesassssssssesesesssssassens 190
4.7 Master Giving FEEUDACKcccceureemeueerereerrrreneesesesseas e ssssssse e sesssassens 192
4.8 Master Receiving Feedback............cceeeeeenrrrcrerenieeeeseseses e 196
4.9 References and Further Readingccocevuveerereneneccsssesesnsse e 199

Conclusion. ... —————— ...201

INdeX..ciiiiiimiiiiissis s ————— 203

viii

About the Author

Filipe Ximenes was born and raised in Recife,
a city in the northeast of Brazil renowned

for its rich historical and cultural heritage

and thriving tech industry. He is one of the
founders of Vinta Software (https://www.
vintasoftware.com/), a software development
shop that specializes in partnering with clients
to build and maintain successful products
using modern tools and proven practices. For

over a decade, Filipe has managed teams and
built products at various stages of maturity,
from writing the first line of code as the sole engineer on a project to
seamlessly integrating full squads into established teams. An avid believer
in the power of openly sharing knowledge, Filipe was drawn early in his
career to his local Python programming community. Since then, he has
created and collaborated on numerous open source projects, organized
conferences, and given talks at major events in Brazil, the United States,
Europe, and Australia.

About the Technical Reviewer

Rafael Caricio is a Senior Software Engineer
at Netflix, currently part of the Live Streaming
Technology team. Originally from the
northeast of Brazil, he has been a professional
software engineer since 2007. Rafael has
worked across various fields, including
delivering the infrastructure behind CBS’s

Super Bowl LV and all Netflix live shows
since 2024. He has contributed to multiple open source projects and is
passionate about sharing knowledge within the tech community.

Acknowledgments

As far back as I can remember from my childhood, books were always
around me thanks to a great incentive from my parents. I can remember
dreaming of writing one of my own, and that at some point I wanted to be
a journalist. Years passed and I ended up studying computer science; the
love for reading never went away and I got to exercise my writing through
technical articles. The idea of writing a book never completely faded
away but it was not something that I was actively pursuing. So it was also
a surprise to me when I started to work on a blog post and noticed that
maybe I had enough content to fill a book.

I want to thank my parents, Regina and Marcos, for doing everything in
their power to provide me with the opportunities in life that led me here.
My loving wife, Isadora, for the patience and support through countless
nights and weekends dedicated to writing. And Rafael, I'm lucky to have
you as my brother.

I owe much of my career as a software engineer to my friends and
co-founders of Vinta Software, Felipe Farias and Flavio Juvenal, and to
the whole Vinta team. I couldn’t have asked for a better group to share
over a decade of professional and personal growth; this book would
not be possible without you. I extend my gratitude to Fernando Castor,
for his mastery as a teacher and for the collaboration throughout my
university years.

A special thanks to Daniel Roy Greenfield, Leticia Portella, Luciano
Ramalho, and Naomi Ceder, who generously shared their invaluable
experience as authors when I was preparing to publish this work, and to
Apress and their team for embracing this project.

xiii

ACKNOWLEDGMENTS

Thanks to Jason Santos and Pedro Barcelar for their creative work in
developing the motifs and creating the illustrations opening the chapters.

Finally, I feel blessed by the number of friends who contributed some
of their time reviewing the content of this book. Starting with Rafael
Caricio, who I met early in my professional life and who has graciously
accepted the role of technical reviewer, it’s an honor to work with you
on this project. And to all the people who reviewed and contributed to
early versions of the manuscript, my deepest gratitude, it’s a privilege to
call you my friends: Amanda Savluchinske, Anderson Resende, André
Ericson, Bernardo Fontes, Débora Correia, Eduardo Rocha, Eduardo
Silva, Flavio Juvenal, Guilherme Carvalho, Gustavo de Carvalho, Hugo
Bessa, Isadora Forte, José Carlos Menezes, Lais Varejao, Leticia Portella,
Luciano Ratameiro, Luiz Felipe Sotero, Mateus Gondim, Naomi Ceder,
Nicole Cysneiros, Osvaldo Santana, Rafael Aguiar, Rebeca Sarai, Renato
Oliveira, Rodrigo Vieira, Silas Gomes, Tarsis Azevedo, Vanderson Mota,
and Vanessa Gomes.

In loving memory of vovd Nitinha for the companionship and shared
love for books.

Xiv

Introduction

e \\\ \\
.

Writing software is a challenging activity. There’s an uncountable number
of programming languages and tools you can pick from, each with their
own capabilities, peculiarities, and caveats. Picking the right one will
depend on what you want to achieve; for that you might need to take into
consideration things like the hardware your program needs to run on and
the tooling available in that language for the specific field of application.

INTRODUCTION

Assuming you already have a solid basis on programming logic, it will
probably take you a few days to learn the basics of a new ecosystem and
perhaps accomplish some small achievements towards your goals. If this
is your job and you are working on it every day, it will take a few months
for you to feel like you learned the ropes and feel comfortable with that
new stack. After a couple of years working in that same stack, it’s likely
that you've been through some major version upgrades of the tools and
had to overcome a great sort of diverse issues; technical challenges will
never stop to show up but they stop being as frequent and they don’t
scare you as much. That is until you pick up a new project with a different
stack and the cycle restarts. Sometimes in the new cycle you will pick up a
completely different programming language, other times you will just be
using a different framework. But even when everything is supposedly very
familiar, you are still starting on a new codebase written by different people
who have their own styling preferences, architecture patterns, and follow
different guidelines. Software development is hard.

Simultaneously, software development doesn’t happen in a vacuum.
Software is written to solve problems that affect people and the process
of doing it is full of real world constraints. Not only do developers need
to overcome the aforementioned technical challenges, they also need
to learn about the business domain of the product they will be working
on. Products exist to fulfill the needs of real users. Users will have diverse
expectations about how things should behave, about what is missing or
broken in the product and how long they are willing to wait before bugs are
fixed and new features are ready to be used. In most situations, all of these
decisions will be made by a network of people working for a company.
Each with a designated role, a set of goals defined by their bosses, a lot
of personal opinions, and motivated by their own career and financial
objectives. To make things even more complex, these people need to
somehow communicate and even collaborate in order to get anything
done. All of that happens in the context of a market where often dozens of
other similar companies are competing to see who has the best product,

INTRODUCTION

the most features, who can build new things faster, who is charging the
least and which might be flooded with investors’ money at one time
and completely dry a couple months later. Again, software development
is hard.

In this chaotic context, how can developers tame down the technical
complexity of writing code and the chaos of a real-world business?
How could one be more effective in their job? Is there a way to work
that enables better results? These are complex questions but there’s an
interesting debate on whether software developers should be called
“engineers” that can help answer them. Ultimately, I think this debate is
just about a naming convention so it doesn’t really matter whether or not
the term “engineer” fits what we developers do. But I like to think about
it as a thought exercise: if there was to be a difference between a software
developer and software engineer, what would that be? When I think about
“engineering” professions versus other professions, one of the things
that stands out to me is how there’s a constant strive for standardization.
Engineers are specialists in applying scientific knowledge to the real world
in a way that is efficient, safe, and repeatable. To do that, they leverage the
use of tools, processes, standards, and conventions that, when properly
exercised, yield consistent results. Following that logic I like to think that
while both software developers and software engineers make a living
through writing code, what differentiates software engineers is that they
leverage tools, processes, and conventions to do their work in a more
consistent way. I believe that consistency is a major differentiator because
software development, as a relatively new industry, still lacks some
maturity in this area and because it’s an extremely valuable competence
for the businesses and users we serve. To me, the answer to the question
on how we tame down the complexity of our profession and become
more effective developers is by becoming better engineers, in other
words, by making our work more consistent.

xvii

INTRODUCTION

In an organization, the main way to improve the delivery consistency
of software teams is by adopting tools and enforcing practices that lead to
better overall performance. This includes things like adopting continuous
integration/delivery (CI/CD) practices, promoting the use of feature toggles
or investing in monitoring tools. The existence of these tools and techniques
is actually good sign that our industry is becoming more mature and all
software teams should embrace them as they become the industry standard.
become the industry standard Zooming down a bit, individuals can also
improve the consistency of their deliveries by changing how they approach
day-to-day work activities. The main caveat is that the required skills to do
that are much harder to enforce from a company level: they are typically
learned through observation and trial and error over years of one’s career.

I'm one of the co-founders of Vinta Software and for over a decade I've
built, fixed, and improved software for clients in a wide set of industries.
Throughout my career, I've worked as solo engineer of projects as well as
leader of teams. Over and over I was the one writing the first line of code
for projects, but also many times in charge of picking up ongoing products
and finding my way through huge codebases in order to deliver value to
our clients as soon as possible. The content in this book is the result of all
of these years of deep study, hands-on practice, discussion with peers,
observation, and mentorship of teammates with the objective of building a
team that consistently delivers successful software products.

The goal of this book is to explore practices that are not writing code
per se but are an integral part of the job of any software engineer working
on a business project. Anyone with a reasonable amount of experience
in the area knows that writing code is only a fraction of what it takes to
do this job well. In fact for many of us it’s not even how we spend most
of our time. Just as we continuously develop our skills in programming
languages, frameworks, and software architecture, we should also invest
into improving our skills in other aspects of the job as they are equally

important for a successful career.

Xviii

INTRODUCTION

Notice that you won't find here a blueprint that suddenly makes you
ten times more effective. Each of the topics we will discuss in this book will
actually lead you through a series of ideas and reflections about how you
can make your work more impactful by changing how you approach day
to day activities. Keep in mind that there’s no absolute solution that works
for everyone; the ideas here are an invitation for you to reflect, experiment,
and adapt to your own context.

You will notice the word “strategy” (or “strategic”) is extensively
used throughout the book, so it’s important that we talk about it a bit.
Being strategic means consciously evaluating context, factoring risks,
testing solutions, planning scenarios and delivering value. For that to be
effective, you need to have a clear goal. If you don’t know what you want
to achieve, planning becomes meaningless. Being analytical is a big factor
of being strategic. Mindlessly reacting to situations means that you are not
consciously deciding towards the action that gives you the most chances
of achieving your goal. It’s key that when you do something, you do itin an
intentional way. You should know what you are doing, why you are doing
it, and how it’s going to bring you closer to your objective, because if it’s
not, perhaps you should reevaluate the situation and take another path.

At the same time, being strategic also means putting aside ego in favor

of collective objectives, and accepting that you need to do what it takes

to reach success, not what makes you look better. Know that guarantee

of success doesn’t exist, so thinking in statistical terms is important. You
should not expect to hit the bullseye in every decision you make. Instead,
you should know that your role is to put the chances in your favor but there
will always be some parts of the final result that are not in your control.

It doesn’t matter, your role is just to keep tipping the odds to your side.
And if things don’t turn out the way you wanted, that’s ok, you can rest
assured that you did the best you could. Finally, being strategic also means
leveraging the power of collective decisions and actions, respecting and
having a good relationship with teammates and valuing and practicing
transparency, good communication, and alignment of expectations.

INTRODUCTION

I started this book by listing what I considered to be the practices that
made software engineers strategic. I was thrilled to notice that everything I
listed would fit into one of four neat categories, so I divided the chapters of
this book according to them: Self-Management, Technical Discipline, Risk
Management, and Strategic Teamwork. In the Self-Management chapter
(Chapter 1), we will discuss tools and techniques you can use to ensure
that you are working on the right thing as well as how to make sure you are
properly communicating with the people around you and making your
work visible. The Technical Discipline chapter (Chapter 2) covers practices
that make the process of writing software more predictable and efficient.

It includes topics on how to improve your own workflow, and how you
collaborate through code with fellow engineers. Following, the Risk
Management chapter (Chapter 3) explores ideas on how to think critically
about the impacts of your actions and how to leverage risk analysis to
make better decisions. Lastly, in Strategic Teamwork (Chapter 4), we will
dive into how to potentialize your work by collaborating with teammates
and by nurturing a healthy culture of collective growth. Many of the topics
we will cover are frequently associated with the capabilities expected from
senior software engineers. As you climb the career ladder, you will notice
that skills beyond programming, such as ownership and communication,
are either required or become ever more important.

In this book you will find topics that are rarely taught to software
engineers or even explicitly discussed in work environments or
conferences. These are practices and skills that are often learned
through observation and trial and error throughout a career in software
development. Some people will have the privilege of working in teams with
a strong engineering culture or have access to a versed mentor willing to
help them and thus accelerating their learning curve, but most will either
never pick up on some of these lessons or it will take many years of career
experience until it naturally clicks for them. Here you will learn how being
strategic and intentional in all of your day to day activities can make you a
better engineer and propel your career.

INTRODUCTION

You will be able to communicate more effectively with teammates,
your leadership team, and other project stakeholders. You will learn how
to make meetings more productive so you have more time to focus on your
development work. You will also learn the processes and techniques that
some of the most accomplished engineers use in order to deliver great
code that solves problems consistently and how to collaborate with your
teammates while writing software. You will notice how risk management
should be an integral part of your job and the importance of actively
leveraging teamwork to drive business and your own career success. So
without further ado, let’s start learning how to be a strategic software
engineer!

CHAPTER 1

Self-Management

Self-management is undoubtedly the most important skill an engineer
needs to develop in order to deliver good work over time and have it
recognized by their managers and peers. That is for the simple fact
that it doesn’t matter how good you are at anything, if you cannot do it

© Filipe Ximenes 2024
F Ximenes, Strategic Software Engineering, https://doi.org/10.1007/979-8-8688-0995-8_1

CHAPTER1 SELF-MANAGEMENT

consistently over and over again, people won't trust you to do it. Being
consistent is a trait that requires tweaks in many aspects of your work

but that will ultimately enable you to achieve your career goals faster. By
having a clear view of what are your personal goals and the business goals
of your project, you will be able to actively plan the strategy that will lead
you to success. Self-management skills enable all of this with the added
benefit of making your work more enjoyable and allowing you to do more
with less effort while being perceived as a high performer.

Engineers with low self-management skills require frequent guidance
from their leadership to check up on their work and ensure things are
going according to the plan. Being consistent doesn’t mean never failing or
always knowing what to do; you will still need guidance from time to time,
but you should preemptively seek help when it’s appropriate, relieving
your leadership from the need of periodically checking up on you. This
means that to be fully effective, self-management needs to be tackled from
two perspectives: the first is actually improving the quality and consistency
of your work, and the second is making sure your skills are noticed by your
teammates. You need to be good at self-management and also show that
you are good at it so people can trust you with the job; this applies to both
your managers and your peers. Self-management is also about making it
easier for your leaders to manage you as they need information about your
work in order to make decisions. Provide visibility when things are looking
bad but also when they are good. Reporting problems helps managers to
intervene and help getting things back on track. But signaling that things
are going according to the plan is also important information for them to
do their work. Remember that in both situations, you should be the one
who's proactively providing the visibility they need.

CHAPTER1 SELF-MANAGEMENT

1.1 Keep Track of Your Activities

The number one thing in self-management is knowing what is on your
plate. Make sure you know who you are responding to and frequently
align expectations. Review the tools your team uses to manage activities,
pay attention during team meetings and actively communicate with
stakeholders. Don’t start working on something or leave a meeting before
you are absolutely sure about what is expected from you.

During meetings, one technique I find very effective is to always sum
up and repeat out loud what you understood from it and outline top
priorities. Never leave a meeting before you get confirmation that you got
things right. Another powerful habit is to take notes. Writing full sentences
while paying attention to what is being said is not easy for everyone, so
you can practice by writing a few keywords and filling in the gaps after
the meeting. For meetings that are specially important, it might be a good
idea to have another person join in to be in charge of the notes. Or if it’s
possible use some Al tool to transcribe and sum up the conversation. Even
better if you can record the meeting to watch it later. Notes are a great tool
for reviewing decisions and also for ensuring no follow-up activities are
missed. You can keep them to yourself or, even better, you can share them
with the participants of the meeting and other stakeholders. That way they
can be used as a validation step to ensure everyone is on the same page
about what was decided.

Having a task management tool, such as a to-do list, to keep track
of your own work-related activities is also very important. Most of your
activities should be tracked and visible for the whole team in a physical
or virtual board, but there will always be things that only concern yourself
and that you don’t want to share with everyone. This type of activity needs
to be tracked somewhere and there are an unlimited number of tools that
can help you with this. Try some of them and choose the one that you feel
most comfortable with. A physical notepad or a simple notes application
can be enough for some people. Add everything that you need to do

CHAPTER1 SELF-MANAGEMENT

there; even small things, if they need to be done and you are not going to
do them immediately, they should be tracked. There are two goals with
such an approach: (1) you should never trust your memory; and (2) you
should ease your brain from the consuming task of keeping track of things
to let it fully focus on the activity you are currently doing. Your personal
task management tool can also be used in situations where you want to
organize your ideas and plan your work in a more private environment.
You can use it, for example, to break down large tasks into smaller and
more manageable ones. Just be mindful that it's generaly better to keep
your work public to the team. We will talk more about visibility in the
upcoming sections.

It's important that you frequently review your list of activities and
reprioritize it. Once you have full visibility of what you need to do,
know how far are deadlines, and what is the level of importance of each
task, it will be much easier to decide what is the next activity you are going
to work on. Keep in mind that you don’t need to blindly follow activities
by their order of priority. There are other factors that you should take into
account, such as size, and even your mood and energy on that day. Find
a balance between these, use the moments when you are feeling most
energized to start big tasks or the ones that require more creativity. When
you are feeling tired, perhaps you should avoid starting new things, but
you can pick something that is more repetitive or operational. Or maybe,
when you only have a few minutes in between meetings, you can use that
time to tackle a few of those very short ones. As long as you are frequently
reassessing priorities and ensuring you are not missing any deadlines you
should be fine.

Keeping your Work In Progress (WIP) low is another practice that can
make you feel less overwhelmed and help you to better manage your work.
It consists in having a hard limit on the amount of tasks that you've started
but not yet finished, not allowing yourself to start new activities until you
have completed others that are still in progress. Context switching is a big
productivity killer and can lead to losing track of important activities and

4

CHAPTER1 SELF-MANAGEMENT

deadlines, reduce the quality of your work, and increase the chances of
you making a mistake. WIP is also bad from the point of view of delivering
value; these are activities that you've invested time on but that are not yet
benefiting anyone. The sooner you finish them, the sooner your team and
your customers will be impacted. Anything “done” is infinite times better
than anything “in progress,” as one delivers some value and the other
delivers zero. If you find yourself in a situation where you have a big pile
of WIP it’s usually a good idea to block any new activities and spend some
time just finishing the ones you've aready started until you are back to a
manageable situation. As the Agile mantra by David] Anderson, creator of
the Kanban, says: “Stop starting, start finishing.”

And if we are talking about not missing track of work, email and
notifications are certainly a major topic. One of the worst things that can
happen in a professional context is your leadership and team losing the
confidence that you are capable of keeping up with messages and the
updates related to your activities. When this happens the natural fallout
is micromanaging. Micromanaging is an unproductive and frustrating
process for everyone, even to your managers, as they will need to
invest more time double-checking things, talking to you and reviewing
your work.

The main job of a leader is ensuring their team is delivering
consistently despite the roadblocks and occasional individual issues.

If it was easy to build perfectly self-manageable teams, there would be
very little demand for them. If your manager feels that the only way to
ensure your work is done is by micromanaging you, that's what they are
going to do. Keep in mind that this is a pattern that is not easy to reverse,
as rebuilding trust usually takes some time of intentional effort before
managers feel that it’s safe to step back to a healthier relationship. The best
approach is always to never let yourself fall into this kind of situation.

There are whole books and uncountable blog posts describing
frameworks to help you to get organized and manage your work
activities. Most of them share the same basic principles: keeping your

CHAPTER1 SELF-MANAGEMENT

email inbox clean and using to-do lists. What works for me is adding
everything to my personal to-do list, where I can periodically review
and prioritize things, and using a zero-inbox technique in combination
with email folders and automatic sorting filters. There’s really no silver
bullet here, you will need to try things out and find what best fits your
personality and work routine.

Key takeaways:

« Take notes during meetings and share them with
stakeholders to ensure alignment.

« Don’trely only on your memory, make extensive use
of note taking and task management tools.

« Keep WIP low by focusing on finishing things before
starting new activities.

« Find a process to ensure you don’t miss out on
notifications.

1.2 Know the Priorities

Despite requiring a wide set of skills and expectations to attend, engineers
should always know what is the set of activities that are absolutely essential
for their work to be considered successful. Being an engineer is a constant
juggle between programming, collaborating with team members, assessing
risk, and aligning expectations. Time is limited and will never be enough
to do everything you want or even to do things in the way you want so
knowing what the people that will be evaluating your work expect from
you is essential. Having a clear view of what the main goals are will allow
you to decide what to prioritize, what concessions you will make and

what will need to be dropped when things don’t go according to the plan.
Leaders are responsible for setting up high level goals for the team, but
they will not be constantly on your side helping you to make the hundreds

CHAPTER1 SELF-MANAGEMENT

of micro-decisions on your day-to-day activities. If you don’t know what
the priorities are, it’s very likely that you will end up making bad decisions.
Just knowing what the priorities are is not enough, you need to
understand business goals and expectations, and the constraints related to
the activities you will be working on. It’s inevitable that as you work you will
identify unpredicted business and technical roadblocks, sometimes these
will become hard blockers and you will need to consult with other people
before you decide how to proceed. Other times, these issues won’t be a hard
requirement, but are still very important for the long-term success of the
project, such as refactoring code, making improvements to an architecture, or
fixing small bugs. By knowing the constraints and expectations about the thing
you are working on, you will be able to make decisions about concessions you
can make and how to prioritize obstacles you find in your way.
Time is perhaps the one constraint that always needs to be considered
in all situations. Estimations are hard to make and they are usually wrong, so
when working on something where time is a hard constraint it’s better to start
from what directly adds value to the product. Avoid the temptation of starting
with the “side” work, finish what is essential and only then move on to the
[important but] non-vital things. For instance, consider how stakeholders will
feel in case they find out that a customer is still blocked because you prioritized
arefactoring instead of changing the piece of code that fixes a critical bug.
Not only will you be risking failing at your job but you are also risking people
around you to stop trusting your judgment. Your leadership must trust that
you are able to make good decisions on your own, strategic engineers
understand what success means to their stakeholders and always do it first.
Keep in mind that leaders will not always explicitly say what they
expect, as in “I'want you to do X" Sometimes things will be communicated
in more subtle ways such as the frequency of how they are being brought
to attention, even if in a light way. If you notice that this is happening
and you are not 100% sure about how important the issue is or you are
not confident on how to prioritize it within your activities, ask for explicit
guidance and align expectations.

CHAPTER1 SELF-MANAGEMENT

If you ask your managers what their priorities are, most of the time
they will be thinking about product deliveries because the success of their
job depends on achieving business goals. Although knowing about these
business priorities is important for you to do your job more effectively, it
doesn’t mean these are absolute and cannot be changed. As engineers we
are the guardians of the codebase and we are the ones who understand
about technical risks of the software we are writing. It’s essential that we
are vocal as to help managers to prioritize the things we judge as necessary
for the long-term success of the software. When doing this, keep in mind
that your role is to present the facts and clearly alert about the risks in a
way that is accessible to the level of technical knowledge of your audience.
That way they will be able to use it to decide how it compares against all
the other things they have in the backlog and make an informed decision.

Teams can also have a set of policies on how they expect code to be
written and managed that needs to be taken into account in your technical
decisions. It's important that you know what practices and patterns
are non-negotiable to your team and company. These will vastly vary
depending on team size, goals, quarter, who are the stakeholders, and
type of project. It’s your job to learn what the policies and non-written
agreements are and to adapt accordingly. For example, in some teams
writing tests is non-negotiable, others teams are more flexible and might
encourage engineers to judge how much of it is needed depending on
the feature being developed. How much technical debt is acceptable is
one of those things that will often flex depending on business constraints;
in times of high pressure, it will be ok to buy debt that will be paid later
on when things are less busy (we will talk more about technical debt
in the Risk Management chapter). Clearly defining these technical
policies and team agreements and getting everyone on board with them
is very important to keep expectations aligned. One way to achieve
this is by defining and publishing engineering principles. These are a
set of philosophical and practical rules that will guide people to make

CHAPTER1 SELF-MANAGEMENT

decisions on their day-to-day job. Although technical leaders can define
the engineering principles, they will work more efficiently if they are set
collaboratively with everyone. Once your team decides what the principles
are, publish them somewhere that is easy to find and keep referring to this
document so people remember about it and review it frequently. It’s also a
good practice to have your own personal principles and abide by them as
much as possible while following the team and company policies.

Be aware that leaders will have different expectations for different
people in the team. Do not assume you just need to do whatever everyone
else is doing. Explicitly ask your leadership about what they need from
you, what should be your priorities and how they would like you to
report and give visibility about your work to stakeholders and to the
team. Understand what are the goals your leadership has for the team
and act as a promoter of these objectives. Learn the main deficiencies that
need to be addressed, what the upcoming milestones are, the business
goals and even what are the expectations for other team members. Do not
just wait for someone to tell you this; actively seek information and use it
to help others to be successful in their jobs.

Key takeaways:

« First deliver what adds value to users and stakeholders

then move to the non-critical things.

e Pay attention to what your leadership is saying and how
they are saying it to identify what are the priorities.

e Bevocal to your leaders about risks and improvements
that you consider important.

e Learn what are the technical policies and team
agreements for writing code.

e Seek explicit orientation about what your leaders
expect from you.

CHAPTER1 SELF-MANAGEMENT

1.3 Make Your Work Visible

Showing the things you do, and especially the results of what you've done,
is as important as doing it. Visibility is not to be confused with toxic self-
promotion, these are actually opposite concepts. While toxic self-
promotion is egocentric, targeting growth of individuals to the detriment of
the group, visibility is all about promoting collective success, sharing risks
and improving collaboration. Of course, by giving visibility you are also
going to be positioning yourself to be recognized by your team members,
which is certainly something that contributes to a career progression.
Although in most situations this should not be your main goal, it’s certainly
an important aspect of visibility.

There are many positive aspects of visibility; let’s start from the
collaboration point of view. Developing software is a collaborative process,
even when you are working alone you still need to collaborate with the users
of the software in order to know what to build. Usually engineers working
in a company will be collaborating with a multitude of stakeholders that are
represented in many different roles such as users of the product, teammates,
designers, technical leaders, business leaders, integration partners, sales,
marketing people, and so on. Being a stakeholder means that these people
are interested in the success of your work; either they are waiting to use the
software you are developing or their own jobs depend on you delivering
yours. By giving visibility of your work you are allowing all these people
to give input about it, and they will often help you to see things from
other perspectives and provide valuable insights. For instance, business
people can inform you about missing functionality and possible issues with
your solution as they will usually have a good understanding about the
market and how users will be interacting with the product. Similarly, your
teammates can provide insights on better solutions to the problem you
are tackling, inform you about risks, identify performance improvement
opportunities, suggest tools that can help with the task, and give tips on
code reuse, quality assurance, and automated testing.

10

CHAPTER1 SELF-MANAGEMENT

Visibility is not just about you presenting your work, all interactions
you have with people at work are opportunities to provide visibility about
your skills and for you to gain visibility about other people’s work and
how they can help you. Let’s say someone asks a technical question in the
team messaging app, by responding to it or participating in the discussion,
you are not only helping a teammate but also showing the team that you
know about that particular subject. The next time someone has a question
on that topic they will know that you might have a relevant input to bring
to the discussion. Actively participating in team meetings is also a great
opportunity for that same reason.

Catching problems early on is one of the main goals of making your
work visible as it’s extremely unproductive and frustrating to invest time
into something that turns out to be wrong. By frequently correcting
courses and not letting things drift away too far from the path, you are
increasing your chances of success by a lot. One big challenge for many
people is overcoming the fear of sharing unfinished work. Drafts are a
great way to validate your work with stakeholders. Make it your goal to
have a simplified initial version that you can send to people and collect
feedback early on. For code you can do a proof of concept, jot down your
ideas in a non-working script, mock things that can be done later and even
write pseudo-code. Once you get confirmation from your stakeholders
that things seem to be in the right shape you can move on and invest more
time on an actual version zero (and share it again). If you prefer, this can
be done in a gradual fashion; for example, suppose you were asked to write
areport. Start by sharing an early version with a colleague you trust and
build on their feedback, then share it with your team and improve things a
bit more before finally sending it to your leadership.

A less trivial question is when to give visibility of your work. Sharing
too much might indicate that you are insecure and have low autonomy,
too little and people can lose trust because they don’t know what you
are doing. There’s no one right answer to this question, you will need to
experiment and see what works in your context. An easy starting point is

11

CHAPTER1 SELF-MANAGEMENT

to ask stakeholders how often they want to be notified about progress. You
can set a time-based goal such as sending updates once a week, or you can
pace reports based on achieving milestones. If you are doing the milestone
approach, make sure your checkpoints are based on small achievable
deliverables, otherwise you are likely to fall into a low visibility pattern.
Being extra careful in situations where you get blocked is also important
and these are usually a good reason for increasing the frequency of reports
so other people can help to unblock you.

Communicating risks is one of the most important ways to exercise
visibility. The earlier your team and stakeholders know about what can
potentially break, the more time everyone has to act upon it. Be conscious
about the way you are going to communicate, especially in critical
situations. It's important to convey emotion in your message so people
clearly perceive the gravity and intensity of the problem. A bland statement
in the team message app with little context or that doesn’t highlight
implications will not get anyone’s attention. Be specific about what is
happening and the consequences of not acting on it. Saying “feature X
is critical to our checkout flow and we didn’t run performance tests on it
vet, I believe that this should be a high priority before we launch it live” is
much more effective than “we haven’t run performance tests on feature X.”
Also don’t be afraid of being repetitive if you think something is critical.
Keep pointing it out until you get an explicit answer from stakeholders
acknowledging they understand it. Some risks are hard to communicate
and people might not fully comprehend the first time you talk about it.

Try providing details, explaining in a different way, and giving examples to
catch people’s attention and ensure the message is clear.

When presenting your accomplishments, the value added to the
product is what everyone wants to hear from you, especially your
managers. When reporting to your leadership, make sure to prioritize
showing the impact of your work to the product and to users over
the process you used to achieve it. Invest time collecting data and

12

CHAPTER1 SELF-MANAGEMENT

metrics that showcase the improvements you made and how it made the
product better and users happier. If you can link your contributions to an
increase in revenue it's even better. Focus on what has improved, provide
metrics, show numbers and charts. Using qualitative data is ok when it’s
not possible to measure things objectively. Interview people to get their
impressions, collect feedback, run a survey with open-ended questions.
People in higher hierarchical positions are pressed to show the business
outcome of the team they are in charge of, by showing the business impact
of your work you are helping them to be successful and [in functional
companies] that usually pays off for yourself as well.

As previously said, career growth is not the direct objective of visibility,
but it’s certainly a nice side effect. By practicing visibility you are reducing
risks, increasing the chances of working on the right thing, and aggregating
value to the business. You are also going to be perceived as a trustworthy
and reliable professional by your leadership and peers.

Key takeaways:

e Collaborate with stakeholders and allow people to
provide input to your work.

e DParticipate in team discussions to display how you can
help others and learn how teammates can help you.

e Nurture the habit of sharing unfinished work so you
can collect feedback and fix issues before they drift too
far apart.

e Be explicit about possible consequences and risks you
identify and get acknowledgement from stakeholders.

¢ When presenting your deliveries, focus on the value
added to the business and to the product.

13

CHAPTER1 SELF-MANAGEMENT

1.4 Ask for Help

Knowing how and when to ask for help is a trait that all engineers should
learn early on. There’s no point in someone’s career where they are exempt
from making mistakes or getting blocked. Software is written by humans
so they are prone to our subjective decisions and interpretations. Variable
names can be deceiving, API contracts can be broken, language paradigms
have different approaches to achieve similar results and engineers are
often making incorrect assumptions about the code they read and write.
Even computers that are supposed to be perfectly mathematical and
precise can fail due to hardware issues. Keeping a humble attitude and
knowing when it's time to ask for help can save you from getting frustrated
and wasting time and money.

There are many ways to ask for help and each has some kind of
cost coupled to it, that cost is what you are going to balance in order to
determine when to use each approach. Doing Internet research and
prompting a Large Language Model (LLM) is quick, involves no one other
than yourself and it will frequently get you the information you need;
because of that, it should always be everyone’s first choice. Try different
terms in your query, do not give up on the first page of results, sometimes
it's worth looking a little beyond. Internet search engines are extremely
efficient, but you can get even more precision if you learn advanced
features such as how to look for exact expressions, requiring or excluding
terms, and filtering results from specific sites. Tweaking your LLM prompts
can also be useful, use the terms you learn from answers to expand
your vocabulary and improve how you ask for what you need. Another
approach that is often downplayed is just reading the codebase. People
get so spoiled by finding solutions online that they don’t consider looking
within their own project for similar solutions. Most don’t invest nearly
enough time carefully reading from start to end the flow of the program
or digging into how things work internally. That kind of solo investigation

14

CHAPTER1 SELF-MANAGEMENT

both online and within the project codebase is very important, do not
give up too early on it. Even if you don’t find the solution, you'll learn a
lot from it. Don’t just glance at search results, pick the ones with the most
potential and read them through, you will often learn something new or
find insights that will help you in the future. There’s no rule on how long
you should try things alone, but as a reference you shouldn’t give up before
trying for at least ten minutes, and perhaps one to two hours is the upper
limit, depending on how you are progressing.

If searching online and prompting an LLM doesn’t work, the next
best approach will usually be to reach for your team. Asking for help
from teammates might feel like a burden because you feel that you are
disturbing someone or even worse, you might feel that you are exposing
yourself as being a bad engineer who couldn’t solve issues by yourself. If
you are constantly asking questions that you could’ve easily found answers
to on the Internet or within project codebase and docs then yes, you are
probably not acting strategically and teammates might not feel too happy.
But as long as you've done a good job researching alone first, I can assure
you that in most situations there’s no reason for you or others to feel this
way. There are many approaches to asking for help within teammates,
you can send messages, schedule meetings or invite people to do pair
programming with you. My recommendation is that you first try to find
answers asynchronously, if that doesn’t work or if it takes too long for
people to respond, you then move on to more synchronous methods. It’s
usually better to use a public channel than a direct message, by doing that
you are increasing the chances of finding someone available and getting
an answer faster. When you send direct messages there’s a high risk of
that particular person being busy and therefore taking longer to respond.
Public questions also have the benefit of allowing other people to learn
from it. In all situations remember to include in your questions what
you've learned so far in your own investigations. That saves you time and
helps improving the quality of answers.

15

CHAPTER1 SELF-MANAGEMENT

If reaching for your team did not help you achieve what you wanted,
your next options probably are: keep trying things out, change your
approach to the problem, or drop the feature. Regardless of your decision,
it’s going to impact stakeholders so you need to align expectations. Send a
message or schedule a meeting to provide context and confirm everyone is
on board with the decision.

If the decision is to keep working on the issue, there’s a high chance you
are now entering the dangerous realm of low previsibility work. It’s nearly
impossible to estimate how long it will take until you find a solution. To
overcome this limitation and reduce risk, you will need to align expectations
with stakeholders and start being very intentional with the frequency and
quality of your reports. The worst thing that could happen is you keep working
for a long time without giving visibility of progress or reassessing the situation.

If possible, this is probably the time to open a ticket either in a public
forum or with the provider of the tool you are using and wait to see if
someone answers with a solution or a way to circumvent the problem.

For most things it’s worth trying to ask a question on Stackoverflow; if it's
related to an open source project, you should look for communities where
you can chat with contributors and other users of the tool or open a ticket
on project the issue tracker. For closed source and commercial tools, find
their support channels and get in contact. But it’s important to set your
expectations accordingly; there’s a good chance it will take a long time to
get an answer and it’s also possible that it will never happen, so don’t sit
and wait; keep searching and trying other ideas.

Another possibility is to evaluate other solutions to the problem. Your
job is to deliver value to users, not to deliver features. Think about
other ways you can provide a similar value using a different solution.
Brainstorm with product and design people how you could change the
feature to make it simpler to implement. Are there parts of it that could be
removed with low impact to the final results? Senior engineers are constantly
balancing cost and benefit to make their decisions. Almost anything can be
built, the question is whether there’s enough budget (or time) available.

16

CHAPTER1 SELF-MANAGEMENT

The last option to consider is the possibility of reevaluating the
feature you are working on. Just like you, project managers are constantly
balancing cost and benefit to decide what gets built. It’s often the case
where something is sent to development just because it looks easy to
do but has a limited value to the product. Bring your concerns to the
stakeholders and let them decide how to prioritize that project within the
new constraints against all the other projects in their backlog, it might just
not be worth it to keep investing time on it right now. By sharing risks early
and often, you're creating opportunities for collaboration and increasing
chances of success for the team.

Remember to adapt your help-seeking strategy according to the
criticality of what you are working on. Shorten the iteration loop for high
risk and urgent projects: report earlier and more often, ask for more
feedback, involve teammates earlier and seek external help as soon as
possible.

Key takeaways:

e It'simportant to try things by yourself before you seek
help from other people.

e Don’tbe afraid to ask for help, try asking questions on
async channels (such as the team chat) and escalate to
sync channels (such as calling a meeting) if things keep
failing.

e Ifnothing works, escalate the situation to stakeholders
so you can look for different approaches to the
problem.

e The longer it takes to solve the problem the more
visibility you need to give about it.

e Managers are always balancing priorities, keep in mind
that in certain situations dropping or postponing the
feature might be the best thing to do.

17

CHAPTER1 SELF-MANAGEMENT

1.5 Get Used to Saying No

For many people, saying no feels like failing, but there are many reasons
why it shouldn’t be like that. In a professional environment, saying no is as
good as saying yes, and often it’s also more productive. Strategic engineers
excel on prioritizing their work and aligning expectations, the only way

for this to be done in a sustainable way is by learning to say yes and no

to the right things. It's surely possible to take a large amount of work and
sacrifice other aspects of your life in order to accomplish it, and sometimes
that even makes sense. But you should be aiming for the long run with
your career and for that to work you will need to learn how much load is
reasonable to maintain that will not lead to a burnout.

The first thing we need to get over with is the idea that “superheroes,’
people that take on a huge amount of work, are the best employees.
Superheroes are actually a liability. While trying to take on multiple
parallel projects or tasks they are introducing risk to the business.
Superheroes generate unreasonable expectations that ripple through
the organization and lead to misalignment. They become a single point
of failure as leadership will make plans counting on their promises that
are constantly on the edge of failing. They assume they will never have
a setback and by doing so don’t plan for the unexpected. And to makes
things even worse, they are often so focused on going fast that they don’t
bother sharing their work or their knowledge with the rest of the team. All
of this generates an environment of low reliability and makes business
planning much harder. The said superheroes are often professionals with
poor risk management skills.

Your leaders do not expect you to always say yes. They will set
expectations and ask you to do things, that’s their job, but what not
everyone realizes is that asking doesn’t mean that they are always
expecting a positive response. Leaders’ job is to plan the work and promote
alignment among the people they are leading. Gathering input from the
team is essential for good planning, the sooner leaders know about what

18

CHAPTER1 SELF-MANAGEMENT

is the status of activities, the faster they can adapt their plans and realign
expectations with customers or upper level leadership. That applies for
good but especially for the bad news, as those are the ones which will
cause conflict and misalignment. In functional organizations, leaders will
be happy when you say no because that means you are mindful about the
success of your work and that you are being honest.

Saying no is also about providing visibility and managing expectations.
A project fails when it does not meet expectations, and expectations
are not a rule of nature, they are social constructs humans build when
interacting with each other. When you take on a new assignment from
your manager you are telling them that they can expect you to get it
done and therefore you will now be accountable if the results don’t meet
expectations. By saying no you create an opportunity for reprioritization,
adaptations to the scope of projects, and better alignment. You are
providing new information to stakeholders that will allow them to rethink
their planning and adjust accordingly. It also allows them to move on with
the orginal plan. But knowing that there’s a higher risk of failure they can
adjust expectations and put in place risk mitigation strategies. Previsibility
is one of the most powerful tools for a leader, by saying no you are
making yourself easier to be managed.

Keep in mind that when you say yes to something you are
automatically saying no to other things, whether you are aware of it
or not. For instance, when you say yes to speeding up the delivery of
a feature to meet a deadline you are automatically saying no to things
like carefully testing it, or dealing with edge cases. When you take a new
assignment before you finish the one you are working on, you are saying
no to full focus on the current activity. There’s always a trade-off, it’s better
when we acknowledge this and make conscious decisions knowing what
their consequences are.

Another downside of always saying yes and taking on too many
simultaneous activities is the cognitive cost of context switching. Every time
you switch the task you are working on, it takes some time for your brain to

19

CHAPTER1 SELF-MANAGEMENT

adjust to the new context before it’s fully immersed and productive. There’s a
performance tax to changing context and because of that it can lead to an
overall performance loss. Balancing multiple assignments simultaneously is
difficult and often draining. Not only will you take longer to complete things,
you will also do so by getting much more tired and stressed. Before saying yes
to a new activity, make sure to factor in the downsides of context switching,
often it will be better to negotiate finishing your current work before starting
the new one. Even agreeing on completely pausing the current task and only
getting back to it after finishing the new proposed activity will often be more
effective than trying to parallelize things.

One of the reasons why saying no is hard, even if you know about
the benefits and the rationale behind it, is because people perceive it as
confrontation practice and not a collaborative one. For sure confronting
aleader on the spotis hard. So you first need to rewire how you
perceive these situations and start thinking about them as collaboration
opportunities. The first thing to understand is that we are not talking about
literally just saying no and walking away. Saying no is about being realistic
about the work you can take on and expressing this so it can be discussed
and negotiated. One thing that can help you to practice is knowing that it’s
often ok not to give an answer right away. When your leader asks you to do
something and you are not sure how to respond or afraid of saying no, it’s
ok to say that you would like to think about it before answering. Ask if it’s ok
to get back with an answer later and take your time to evaluate the situation
without the pressure of the moment. Some people don’t do this because
they think not having an answer right away is a sign of incompetence, but
it's actually the opposite. When you do this you are indirectly telling your
interlocutor that you take their request seriously and that your answer will
be given after thoughtful consideration of the topic. Without rushing you
can now evaluate your activities and prepare arguments before forming an
opinion. When communicating back, do provide all that context along with
your decision. Make it clear what are the constraints and why you think it’s
better to go one way or another. For negative answers, it’s even better if you

20

CHAPTER1 SELF-MANAGEMENT

can propose other paths. Say things like: “I don’t think we can do that in the
current setup, but if we reduce the scope of X activity or join forces with the
Y team there’s a chance we can achieve it.” Don’t be afraid to renegotiate
your priorities, you and your manager are in the same team, you both are
shooting for the same objectives. Success is collective, either the whole
team succeeds or everyone fails.

When negotiating your activities, try to focus on discussing priorities
and not the amount of work. Estimates are usually imprecise and prone to
big miscalculations; avoid trying to predict how much time it will take to
do things and focus on getting a clear alignment on what needs to be done
sooner. If you know what the goals are you will be able to prioritize your
work and propose an adequate plan, saying yes to what matters and saying
no to everything else.

Key takeaways:

e Your leaders expect that you say no to the things that
don’tlook viable because that’s valuable information
for planning.

e Time is limited, when you say yes to something you
are implicitly saying no to other things.

e Context switching is a productivity killer, saying no
allows you to focus on what matters.

e Saying no creates opportunities for collaboration and
reprioritization.

1.6 Problem-Solving Mindset

Every project is loaded with problems; no engineer in the works in a
place where they can confidently say that everything is perfect, there’s
no technical debt, no pressure from stakeholders, all team members are
satisfied with their work and growth and all users are happy. If you know

21

CHAPTER1 SELF-MANAGEMENT

someone that feels like that it's probably because they are working full
time alone on a personal project that will never be outed to other people.
Their product probably also doesn’t integrate with any other software

and is absolutely non critical. Managing and solving problems is the very
nature of software engineering; internalize this and focus on what you can
control: prioritizing and getting things done.

As you work on a codebase it’s natural that you identify bugs, code
quality issues, performance bottlenecks, and refactoring opportunities.
It’s expected that all engineers report about these problems so they can
be prioritized and addressed before they become a risk. But, strategic
engineers go one step further, they report issues alongside solution
proposals. Just shedding light on the things that need to be addressed is
already a great practice and an important contribution to any team, but
kicking off discussions from an initial proposal that can be built upon
is a lot more productive and effective. Proposing a solution requires
effort as you will need to do some investigation to understand context and
constraints before settling on an idea and you want to be mindful about
how you spend your time. If it’s not a critical thing or a low priority issue,
then limit your investigation to a proportionally reasonable time; it’s not
wise to lose focus on your main activities just to propose a solution to
something that is not that important. If you are not sure about the priority,
take it to your leadership, ask for confirmation and for more context before
digging deeper and investing more time.

After you've identified a problem that you’d like to fix and planned
a possible solution to it, you still need to get your team on board before
actually starting working on it. Find an appropriate moment to share your
ideas with them and get a feel on how people relate to the matter. Explain
the problem you’ve identified and how it affects you and other people in
the team, show your proposed solution, highlight the benefits, the risks,
and collect feedback on it. By getting other people to support and promote
your ideas you are increasing the chances of getting a buy-in from your
leadership to work on it.

22

CHAPTER1 SELF-MANAGEMENT

Proposing solutions is also about taking work from people instead of
adding. Leaders are busy people, they have a lot on their plate and are
constantly context switching and rethinking priorities in order to respond
to stakeholders needs. When you bring in a new issue without assessing
it or proposing a solution, it feels like you are just adding more to their
plate. Unless the problem you are bringing to attention is clearly a priority,
it’s very unlikely that your leader will stop what they are doing to do this
investigative work. A way to reduce that kind of noise is by addressing low-
hanging fruits right away instead of bringing them to discussion. Strategic
engineers can play a key role in solving problems that improve the team’s
performance and quality of life as this kind of work is often very strategic
but hard to be prioritized by managers. By getting these out of the way
without the need for it to go through the full cycle of prioritization, you
are reducing cognitive load and speeding up the process. Career wise, the
more you are perceived as a work reliever, the more valuable you will be for
the team which will likely translate into promotions.

One of the worst nightmares for a manager is an engineer that is
constantly complaining about problems but never proposes solutions.
Managers are facilitators, they coordinate demands from multiple sources
and organize the work removing blockers. They usually are aware that
there are an uncountable number of problems in the product and their job
is to balance stakeholders expectations and solve one problem at a time.
Having someone expecting problems to magically get solved is frustrating.
Notice that the key here is form; complaining is different from reporting,
the way you communicate is what is going to determine if your message
will be perceived as one or the other. Complaints are usually poorly
structured, they don’t consider context and they don’t propose ways
forward. So it feels like the goal is just to dump problems in other people’s
hands, not to collectively build toward a shared goal. Reports, on the other
hand, are constructive; they are about providing visibility and improving
things for everyone. Practice complaining less and reporting more.

23

CHAPTER1 SELF-MANAGEMENT

In certain situations it’s ok to complain, sharing work-related
frustrations and anxieties can be a great way of relieving yourself. You are
not a robot, your feelings matter and in a functional work environment
sharing them should be encouraged. But if you are going to do so, do it
during one-on-one meetings, preferably with your leadership. Dumping
unstructured or unactionable problems in front of the whole team
leads to very unproductive discussions that lower people’s morale and
has no benefit for you or anyone. The same goes for having that kind of
conversation with less experienced teammates. Junior engineers normally
won't have the maturity to deal with the situation, they will absorb things
and be negatively influenced. There’s also a high risk that they will become
boosters of your frustrations which can contaminate other people and lead
again to lowering the team morale. If you need to complain, do it directly
to your leaders, they are the ones that should know how to deal with
it. They can help you structuring your thoughts and have the power and
the tools to address the issue in the best way possible.

Beware of the kind of problems you are taking to your leaders, they
are there to help with work-related issues. We all have our own personal
problems and while it’s ok for you to share them to provide context
about why you are facing a certain situation, it's not their job to provide
emotional support to you, neither do they have the necessary training to
do it. Perhaps there’s someone in the people department who can better
assist you, or you should seek professional help outside of work.

Key takeaways:

« Shed light on the problems you identify and propose
solutions as you do it.

« Be apromoter of the issues you consider important to
be addressed so you can get more people on board on
the cause.

24

CHAPTER1 SELF-MANAGEMENT

e Low hanging fruits don’t need to be prioritized by
your manager, fix them yourself and report back as a
done job.

¢ Be mindful about what, how, and who you complain to.

1.7 Own Your Career

Your career is yours only to manage; never delegate it to someone else
because, in the end, only you know what you want for yourself. That
means you should not wait for companies to tell you what you have to do
in order to grow, you should proactively discover what are the next steps
that will take you where you want to be. The main reason for that is that
you have little control over what the company’s plans for you are, and
there’s a reasonable chance they are not perfectly aligned to your own
goals, or even worse, the company simply might not have a plan for you.
Strategies for managing your career will greatly vary depending on the
nature and size of the company you are working at, so experiment different
approaches and find out what works best in your situation.

In order to own your career, the first thing you will need to know is
what are your career goals. What do you aspire to do? How fast you want to
get there should be less important but still relevant to think about. It’s great
to have very long-term goals, like ten years from now, these are important
to serve as a north star and to keep you motivated, but it’s hard to plan for
such a long stretch. Instead, focus on your next one to two years. Observe
teammates that are ahead of you in the career ladder and check whether
your self-expectations are reasonable. It's important that you set a goal that
is achievable otherwise it’s likely that you will get frustrated and hinder
your motivation to keep progressing.

25

CHAPTER1 SELF-MANAGEMENT

Keep in mind that owning your career doesn’t mean ignoring the
career plan from your company; on the contrary, it means leveraging the
tools you have available to achieve your goals, and a career plan is one
of the best tools for that. So start from the basics and make sure you have
visibility of the company’s official career plan. If your company does not
have one, ask your leadership to provide one. It doesn’t need to be a super-
detailed document with exact requirements for each level, especially if you
work in a small company, even a more abstract document that talks about
aspirations for the main levels of the ladder should be enough for you to
get started. Regardless of what your career goals are, the company is the
one that will decide whether you grow or not, so you need some reference
to understand what they value, what they expect from you, and how you
are being evaluated. Without that information it’s going to be very hard to
be strategic and make an effective growth plan.

The last thing you should consider before starting to work on a career
plan is good visibility on the current business goals of the company. Is this
publicly posted somewhere? If not, find someone that can answer that for
you. Consider your team/project goals as well. Your impact is always going
to be measured primarily by the people near to you so your plans need to
take into account what these people are expecting from your work.

Once you have visibility of the company career plan, their current
objectives, and know where you want to be in a couple years, you can
then define a strategy for your career and the steps to getting to where
you want to be. Know what is your long-term goal but don’t plan how
you are going to get there all at once; define a practical goal that you
can objectively complete and avoid things that are hard to measure or
that are too subjective. Choose something that you can achieve in a few
months, planning over three to four months is a good reference. Achieving
your goal within the planned time span is important for you to feel that you
are progressing. For example, if you are aiming to improve your technical
writing skills perhaps you could set a goal to write two or three blog posts
in the upcoming quarter and have them reviewed by your peers so you can

26

CHAPTER1 SELF-MANAGEMENT

gather feedback. These periodic checkpoints will keep you motivated in
order to build toward your long-term goal. The easiest way to reach far is
by compounding short and frequent progress.

To make sure you have a solid strategy, write your goals in a document
and share them with your direct leadership and the people that have
a chair evaluating your career progression. Most engineers only talk
about their career with their leadership once a year during performance
reviews. This is a very risky way of managing your career as many things
can go wrong along the way. For instance, company goals might change,
expectations for you and your role can be updated or you might simply
have misunderstood alignments from the last performance review. You
should validate your plan before executing it and keep collecting feedback
while it’s being executed; that allows for correcting the course in case of
misalignments. Schedule a meeting with your leaders and present your
3-month plan, confirm that it aligns with their expectations, confirm
that it’s a reasonable amount of work (not too much, not too little), get
their confirmation that by achieving the goals you are going to be on the
right track to receive a promotion in the next year. Every three months
schedule a new meeting to show your progress with the initial plan and
present the plan for the next three. If you keep aligning expectations and
getting leadership’s buy-in, it’s going to be very hard for them to justify not
promoting you.

Be explicit about your long-term career goals; by knowing where
you want to be in the next few years, your leadership can provide
opportunities for you to thrive. As much as you should be paving your
own way, you will always be subject to the context of the project and
company you are working for. Sometimes it will not be possible to align
company plans with yours; if this is the case, you might have to make the
decision to either find a new job or to pause or change your plans for some
time. These rigid situations are not too common; in most companies, it’s
possible to find opportunities that directly or indirectly take you in the
path you want to steer your career. Communicate your long-term goals

27

CHAPTER1 SELF-MANAGEMENT

to your leadership so they can help create opportunities and guide you
when opportunities arise. For instance, if you want to be a tech lead or

an engineer manager they could find opportunities for you to practice
leadership skills. Or perhaps you are an experienced front-end engineer
but would like to develop your backend skills and they can put you in

a project that allows that. At the same time it’s also important that you
don’t expect a huge change; your leadership will not adapt all of your
attributions just because you mentioned your plans. You are still a valuable
asset doing the things you are known to be good at right now. You will
need to slowly start demonstrating you are capable of being productive in
the areas you want to develop before your leadership is comfortable giving
you more responsability in it. The other benefit of being explicit is putting
yourself for consideration in case a position aligned with your plans opens
up, that'’s especially useful if you are aiming for management roles.

Notice the main concept behind the ideas we’ve been discussing is
to validate your plans early on so you can align expectations with your
leadership. It’s possible to shorten this validation loop even further by
constantly asking for feedback. You don’t need to wait before you've
completed major milestones in your career to sync with your leadership,
the faster you ask for feedback on your progress the sooner you can course
correct and avoid wasting time on the wrong thing. While it’s desirable
that your leadership is proactively helping with your career development,
you are the one responsible for making it happen, so don’t wait on others,
explicitly ask for feedback throughout the process.

The best ways to get recognition in a company is either by directly
contributing to whatever are their current objectives or by positively
impacting revenue. Notice these are different things, more money is not
always a good thing. A startup strategy might be 100% focused on growth
regardless of money spending. If this is the case and you decide to invest
your time on optimizing infrastructure costs, you are actively going against
the company strategy even though you might be saving them money. If
the current strategy is growth, the best use of your time is building things

28

CHAPTER1 SELF-MANAGEMENT

that will bring more users. Keep in mind that it’s virtually impossible to
only be working on things that you like or that are aligned with your career
objectives, so you need to learn how to align what you want with what the
company needs. It's very unproductive for you and for the company if you
keep pushing against their strategy just to fulfill your career goals. If you
find yourself in this situation, it's probably better to just look for another
place to work that is more aligned with your plans. But, considering you
want to stay, do your best to understand what is the current strategy
and point your goals in the same direction. Not only will it be easier for
you to achieve them but you are also increasing the chances of being
recognized and promoted faster. Pay attention to what c-levels and your
direct leadership are saying during company meetings. These will usually
be used to communicate what is the strategy and to point out what the
current issues are. Notice what is being frequently brought up to attention,
what topics are more often mentioned, and what is being emphasized.
Communication is not always explicit, pay attention to the nuances and
react fast to changes.

Another way to tip the odds slightly in your favor is to follow the
money. Understand the business of your company and find which
are the products and services that generate the most revenue to it and
work in these projects. These areas will usually be the ones receiving
more investment and are more resilient to survive periods of crisis and
market downturns. It's much easier to prove the value of your work to
the company when it’s directly generating more money. Areas that are
not core to the business are often treated as cost centers. They are still
important and needed but managers will always try to squeeze the most
out of them to save money. When business is not going well, these are the
projects which will face budget cuts and layoffs first. Take into account
the macroeconomics; is software engineering a profit or cost center in the
industry you are working at? Think about this when deciding to switch
jobs and comparing proposals. Companies will often assemble teams to
experiment new areas of business, or to take on “innovation” projects.

29

CHAPTER1 SELF-MANAGEMENT

Be aware when joining this kind of initiative; while they can take on and
consolidate as a new profit center, the odds are usually against them, for
one of those to be successful many will fail. On the other hand, if you
join one of these teams and they turn out successful, as one of the early
members you are going to naturally be in a privileged position. Make
an informed decision considering the risks; one right shot and you can
catapult your career, but consider the possibility of having a few failures
before getting one right.

While your leadership should be your main reference point, you
can always make use of some external help. Mentors are usually people
who are more experienced or have been longer in the company than
you. Because of that, they have a good understanding of the dynamics
of the work environment and can pass on their learnings so you can find
shortcuts and avoid the same mistakes and pitfalls. Some companies have
an official mentorship program,; if that’s your case, don’t hesitate to make
good use of it. If there’s no official program, you can still find someone
and ask them for a few minutes per month of their time to chat about
your career. Don'’t think you are going to be bothering them, most people
will be happy to help you out. Look for people that are in career paths
similar to yours and that you consider to be role models, ask your peers for
references of people they think would be a good mentor. Preferably choose
someone that is not working directly with you so you can benefit from an
impartial external perspective. Needing to explain and provide context is
going to be a good exercise for you to reflect on the topics of discussion.
Don'’t be afraid to switch mentors, people will give advice based on their
own experiences of the world and their unique process dealing with
problems. It’s ok if you feel that mentorship sessions are not working with
someone, thank them and try with someone else until you find a person
who understands your perspective and gives advice that resonates with
you. Mentorship sessions should not be a status report of your work,
they are a place to discuss career challenges, remove blockers, and gain
perspective and motivation when you are feeling frustrated. There’s not

30

CHAPTER1 SELF-MANAGEMENT

much point in having weekly mentorship sessions, but having them too
far apart is probably not very useful either. The best frequency will of
course depend on yours and your mentor’s availability, but one to two
months is probably the sweet spot. Lastly, it's important to remember that
it’s your job to bring an agenda for discussion, mentors are there to share
their experiences but they will not plan your career for you. You should be
the one proposing the topics to be discussed, prepare for the meeting in
advance and be strategic; remember that someone is kindly offering their
precious time to you, so you should make good use of it.

Key takeaways:

e Define clear goals for your career.
« Leverage your company'’s career plan.

¢ Know what are the short- and mid-term business goals
of your team and use them in your favor.

e Write down a mid-term strategy composed of small
achievable checkpoints.

e Bevocal to your leaders about your career goals and
ask for feedback frequently.

e Find a mentor, ideally one that is currently in or beyond

the job title you are aiming at.

1.8 Take Control of Your Time

If you were ever part of the initial team of a startup you will notice how
much easier it is to work with a small team in a fresh code base. As projects
mature and the team grows, everything becomes more complicated;
there’s more planning, more process, more documentation, and

meetings - lots of meetings. Before you know, a big chunk of your time is

31

CHAPTER1 SELF-MANAGEMENT

gone on pre-scheduled activities and you start to feel very unproductive.
Engineers should be strategic about their time and periodically review
their calendar looking for what can be optimized. There are two principles
I use for good time management, they are: reducing context switching and
planning idle time.

Being intentional about the use of your time is essential; in any non-
trivial work environment, just letting things run their natural course is the
formula for unproductivity. From time to time, review your agenda and
reorganize events. Start from the reduce context switching principle: how
are meetings plotted over your week? If you aren’t being strategic about
meetings, they are not only consuming your time but are also consuming
your mental bandwidth. It’s very hard to end a meeting where you actively
participated and jump straight into a focused programming session,
you will need some time to cool down and rewire your brain for the new
context before you are productive. With that in mind there are a few things
you can do to optimize your time.

First thing is clustering meetings whenever possible. If you are
attending meetings that are all over your day, try moving them to a single
period, morning or afternoon; the goal is to reduce the amount of time
you have to switch from meeting mode to focused mode. It's a lot more
productive to have big blocks of focused, uninterrupted work. When
clustering meetings, do consider a five-to-ten minute interval between
them so you can go to the bathroom, drink water, and review the agenda
before jumping into the next one. Avoid those 20-to-40-minute gaps
that are not enough to get anything done or worth making the switch to
focused mode.

Don’t rule out the possibility that some meetings are not productive
or just not worth your time. Check if you really should be attending all
the meetings in your agenda. Propose experiments, suggest to your team
replacing a certain meeting with an async discussion for a month and
evaluate the results. Or make it a policy that it’s not rude for people to
skip meetings if they feel their participation is not needed or that they

32

CHAPTER1 SELF-MANAGEMENT

are not feeling productive. That kind of thing can also have the side effect
of forcing meeting facilitators to be more strategic and intentional on
how they run meetings and select the topics to be discussed. Consider
proposing a no meetings day, a day of the week when it’s forbidden to
schedule any meetings.

At Vinta, we had a team that was having trouble meeting their goals
and people were feeling unproductive and frustrated. So we set down to
evaluate what was going on and identify what could change to improve
the situation. Among other things, we noticed that this team had a lot of
meetings, many of them requiring everyone’s attendance. We decided to
try a radical change, we canceled stand ups, recurring one-on-one’s, and
retrospective meetings, replacing them with a single short weekly meeting
per squad. The results were outstanding, people started collaborating
more fluidly through existing communication channels and used the
weekly squad gathering just to discuss more pressing issues. The fact that
there were less people in the meetings was also key as it made squads
more focused on topics relevant to their particular context. Upon request
from the engineers, we kept a “tech sync” meeting that was used to discuss
and showecase architecture and technical topics relevant to the whole
engineering team. It was still possible to have meetings with the whole
team, but those were not recurrent and only called for topics that required
it. Meetings should exist out of necessity to fulfill clear goals. Team
dynamics, and project goals change over time, resetting the agenda helps
identifying what is still relevant and getting rid of unproductive time.

Block periods of your week with two-to-four-hour slots for focused
work. Make it hard for people to schedule meetings in these periods and
only allow it as a last resort. The goal here is to have predictability on at
least a few moments of your week that you can count on to sit down and
get things that require focus. When entering focus mode, try to shield
yourself from distractions, close your email tab and even your company
chat app if you feel that it will help (but make sure people know how to
reach you in case of an emergency). Also block time slots in your calendar

33

CHAPTER1 SELF-MANAGEMENT

for activities that you need to do recurrently, for example, if you have

to send a report at the end of every week. That way you prevent people
from scheduling thing in that period and ensure you will be able to focus
to get things done in time. Create a healthy relationship with internal
communications tools, if you get anxious with email notifications, avoid
constantly checking it, reserve specific time slots to review and answer
email messages. Perhaps you can do it once when you start working just
after you get back from lunch. It’s usually good to also check it before you
leave for the day to ensure you don’t miss any time-sensitive demands.

Planning for idle time is the second principle and the reason it’s
important is because you need to always account for the unplanned. If
you are constantly taking up work that fills 100% of your time, it means
that whenever there’s a change in the initial plans, such as an urgency,
blocker, or unplanned scope addition, it’s guaranteed you are going to
fail. Let’s be honest, adapting to unpredicted situations is just the nature
of the work of a software engineer. Estimating is a tool for prioritization
and risk management, not a way to exactly predict how long things
will take to get done. When you are planning your week, make sure it
has some idle time; there’s a high chance it will end up being filled by the
last-minute changes and emergencies. And if for some reason it ends up
as free time, that'’s great, use it to anticipate other activities and collaborate
with teammates. By now it should be clear to you that one of the most
important things in your job is to align expectations; it’s always better to
over-deliver than it is to fail agreements.

Be in control of your work, don’t just react to whatever shows up in
your day. That’s what will allow you to work smart, have a good work-life
balance and sustain a long and healthy career. Standing up, stretching,
drinking water, and exercising regularly also helps a lot.

34

CHAPTER1 SELF-MANAGEMENT

Key takeaways:

e There’s a tax to switching from meeting mode to
focused work mode; cluster meetings and avoid

unproductive time gaps between them.

e Increase async collaboration and experiment with your
team for ways to reduce the amount of meetings and
their durations.

¢ Block time in your agenda for focused work.

e Ensure there’s margin in your planning so the
unexpected can be accommodated.

1.9 Be Strategic During Meetings

Meetings, both team and one-on-ones, are an important part of an
engineer’s job. When well conducted, they enable alignment and
improvements of team and individual practices and processes. At the
same time most people would love to have as little as possible of them as
they often consume a significant amount of time, impacting productivity.
The best way to achieve a balance is to make sure the time invested on
them is effectively used. It’s not uncommon to find engineers who despise
meetings, and if this is the case for you, it’s probable that either you or
your team are not making good use of these collaboration moments.

In this section, we are going to talk about individual practices that can
make meetings more productive and hopefully even enjoyable. If after
applying these techniques you still find yourself resenting these moments,
it’s probably a good idea to bring this up for discussion with your team
and reevaluate the format or even reconsider the actual need for some of
the meetings. If it's not being productive it might be better to simply cut

it back.

35

CHAPTER1 SELF-MANAGEMENT

The process of making meetings effective starts before people get
together to talk; the first rule of a good meeting is having a preset agenda.
There’s no way to be effective if you start a meeting that doesn’t have a
clear goal. Having an agenda serves to align everyone’s expectation on
what’s to be accomplished and why it’s important that everyone’s time is
being invested on it. Make sure that whenever you invite someone or a
group of people to talk there will be an agenda that is easy to find and open
for everyone to see. By doing this you are going to be preparing yourself
for the meeting and also allowing others to do so. The more people are
prepared for the meeting the higher are the chances of it being short
and productive. Meetings with a loose scope tend to last longer, be less
focused, and produce low quality outcomes. Be specific with your agenda
topics, and if needed, write something to give participants context or
provide links they can use to review information about what’s going to be
discussed. And if you get invited to a meeting that doesn’t have an agenda,
don’t be afraid to ask people to provide one. Your time is valuable and it’s
your job to make sure it’s going to be well spent.

Once you ensure that all meetings you attend have an agenda, the next
step is to use this information to prepare for the meetings. For instance,
if your team is meeting to discuss the next quarter OKRs, at the very least
you need to review the OKRs prior to the meeting. It will be even better
if you also prepare questions and topics for discussion. Especially when
meeting with leadership, review the agenda and try to think about what
questions you will need to answer. Invest some time collecting the data
and information to answer these questions and make sure they will be easy
to access and present when you need them. Review linked documents and
get acquainted with topics you might not have enough context such as a
certain business domain or a part of the code you haven’t worked with yet.
If you're not sure what one of the topics is about, send messages to your
teammates and try to collect more information. Review if you don’t have
questions or suggestions related to the topics that could be addressed
during that time.

36

CHAPTER1 SELF-MANAGEMENT

Remember that the only way to participate in a meeting is not just
by making assertive comments, often by asking good questions you are
already generating a lot of positive value to the process. The habit of
preparing for meetings is not easy to develop, it requires some practice. A
good way to kickstart it is forcing yourself to have ten minutes of focused
time before each meeting just thinking about it. Eventually you will get
used to the process and it'll happen more naturally.

Preparation is especially important for one-on-one meetings
as your participation is absolutely required for the success of them.
These are often one of the few opportunities you'll get the undivided
attention of someone, especially from leaders who are usually on a
tight schedule. For recurring sessions it’s a good idea to have a shared
document where both participants can input topics as they surface in
their day-to-day work. Leaders need to feel confident that you understand
what is being said and it’s frustrating to talk to an apathetic audience.
Pay attention to your body language, use nods to provide feedback and
demonstrate you are attentive. Asking questions and making comments
help build the sensation that there’s alignment and commitment (if you
want to research more about this the keywords are “active listening”). Keep
in mind that disagreeing is as important as agreeing. Don’t restrain from
speaking your mind; by doing so you are creating opportunities for more
discussion and enabling that an alighment is eventually reached. One-on-
ones are also a great opportunity to make bonds with the people you work
with. Use a few minutes at the beginning of the meeting to chat about non-
work topics, perhaps you can share something fun you did in the weekend
and make conversation with the other person. Building these relationships
is strategic for your career and it’s a way to do team building.

When talking in a meeting, it is important that you balance what and
how much you are going to share:

¢ Who is your audience?

e« How much detail do they need right now?

37

CHAPTER1 SELF-MANAGEMENT

« How much time do you have available to talk?

« What could be better explained or debated
asynchronously through text?

« What parts of the content is your audience most
interested in?

« What is the main message you want to convey?
« Whatis the outcome you are seeking?

People’s attention span is usually very low, you should be strategic and
really adapt your discourse to maximize the chances of accomplishing
what you want from the meeting. For broader audiences it’s usually better
not to dig into the details (unless that’s the goal of the meeting). Give
just enough context so everyone knows what you are talking about and
move on to the conclusions. Be as direct and practical as possible, expect
that broader audiences will not capture the nuances. Limit yourself to
two or three main messages, more than that and it’s likely that people
will not remember everything. Consider that when you bring too much
information it becomes harder for people to distinguish what are the key
topics they need to take away. Be objective and explicit about what is
essential, what the priorities are, and the actionables you want to highlight.

AtVinta we had a teammate who was having trouble communicating
during meetings. It was hard for that person to moderate what they should
be reporting, they were often too technical, beyond what the audience
would find useful. Besides that, it was the first time in their career that
they had to report to business people so that made them nervous, which
contributed to worsening the problem. To help, we proposed doing some
practice sessions before the meetings. First, the person would draft what
they wanted to say and send it for revision. During this process I'd suggest
resources that could help the audience understand the message, such as
doing a screen share or preparing a few slides. After a few feedback rounds,
once the content was better tuned we would schedule a quick session

38

CHAPTER1 SELF-MANAGEMENT

to practice the presentation. After doing that a few times, the person
understood what was expected for these meetings and was able to prepare
for following ones with less intervention.

Effective meetings should start with a planned agenda, have a
participative audience, and end with clear and actionable items.
Closing meetings with a recap of what was discussed and what the agreed
next steps are is a great way to promote alignment and ensure everyone
is on the same page and set for success. This is especially effective during
one-on-ones with your leadership. By recapping topics before leaving,
you are double-checking you fully understand instructions and adding yet
another layer to prevent misalignments.

Key takeaways:

e Ensure all meetings have an agenda that is shared with
all participants.

e Prepare in advance for meetings, gather the
information you will need and elaborate questions.

e Be especially attentive in one-on-one meetings so
you can take advantage of this focused time with your
leadership.

e Adaptyour discourse according to the audience and
meeting goals.

e Recap decisions and action items before leaving the
meeting.

1.10 Effective Text Communication

Through programming languages we communicate to computers the
steps we want them to execute, but these languages go beyond that, they
are also built to be understandable by humans. Good code communicates

39

CHAPTER1 SELF-MANAGEMENT

to other programmers our intentions and allows them to effectively add
functionality, change behavior, and fix problems. Engineers must be good
code communicators, but it is as important that they are effective through
other forms of text communication such as writing code comments,
documentation, tutorials, guidelines, discussions, and even the day-to-day
chat messages with the team. Effective writers can quickly formulate text
that is clear, informative, and short. This is no easy feat as stated by the
famous Pascal quote: “The present letter is a very long one, simply because
I had no leisure to make it shorter”

Poorly written text can be very harmful in the context of software
engineering, it can produce misunderstandings that will ultimately lead
to more bugs, incorrect or inconsistent business logic and misaligned
expectations between you, your peers, and managers. In its many forms
and contexts, good writing is directly related to your performance as an
engineer. Developing the skill of writing effectively is a great investment
in your career. The best way to do it is by practicing, so start early and
don’t be afraid to make mistakes - that’s how you are going to learn. Be
intentional in everything you write, think about the message you are trying
to convey, read it out loud to confirm it’s clear, check for inconsistencies,
and provide all the context your audience needs to effortlessly understand
your message. People are lazy so you need to make it easy for them to
consume and understand what you write in order to successfully deliver
your message. Highlight the main topics, provide external links, use
paragraphs to group information. Our brains are bad at processing too
much information at once, it will naturally try to select and focus on what it
perceives as the most important thing and ignore everything else. Account
for that in your writing, avoid mixing things from different contexts, don’t
ask too many questions all at once, and if you need to do so, provide an
interface that will allow your audience to focus on one question at a time
(such as a form). Until you are confident about your writing skills, ask
for explicit feedback from your peers. Ask if the message was clear and if
any part of the text could have been written differently in order to sound

40

CHAPTER1 SELF-MANAGEMENT

clearer and confirm they got all the context they needed. Remember, if you
feel insecure with messages or documents that go to a broader audience
you can send it to someone you trust for review before making it public.

As more and more companies adopt remote or hybrid work, async
text communication becomes an even more important skill to software
engineers. For this type of work arrangement to be effective the standard
should be that if there’s one person working from home everyone needs
to adopt remote work practices, that’s the only way to ensure the people
working remotely are properly included in the team workflow. So whether
you like remote work or not, chances are that you will need to develop
skills that enable it, and text-based communication is one of the bases of
it. For global teams, it’s even more important as engineers from different
countries will usually have few overlapping work hours; in this situation,
writing effectively becomes a necessity in order for these teams to be
productive. Other day-to-day activities that show the importance of text-
based communication to all software engineers include: commenting
and documenting code, doing code reviews, writing incident reports, and
reporting in the team issue tracker.

Text-based communication is also about visibility; people frequently
use chat-based direct messaging and one-on-one meetings to discuss
things that could benefit the whole team. Using public channels for
discussions is not necessarily about having everyone participating in them;
one of the main benefits is actually allowing other people to gain context
about what is being talked about. This is the kind of information that might
not be useful immediately but that can be extremely helpful in the near
future. Teams grow and people change jobs, so being able to reference
past discussions and decisions is a super power that enables scaling and
reduces risk. Other benefits of text-based async communication include
allowing people to think and prepare before answering questions, being
fast to consume, being searchable, being referenceable and enabling
linking to specific parts, and being editable so it can be updated as
things change.

41

CHAPTER1 SELF-MANAGEMENT

While asynchronous communication has many benefits, synchronous
communication remains crucial. Many situations, such as sensitive or
time-constrained situations, are better addressed through real-time,
synchronous interactions. If you have work that is blocked, you should
certainly leverage your team to get back on track as soon as possible.

War rooms are extremely effective for tackling critical incidents. Team
ceremonies such as retrospectives also benefit from the dynamics of video
conferencing or being physically in the same place as your team. But
even in these situations, summing up decisions and publishing them in a
written document is beneficial. The team building aspect of synchronous
communication is one aspect that is hard to reproduce in async channels
and that should be accounted for. As mentioned before, async and sync
communications can complement each other. For instance, instead

of meeting to introduce a topic, you can first publish a document to

get everyone on board with the basics and use a meeting to promote
discussions and answer questions, making the meeting much more
productive and interesting.

As seen, there are many benefits to being an effective writer and the
best way to improve on it is by practicing. It’s a skill that you can develop,
and as any other, it will be hard in the beginning but it will eventually
become effortless and natural. Asking for feedback from your peers is often
the easiest way to learn what you can do better.

Key takeaways:

« Be intentional with your writing, ensure the message is
clear and the content is easy to consume.

« Prefer public channels over private messages to
increase visibility and collaboration.

« Practice by asking peers to review and provide feedback
about your writing.

42

CHAPTER1 SELF-MANAGEMENT

1.11 Reporting

The job of your leaders is to ensure that their teams are consistently
delivering; that is achieved through aligning expectations up and down
and unblocking people. In order to do these things, they need visibility
of the work being done by the team. That is, either the team self-reports
or they need to be frequently asking for updates. Frequently asking for
updates is very inefficient and time-consuming for all parties involved as it
requires more communication and context switching, so getting better at
self-reporting is an important skill for engineers. Failing to report well has
similar consequences to failing to keep track of your activities and might
lead to micromanaging. By learning to report effectively you are making
yourself more reliable and easier to manage.

Frequency of reporting is usually the hardest part to get right because
there’s no rule that fits all cases. You will need to leverage priority, urgency,
risk, context, your role, and the overall mood of the project in order to
determine how much and when you should be reporting. Having your
leadership asking you about progress of your work is probably the best
reference point to determining you should’ve reported earlier. Keep in
mind that there are downsides in over-reporting; it might indicate low
maturity and insecurity from you. Although reporting too much is not
ideal, it’s certainly better to overdoing it than to not be doing it enough.

As you experiment, ask for explicit feedback on your reporting frequency.
It's a good idea to determine a fixed reporting frequency for each of your
attributions. For instance, you might plan to send a message to your
leadership every week communicating progress on a project that has a
deadline in two months, but that will be too little for a project estimated to
be done in a couple of weeks. Remember that reporting is not just about
communicating the problems. Informing that things are on track and even
that there are no updates is just as insightful. Having a fixed frequency
goal helps setting the expectations on what is the minimum you should

be reporting. Factors such as blockers, previously unknown risks, and

43

CHAPTER1 SELF-MANAGEMENT

deadlines getting closer serve as alerts to indicate you should increase your
reporting frequency so you need to adapt as quickly as possible to these.

Be strategic with the content of your report, adapt the message to the
audience and to the context. Consider the level of detailing and technical
information you are going to provide. When you are reporting to a more
technical person it might make sense to provide a lot of details as that
person can unblock problems, give feedback, and provide insights on
things you might not have considered. To others that kind of information
might just be unproductive and noisy. The same factors that determine
frequency should also be taken into account here, usually the level of
detail you should provide increases as the risks go up. How you are going
to report also matters; it’s a good idea to call a meeting to report urgent
things. For non-urgent matters it's probably a better approach to send
a detailed document that can be discussed asynchronously and call a
meeting in case it needs a more active collaboration on certain topics.

The advantage here being that synchronous meeting time is used only to
discuss the hot topics, not to introduce the matter. This approach is more
efficient and considerative to everyone’s time. Be propositive whenever
possible, don’t just say you have a problem, tell what your plan is for fixing
it as well. Make it easy for people to consume your reports. Not everything
needs to go in, filter what is really relevant to keep things short as possible,
use bullet points and highlight the most important items. Clearly identify
the risks and if there’s anything you need answered. Effective reports are
optimized to have a low consumption of time and headspace of the person
receiving it. The success of your work is going to be directly impacted if
your leadership misses important information. By facilitating things for
them you are making their work more effective and in return allowing
them to help you to be successful in yours.

Reporting is a topic that encompasses many of the things we previously
discussed. It’s all about working on the right thing, providing visibility,
asking for help, and communicating (especially through text), and just like
these it’s also a skill you can develop through practice.

44

CHAPTER1 SELF-MANAGEMENT

Key takeaways:

e There’s always value in reporting so share good and
bad news and even when there is no news.

e Learn what is the right frequency to report according to
your context and the activity you are working on.

e Adapt the level of details depending on your audience,
the risks, and urgency of the matter.

1.12 Keep Up with Technology

It doesn’t take a lot of time working in software to understand how

fast things change compared to most other areas of work. The speed

in which new tools, processes, languages and frameworks get created

or significantly changed can be overwhelming. Although some people
build whole careers around the same technologies, this might not be the
average experience. Most engineers will change their technical stack a few
times over they career either because of changing jobs or because they
are upgrading their toolset to more modern technologies. While the fast
pace of change is certainly welcome as a great source of innovation and
maturity growth for the industry, it comes with a significant burden on
engineers who need constant adaptation and requalification in order to
stay up-to-date with the best practices and tools. For anyone in tech, the
challenge is keeping up a growth pace that is steady, fits your work and life
routine, and is sustainable in the long run.

One of the hardest questions to answer on the topic of personal
development is when to do it. Usually everyone is very busy with their
day-to-day work and personal life issues so it's hard to manage anything
that doesn’t seem absolutely essential. The ideal solution to work on
personal development is to build a routine by reserving some time every
day to study a bit, in the same way that you should have a physical exercise

45

CHAPTER1 SELF-MANAGEMENT

routine. When done correctly, using 15 to 30 minutes per day for personal
development should have no noticeable impact on your work deliveries,
especially if you match what you are studying with the problems you are
dealing with at work. Consider doing it at the beginning of the day which
is the moment when you are not tired, messaging channels are quieter,
and you don’t have other activities taking up space on your brain. Young
people beginning their careers usually need more time than that, but they
have the advantage of being more eager to grow and have more energy

to invest. Not everyone has the privilege of being able to study outside of
working hours due to their personal life context, but if you can do it it’s
probably a good investment of your time and likely to allow you to jump
levels on the career ladder a bit faster.

Picking a topic to study is especially difficult for less experienced
people because either they don’t know what knowledge they are missing
or there’s too many things to learn and it’s hard to prioritize. For people in
this situation it can be productive to seek a mentor or a coach to provide
some guidance. Generally it’s recommended that you start from the
topics which are in direct demand for your job and explore others topics
of interest after you are comfortable with the day-to-day ones. For more
experienced engineers, what frequently happens is that they get caught up
on their operational work and forget to look outside for what is new and
how to improve what they have. In this case, there are two main forms of
keeping up-to-date, one is to build a process that allows the new content
to periodically get to you (let’s call this cumulative learning) and the other
is to intentionally choose topics to specialize in and build deep knowledge
(let’s call this specialization learning). The former helps with your day-to-
day growth and generates knowledge that is usually directly applicable in
your work and the latter helps with your long-term career development.

Cumulative learning happens every time you read a business or
technical document, when you learn how to use a new library, when you
find the root cause of a bug or when you pair program with a teammate.
This type of learning often occurs out of the need to solve a problem, you

46

CHAPTER1 SELF-MANAGEMENT

are not intentionally seeking to build a profound knowledge on the topic,
you just need to know enough to get going with your work. Another aspect
of cumulative learning is that it happens in a nonlinear fashion, you get
pieces of information bit by bit from different experiences at different
points in your career that aggregate into a bigger knowledge on a topic.
The article you read, along with the discussion you had with a teammate
and your practical experience compound to form knowledge. Another
form of cumulative learning happens when you go to a conference. In this
situation, the learning although more intentional is limited by how much
can be taught in a 40-minute presentation. During conferences you are
either deepening a little bit on a knowledge you already have or you are
broadening your knowledge to areas you were not yet familiar with. In
either situation, it’s very likely that you'll need to get back into that topic
later on in order to really consolidate it. Ideally you combine both passive
and active types of cumulative learning on your routine. Besides going to
conferences, another way to build that kind of knowledge is by following
people on social media that are posting about your topics of interest and
following newsletters. Make it a goal to select one or two articles to read
per week, use bookmarks or a tool that allows you to save content to
read later and reserve some time in your week to go through the list.

Conversely, specialization learning is a lot more intentional, focused,
and deep. Specialization learning happens when you choose a topic to
dedicate an extended amount of time, for example, when you read a book
or when you sign into a course. In these situations, knowledge is built in
a much more linear form, books and courses are planned to deliver the
subject in an ordered way that is usually designed to optimize the learning.
It’s also expected that you are going to spend a considerable amount of
time reflecting on the same topic before moving to a new one.

The challenge with specialization learning is that it’s done with
mid- and long-term goals in mind, there’s normally no pressing issue to
be solved by this new knowledge. Because of that, it requires a lot more
discipline and active effort so people have an even harder time finding

47

CHAPTER1 SELF-MANAGEMENT

time in their agenda for it. It's possible to build an exceptional career based
on cumulative learning but that usually depends a bit on being lucky,
joining the right company at the right time, and meeting the right people.
By incorporating a routine of specialization learning, it’s more likely
that you will be able to control your next career steps and have more
flexibility to pick what you want to do and where you want to work.
Knowing what your career goals are, make a prioritized list of topics you
want to dig deeper into and include it in your routine of study. Although
more tiring, specialization learning usually needs to be done outside of
working hours, especially if you're investing in a topic that is not directly
related to your job.

At the beginning of my career I decided to specialize in REST APIs
and it was a decision that really paid off. It was a topic that was related to
my day-to-day job and that I found interesting. I started by reading books
on the subject and looking up blog posts. As I read stuff I also followed
authors on social media and that helped me find other authors and more
resources to deepen my knowledge. As I learned more I started sharing
my knowledge first within my teammates, then writing blog posts and
presenting in local conferences. I submitted talks and presented in bigger
conferences and wrote a Python open source library that used RESTfull
concepts to generate API clients. Even though the library was never
hugely popular, it got some attention from the community and I got a talk
approved to present it in Europe’s largest Python conference. This whole
process not only helped me grow as an engineer but it also served as a way
to promote myself as a professional and to attract clients to Vinta.

As important as being strategic with your learning is not neglecting
rest periods, as Will Larson, author of books on software engineering
and management says, “pockets of rest enable careers.” It's natural that
sometimes your job is more demanding and that you have less energy for
studying, sometimes it’s a problem in your personal life that is making
things harder and sometimes there’s no clear motivation, you are just
feeling tired. Taking a period of rest is good for your mind and for your

48

CHAPTER1 SELF-MANAGEMENT

body, don’t stress out, consciously evaluate how you are feeling, let your

body recover and plan your next steps. Constantly working at full capacity

is not healthy and leads to burnout. Plan your career for the long run, be
intentional, build a sustainable flow and rest from time to time, ideally,

way before you are close to your limit.

Key takeaways:

1.13

Leverage moments of high energy to grow faster,
especially if you are starting in the career.

Develop a routine of studying and self-development.

Leverage cumulative learning to improve your current
job performance.

Leverage specialization learning to drive your long-
term career growth.

Don’t forget to rest and respect your limitations, we are

in this for the long run.

References and Further Reading

“Using engineering principles to create autonomous
teams at scale” by By Wayne Bell https://leaddev.
com/culture/using-engineering-principles-
create-autonomous-teams-scale

“Know your “One Job” and do it first” by Charity Majors
https://charity.wtf/2021/03/07/know-your-one-
job-and-do-it-first/

“Profit Centers vs Cost Centers at Tech Companies”
by Gergely Orosz https://newsletter.
pragmaticengineer.com/p/profit-centers-
cost-centers
49

CHAPTER 2

Technical Discipline

Qd_ '-.-

ff

J//

i

/

1\ | "\\\;

[

| <_ Lo

: 1es 2024 51
F Ximenes, Strategic Software Engineering, https://doi.org/10.1007/979-8-8688-0995-8_2

CHAPTER2 TECHNICAL DISCIPLINE

Every profession has a set of practices that, although not necessarily
mandatory, are extremely important if professionals want to ensure
exceptional results. Take, for example, the routine of a small independent
restaurant chef, it might look something like this:

« Wake up early in the morning and go to the market to
handpick the freshest available ingredients.

« Spend the afternoon washing vegetables, doing prep
work, and making sure everything is ready for the day.

« Inthe evening, before customers arrive, she inspects
the table setups to make sure everything looks beautiful
and clean.

« Asorders come in, she cooks the ingredients in a
particular order and quantity, waiting the appropriate
amount of time to extract the maximum flavor and
producing the right texture.

« She carefully plates and examines each dish to ensure
its presentation is visually appealing.

« Atthe end of the day, she ensures everything is cleaned
up and ready for the next day.

Now, what happens if the chef wakes up late and all the fresh
vegetables are already sold out? Would she still be able to cook? What if
the table cloths are a bit dirty? Would customers notice? Would it hurt if
she didn’t invest as much in making glasses look shiny? In case any part of
her routine goes bad, would she still be considered a chef? Yes, of course!
Would customers have the same experience in her restaurant? I'm sure
they wouldn’t. The same applies to software, it's possible to develop bad
software that works, just like a poorly prepared meal would still feed a
person, but if you want to write great software there are some practices
that will set you up for success. These practices are what we are going to

52

CHAPTER2 TECHNICAL DISCIPLINE

be referring to as “discipline.” They are often simple or easy to learn as
concepts but are frequently not as easy to incorporate into a routine. Until
you haven’t got used to them and made them part of your day-to-day,
they will feel burdensome. These practices normally require an active and
intentional effort to change your mindset and you will often only perceive
the benefits once they've become a natural part of your job. Examples of
the software practices that fall under the umbrella of discipline are: writing
automated tests and using Test Driven Development (TDD), writing
documentation, refactoring, doing code reviews, and pair programming.

Something that is commonly misunderstood is who is accountable
for discipline practices. Some engineers expect their companies to define
what software development practices they expect from their employees,
but that’s not reasonable. The leadership of most companies are focused
on business decisions, cash flow, sales, accounting, and human resources;
they often don’t understand the technicalities of building software, so
we cannot expect them to know how to evaluate and decide what are
the practices we should be following. It’s our responsibility as qualified
professionals to know the best practices and to apply them in our work.
When software fails, engineers are the ones who are going to be blamed
for it, so this is a responsibility that cannot be delegated to companies;
engineers need to own it in order to build good software. By not adopting
the right practices, engineers are risking the success of their work. This
not only has consequences to the company they are working for but also
to their own work life balance (such as pulling late nights fixing bugs or
working on weekends) and to their long term career. Applying this logic to
our previous example, you will notice that although it’s up to the restaurant
owner to provide the appropriate tooling and work environment, there are
many parts of the job of a chef that the business either doesn’t know about
or cannot enforce. It's up to each individual to execute them.

Discipline is neither a technique nor a process. Technique describes how
to execute an activity given a certain set of constraints (such as the available
tools). For example, how to cut tomatoes using a chef’s knife. Process

53

CHAPTER2 TECHNICAL DISCIPLINE

defines a plan on how and when things are going to get executed, it might or
might not give away the techniques that are expected to be employed. For
example, a recipe on how to make pizza might tell you the ingredients and
the order in which they should be mixed and cooked but it might not specify
the technique on how to knead the dough. While process and technique
can often be enforced, discipline needs to be nurtured from within us. It’s
possible to assess that a meal tastes delicious but it’s [the cook’s| discipline
that ensures vegetables were properly cleaned before they were cooked.

One of the main impacts of discipline practices is related to the very
nature of why we need software: its ability to change. Before software
existed we already had machines [hardware] to automate things for us, but
once they were built, it was not possible to change how they behaved. The
revolution of the general purpose computer and software is the ability to
change the machine behavior without the need to rebuild it. Change is what
differentiates soft-ware from hard-ware. The very nature of software is to
be changed and many of the discipline practices are there to help us build
software that is easy to change. If we build software that is hard to change,
we are defeating its purpose! We need to feel safe to change code without
risking (or at least with the least possible risk of) breaking things. If this is
not baked into how we perform our work, there’s no way we can consistently
deliver changeable software (good software!). Consistency is a keyword here.
If we were writing software that was going to last for only a couple weeks
and be thrown away or be replaced by a new one after that, there would be
no reason to think about discipline. Discipline enables software that is more
reliable, has fewer bugs, is easier to change, and that is more pleasant to
work with. In the long run, this is what will allow us to deliver repeatedly and
consistently. Lastly, discipline is about being reliable as engineers. If people
know that you apply good practices and deliver consistently, they will trust
you even when you eventually fail. They will know that it was probably a
fluke or due to something that you could not control and are more likely
to empathize with you. This has a direct impact on your customers, users,
teammates, and also to your individual career.

54

CHAPTER 2 TECHNICAL DISCIPLINE

The only way to really internalize discipline is by doing it. Practice
it over and over until it's naturally part of your routine. If you are having
trouble it’s usually productive to bring these topics for discussion with
fellow engineers and leaders. And remember there’s no finish line, there’s
always something to learn or to improve, so find a pace that works for you,
there’s no need to rush.

2.1 Development Flow

One of the most basic applications of discipline is how we approach our
day-to-day code assignments. This is not something we usually consciously
think about but naturally everyone has their own sequence of steps they
use in order to complete a programming task. The following items outline
the main steps an experienced engineer will take while working on an
assignment. Normally they won't be thinking about them as a sequence

of steps nor will everyone agree on a correct order of execution, but most
people will acknowledge that these steps reasonably match what they

do. Here we are going to present them in an order that feels logical and

that can be used as a practicing guideline. The idea is that you can repeat
this process until it becomes ingrained in your mind and you don’t have

to think about it anymore. The goal of this exercise is to make you more
conscious of your practices, thinking about each step as an isolated activity.

Understand the Business

First and foremost, make sure you understand what you are going to
do. Carefully read the whole assignment, open and read any external
documents referenced (docs, code snippets, ...), inspect diagrams,
and study the design deliverables. If it's a change in an existing feature,
play a bit with it, test different parameters and flows. Try to think from
the perspective of the end user. How is it going to improve their life? Is

55

CHAPTER2 TECHNICAL DISCIPLINE

there a better way of achieving the desired outcome? If necessary, ask
questions and tag stakeholders. The main goal of this step is ensuring you
are confident about what you have to do and that you have most of the
information you need before starting. If you identify any gaps or missing
information, consult with relevant stakeholders. If it’s possible, do it
asynchronously and move on to something else while you wait for what
you need. If it's not possible to wait for answers, try other channels to reach
out to people or schedule a quick meeting. Avoid context switching; if you
start on something else, do not come back to the original task until you've
finished the new one.

Understand the Code Context

Every feature exists in the context of a broader codebase and product.

It’s not possible to plan how you are going to write code if you don't
understand the other parts of the software it will need to interact with. To
do this, carefully read the whole flow where that code will be placed at and
make sure you understand what is happening in each step. At this point
there’s no need to dig deeper into implementation details, just read the
function/method/class names to get a broad understanding of the flow of
the code. For example, if you are working on a web endpoint, start from
the router, inspect the code that fetches data from the database, then the
services being called, and finish with the content of the response. The
solution to whatever you are trying to do needs to comply with how the
system currently works so gathering this context is necessary in order to

propose an adequate solution.

Plan a Solution

Now that you are confident about what you are going to do and the existing
code linked to it, it’s time to think about what your solution will look like.
At this point you don’t need to write any code. Just think it through, draw

56

CHAPTER2 TECHNICAL DISCIPLINE

diagrams on paper, map relationships, sketch how things fit together, list
all possible scenarios and states, and dig a little deeper into the existing
code if you need more context. Once you have an initial idea, check if you
are going to use any external libraries. If so, review the documentation to
confirm it has the features you will need and that it behaves as you expect.
Double-check if the library is well-maintained, and check open issues that
might impact your work. Also check the library compatibility with your
application (language version, framework version, licenses, etc.).

Now it’s time to break down the solution in smaller blocks. As you
do it, write these down as sub items. Think about edge cases, exceptions,
integrations, and data validations. Also, check other functionalities
that might be impacted or that will need more testing to confirm they
weren’t impacted. Also take note of these so you don’t forget about them.
Finally, consider all the non-functional aspects of the feature such as
usability, performance, cost, data integrity, reliability, monitoring, and
serviceability (we will talk more about non-functional requirements later
in this chapter). If you are not sure about how these things can impact the
production environment, ask someone with more context to help you with
the analysis.

The last part of this planning is actually one of the most important:
prioritizing the order activities will be tackled. To do this you need to
evaluate the importance and risk of each activity and plan a “version zero.”
What is the minimum amount of work/activities you can do that delivers
the most value? What is absolutely crucial to the final solution? What is
less important and could be left for later? Here are some tips on how to
evaluate risk:

e Isittime consuming? This can either indicate that it
needs to move up or down in priority depending on
how important it is. If it'’s time-consuming but critical,
it'’s probably better to start from it.

57

CHAPTER2 TECHNICAL DISCIPLINE

« Canitbecome a blocker? Again it can either mean it
needs to be moved up or down in priority depending
on the importance. For example if it requires answers
that are not yet at hand or if it depends on another
piece of code before it can be done, perhaps you should
leave it for latter. But if it can block other tasks from you
or from your teammates, perhaps you should move it
up on priority.

« Ifataskrequires experience with a section of the code
or a third party lib that you are not familiar with, it
might be a good idea to give it a higher priority to avoid
unforeseen blockers.

« Version zero can often be more forgiving with the UI,
unless of course, it represents a risk for the feature
value. For example, a complex animation that you don’t
have experience building.

While running this process you will often identify parts of the
assignment that are too complex or time-consuming. When you notice
this, try to imagine what other similar solutions would make things
simpler or faster to build.

Validate Your Solution

For more complex features or if you are not confident about your solution,
it’s a good idea to validate it with someone else. In most cases a Tech Lead
will be the best person to talk to because they have the technical context,
but sometimes it can also be done with a manager, a designer, a peer,
some other stakeholder. Write a paragraph or two explaining how you are
planning to build the feature, including some but not all technical details,
and send it for validation. If it's something that cannot be summarized

58

CHAPTER2 TECHNICAL DISCIPLINE

in a couple paragraphs it might be a good idea to schedule a ten-minute
desk-check to present and discuss your thoughts to streamline the
process.

This is a good moment to report about risks, such as possible blockers
or the complexity of the assignment. Confirm with stakeholders if a
simpler solution you came up with works. Sometimes it will make sense to
completely remove that complex part of the feature or delay it to another
moment. Ensure any delayed features are registered in the issue tracker
tool with proper context and information for it to be prioritized and
addressed later.

Make It Work

Now it’s time to start writing code. For now, focus only on the “version
zero” you've defined. It's very important that you don’t go beyond it. The
goal is to have a working prototype that validates your assumptions. It’s
important to write the least code possible, you are still learning about how
the new code fits in the existing one and validating the initial architecture
we had in mind. Less code means it’s easier to experiment with other
approaches and to change the architecture in case you end up not liking
the initial one. But don’t go trying architectures until you have a working
prototype. In fact, if it makes sense, consider writing this first version as a
script completely detached from the application and then transplant it in.
Pace your work, don’t get ahead of yourself. Because you've planned
the execution you can, one by one, pick the topmost item in priority and
work on them individually. Once you’ve picked an activity, focus on getting
that single thing done and forget about any other tasks. Once you are done,
commit the code and mark the item as completed, this is a small way to
celebrate progress! Using Test Driven Development (TDD, more about it later
in this chapter) will make this whole process much easier because it follows
the same philosophy of gradual, paced work. It will also help you build a
comprehensive test suite that will be essential in the next step, refactoring.

59

CHAPTER2 TECHNICAL DISCIPLINE

As you make progress you will identify unmapped edge cases and new
requirements. It's important that you don’t work on them immediately,
simply add a new item to the list and prioritize it among the others; this
will allow you to not deviate focus, reduce the cognitive load, and avoid

getting anxious.

Refactor

With a working version zero it’s time to invest on code quality and prepare
the ground for a definitive solution. At this point you should not add any
new features or fixes. Try architectures you think might better suit the
problem, reorganize interfaces, rename variables, separate concerns,
encapsulate implementation details, review if you are following the project
code patterns, and make the code easy to read and clean. Because you've
written tests you can be confident the work you've done so far works and
that you are not breaking existing features as you refactor. Since you only
have the bare bones of the feature, refactoring should require minimal
effort. Once you are comfortable with the architecture and quality of

the code, move on to the next step. (We will talk more about refactoring

later on).

Fill in the Gaps

It’s time to close up the solution. Work on the items you judged
non-critical. Fill in the details, nice-to-haves, polish the interfaces, review
how you are handling error and how you are managing edge cases. Keep
the paced work, one task at a time, write automated tests, and celebrate
progress by committing the new code and marking items as done.

Review the code and check if you should add more log messages code
comments,

60

CHAPTER 2 TECHNICAL DISCIPLINE

Create and Update Docs

Finally, close the activity by checking if you need to create or update
documentation. If applicable, consider how you are going to provide visibility
to your team about the changes you've made. If it’s a significant milestone,
make sure to celebrate with your teammates by posting about it in a public
channel or perhaps sharing a demo video of the new functionality.

2.2 Unblocking Flow

Getting blocked is a constant throughout the career of any software
engineer, junior or senior, be it because of a hard-to-fix bug, or an
integration that refuses to work. Blockers will always happen from time

to time; what will change are your skills to get out of these situations.

Just like in the “Development Flow,” the unblocking flow is a suggested
sequence of steps to practice being mindful, but this time to help you get
unblocked. Most experienced engineers will not apply these techniques in
a fixed predefined order but rather adapt to their context, parallelizing and
adapting how much effort is spent depending on the situation. The steps
are listed here in an order that balances the chances of success with the
time and effort it takes. It should be used as a reference for practicing but
it’s encouraged that you experiment and find what works best for you in
the context of your job. The general rule is to start from the less time-
consuming and more effective approaches, and move on to more time-
consuming methods.

Look for Similar Situations Within the Project

A common type of blocking situation is getting stuck with code that is
not behaving as you expected. In this situation people often overlook the
effectiveness of finding similar examples within the existing codebase.

61

CHAPTER2 TECHNICAL DISCIPLINE

Do some searching within the project and try to spot how tools are
being used in other situations. Compare what you have with these other
usage examples and try to compare them. You can also experiment
tweaking both instances to become similar to each other and see if you
can reproduce the issue. Use the debugger, set breakpoints, and inspect
variables to gain more context.

Consult Your Preferred LLM

With Al tools getting ever more proficient on code, it makes sense to
check early if they have an answer to your problem. When formulating
your prompt, explain your problem providing some context such as the
framework you are using, libraries and APIs, describe the problem to

the best of your knowledge, include snippets of code and stack traces if
available. Try a few prompts exploring different aspects of the issue or
reformulating how you frame the problem. Prompting a LLM is often
productive and can provide great insights, but be careful with just copy
pasting code. Although just trying out whatever these tools spit is a good
way to find a solution to your problem, your work shouldn’t end there.
Don’t waste this opportunity to really understand what fixed the problem
and why your initial attempts didn’t work. Once you have working code,
make tweaks to see how changing it affects the software, inspect variables
and test different parameters. That kind of exploration is a great way to
deepen your understanding and it pays off in the long term. Another way
to leverage these situations is to read the documentation for the tools the
LLM used to solve the problem. This is important as a way to double-check
the information you were given (LLMs are prone to hallucinating) and to
learn more about the tools you are using. Even when Al gives the wrong
answers they can still be useful because they can expand your vocabulary
which you can use to improve your prompts and search queries. After a
few tries if the suggestions are not effective, move on to the old-school
alternatives.

62

CHAPTER2 TECHNICAL DISCIPLINE

Quick Search on the Internet

If the LLMs don’t work, then try doing a quick search on the Internet. At
this point, you should only be trying to rule out if the problem is trivial
and if it has already been solved. Try multiple search queries and scan
through the first couple pages of results, don’t go further. When you click
on an article, first scan through it to confirm it has potential. If it does, do
read the whole thing, try not to just skim over the information; you might
not find the solution there but you will probably gain context about things
related to your problem. Consider checking the project issue tracker if

it’s related to an open source library. Here are some tips on how to write
search terms on Google:

e Use the terms you see in the console such as exceptions

and log messages.

o Don’tuse (or remove from logs) project-specific terms,
like file paths, class/method/function/ names.

e Experiment with broader and more specific terms.

e Restrict search to a domain; for example,

»odi

“site:stackoverflow.com,” “site:github.com”

As areference, don’t spend more than 20 minutes in this phase.

Double-Check Your Mental Models

Mental models are how you organize your existing knowledge to form

an expectation about how things work. For example, most people don’t
know the details about how a hydroelectric power plant works, but if you
were asked about it you could probably make some guesses that will seem
coherent to you. When we are programming we are constantly using
mental models to make projections about how we expect the code we
write to behave. It's impossible to know all the details of what is going

63

CHAPTER2 TECHNICAL DISCIPLINE

on under the hood of all the software tools we use, so mental models
allow us to fill in the gaps without the need to actually know everything.
The problem is that our assumptions don’t always match reality leading to
false expectations and a seemingly coherent but incorrect understanding
about what is going on. To prevent getting stuck in this situation, you need
to let go of some of these assumptions, double-check your knowledge, and
rebuild your mental models.

Reach Out to the Team

Write a paragraph explaining what you are doing, the issues you are facing,
and share in the internal company channels. Explain what approaches you
have tried so far, provide code samples and link to parts of the codebase
that would help people understand what you are talking about. You can
use the team channels or the company-wide channels if there’s one that
can be used for this purpose. While you wait for an answer move on to
other approaches.

Read the Docs

At this point, it’s reasonable to assume you might be dealing with a
non-trivial issue. Since it looks like not many other people have gone
through the issue, you'll need to deepen your knowledge on the subject in
order to develop the skills to solve it. Look for available documentation on
the tools you are using, find the section that covers what you are trying to
do, and read it from top to bottom. You will be amazed how much you will
learn by doing this; not only will it help you fix the current issue but it will
also give you useful insights for your future self. Docs are mostly used for
one-of consultation but there’s so much they can provide if you dedicate a
bit more to them.

64

CHAPTER2 TECHNICAL DISCIPLINE

Go Deeper Into the Code

If docs don't help, it's probably worth investing some time reading the
code of the tool you are using. Start from higher levels of abstraction and
inspect the inner workings of it going deeper as you see fit. Review what
parameters are available and how data flows through methods. This is yet
another opportunity to learn as you will be able to see the architecture and
patterns other developers used to build that tool.

Seek External Help

If the previous approaches didn’t work, you might need external help. For
commercial tools open a ticket in their support channel, for open source
check if there’s an issue tracker in the repository or if there’s a forum, email
list, or chat channel you can talk to other users and maintainers of the
library. Consider asking a question on a public technology forum. In all
cases, do provide as much context as possible, but try to abstract business
details that are not relevant for the situation. Make your text short and
easy to understand in order to increase the chances of getting an answer.
For the common scenario this step is left as one of the last resources as it’s
not always available and it usually takes a considerable amount of time to
receive answers (if they ever do). For that same reason, this is one of the
things you should do in an urgent or critical situation, post your message
and move on to other things as you wait for an answer.

Debug the Source Code [If It’s Available]

If nothing works, it’s time to bring up the big guns. Dig into the source
code of the tool you are trying to use but this time trying to debug it. Set
up breakpoints and make changes to the code to better understand the

65

CHAPTER2 TECHNICAL DISCIPLINE

inner workings of it and test what would need to change in order for you
accomplish what you want. Copy and paste code blocks related to what
you are doing into your own code so you can more easily test changes.

2.3 Bug-Fixing Flow

Fixing bugs is an integral part of every engineer’s life to the point that often
we don’t think much about the process of doing it. Indeed it’s possible to
jump into the code, change a few lines and get the problem fixed, but by
being systematic we can make our solutions more consistent and reliable.
The goal of this flow is to propose a sequence of steps that will lead you to
not only fixing bugs but also doing it in a safe, well planned way and with
minimal risks.

1. Understand the Problem and the Context

First and foremost, make sure you understand the problem. Carefully read
the bug report, related assets, the context, and the parameters that caused
it. If necessary, ask questions to help getting a clear understanding about
the issue. You should have clear answers to both these questions:

« How is the system supposed to work?

« How is the system currently behaving?

2. Reproduce

Now that you understand the problem it’s time to reproduce the bug. This
seems obvious but sometimes we receive a bug report and get straight
into fixing it even before seeing it happens for ourselves. This is dangerous
behavior because it can lead to misunderstandings of the problem and
even situations where we fix (or break) other parts of the system that are

66

CHAPTER2 TECHNICAL DISCIPLINE

not what was initially reported. Once you reproduce it, the next step is to
identify what is causing it. Although this step can sometimes be done by
using the system, the best way to reproduce a bug in a consistent way is to
write a regression test.

3. Write a Regression Test

A regression test is an automated unit or integration test that captures a
bug. It must be written before any alteration in the application code is
made. The goal is to have a test that breaks precisely due to the bug you
are investigating. Once you have a failing test you can then write the code
that fixes the bug and run the test again to confirm it passes. The rationale
is that by isolating the bug in a test and only changing the minimum
amount of code required to make it pass you can confidently ensure

your solution is what is fixing the issue. The advantages of this process
include confirming you’ve correctly found the root cause, isolating the
issue in a controlled environment, being able to quickly and automatically
assess your solution works (the test is passing), and adding a permanent
automated test in your test suite that asserts this particular bug won'’t be

introduced again later on.

4. Find the Root Cause

Debugging is the practice of tracing what is causing a bug; just because
you know which parameters make the system break it does not mean that
you know what in the code is causing it to break. A key factor in debugging
is ensuring that you fully understand what the problem is before you start
trying to fix it. You should never start working on a complex solution unless
you are confident that you’ve found what is the root cause of the problem.
In the next section, we will cover some techniques that can help with this
process of debugging.

67

CHAPTER2 TECHNICAL DISCIPLINE

9. Fix the Bug

Now that you know what is the cause of the problem and that it’s “captured”
in a test you can work on the final solution to fix it. While working on a bug
it's common to find other problems in the code you would like to fix or
change, avoid this temptation. In software development, change always
means risk, and we don’t want to risk introducing other bugs as we try to fix
the initial one. Make sure you write the least amount of code and that this
code only affects the part of the system that you are fixing. Other changes
that aren’t directly related to the bug should be delivered separately, with

dedicated attention, planning, and testing.

2.4 Debugging Techniques

In the previous section, we discussed a basic flow that leads to effectively
fixing bugs, but we haven’t actually presented how to actually debug.
While there’s no silver bullet and each engineer develops their own
methods and preferences as they practice and gain experience, there

are certainly a few common ground techniques that usually lead to good
results. In this section, we are going to explore some of these techniques
and how they can be employed to make your debugging more strategic. As
usual, experiment and practice with these to build your own toolbox that
you can pick and choose depending on the situation.

Add Breakpoints [or Print Statements]

Most programming languages are fitted with debuggers, tools that allow
you to set up breakpoints to intercept the execution of a code and inspect
the state of variables. Similar results can also be achieved (with a little
more work) by adding print statements. While both approaches are fine
and you should use whatever you feel more comfortable with, debuggers

68

CHAPTER2 TECHNICAL DISCIPLINE

usually offer a set of features like “stepped execution” that are very handy.
The usual approach is to set up the breakpoints and run the software to
trigger them, but it's sometimes more effective to set up an automated test
or to write a script that reproduces the issue you are investigating. That
way it’s easier to change parameters, making it a lot more effective to run it
multiple times until you find the issue.

Debuggers are a dividing topic among engineers, some are very fond
of them and acknowledge them as powerful tools for tracing problems but
many do just fine using print statements. Even if you prefer to use print
statements, it’s worth the investment to get acquainted with debuggers and
have this skill in your toolbox. It’s certain that from time to time you will
stumble upon situations where they are a lot more effective.

Read the Stack Trace

Most programming languages will print some form of stack traces when
they encounter an execution problem. These are usually the first place
you should look at when trying to understand what went wrong. Stack
traces may seem a bit messy at first glance, but with practice, you will get
used and your eyes will quickly be drawn to the important bits. The first
thing you should do when you see a stack trace is to confirm it matches
your expectations. Confirm the execution went through the methods you
expected it to. If you are working with a language that has support for
exceptions they will be shown in the trace and that’s often the best place
for you to start your investigation. Frequently a quick search on the web or
prompting a LLM about these will give you a few good pointers to what is
the problem or at least what should be the next steps in your investigation.

When reading stack traces pay especial attention to the points where it
transitions between layers such as internal language methods, framework
code, third party libraries, and your application. Start focusing on the
things that are closer to the application code and dig your way to lower
level layers as you see necessity.

69

CHAPTER2 TECHNICAL DISCIPLINE

Change One Thing at a Time

When debugging, you are trying to find the root cause of a bug so it’s
important that you keep track of what you are doing or it will not be
possible to determine how or which changes to the code impact the
results. By being incremental you can gradually work your way toward

the root cause without opening too many simultaneous branches of
exploration. The general rule is: if it helps getting you closer to reproducing
or fixing the bug, keep it; otherwise, undo the change so it won’t affect
your next experiments. Notice that for this to work effectively, it should be
supported by an automated regression test so you can quickly run the code
multiple times.

Comment Things Out

A good way to track down what is causing a problem is to “reduce the
scope.” The idea is to comment parts of the code until the error stops
showing up. At this point you start uncommenting line-by-line until the
error shows up again. Start from high level code, once you've pinpointed
what line causes the problem to change or to go away you can uncomment
it and repeat the process in level down (inside that method). Keep
repeating that process and it’s likely that you will end up finding the exact
line that is causing the problem.

Compare Similar Parts of the Code

As mentioned before, comparing the broken code with other similar parts
of the project can be very insightful. Look for the differences between

the two blocks of code and try to reproduce the issue in the one that is
supposedly working as expected. It’s likely that you will either find out that
both flows are suffering from the same issue or identify what difference is
causing one to work but not the other.

70

CHAPTER 2 TECHNICAL DISCIPLINE

Write a Simplified Version of the Feature

Sometimes it is just better to throw everything out and start over. Instead of
deleting your application code you can simulate that by writing a separate,
simplified script with the minimum amount of code to reproduce what you
are trying to achieve. Make it in a way that is easy to tweak parameters and
run it again so you can iterate faster. This method is a great way to isolate
the problem and confirm your mental model matches reality. Once you

get your “toy” version running as expected you can then transplant it back
to the application code making the necessary adaptations. Don'’t forget to
write a regression test before you start changing your application code, all
its benefits are still valid and worthwhile in this context.

Rubber Duck Debugging

You'd be surprised by how effective it is to just explain your problem to
someone else as a way to find what is causing it. The process of formulating
the issue in a way another person will understand it and have enough context
to help you out forces your brain to organize the information and review your
knowledge base often leading to insightful conclusions. The rubber duck
debugging method consists of using a rubber duck (or any plastic figure of
your preference) and explaining the problem to it, sometimes all you need is
someone to talk to. In case you don’t have a rubber duck at your disposal, a
teammate should work just fine as a replacement.

Pair Programming

If you explain the issue to an inanimate object and it refrains from
helping you, it might be a good idea to invite a human being for a pair
programming session. Make sure you give as much context as possible
and list the things you've tried so far (we will talk more about pair
programming later on).

71

CHAPTER2 TECHNICAL DISCIPLINE

Record Your Findings

As your debugging progresses, write down the things you've experimented
with so far as a way to track what you already tried. Include information
about the experiments you've tested, which tools and commands you've
used, what produced insightful results, and what were the dead-ends.

You can use these notes for your own tracking but they are also useful for
giving context for teammates in case you need their help later on. These
notes can be later posted in a team wiki or in the issue tracker for further

reference in case a similar problem shows up in the future.

2.5 Refactoring

In simple terms, refactoring is the act of restructuring code while not
adding or changing functionality. Code design has a natural tendency to
gradually fall apart over time which, compounded by pressure to deliver
fast, results in what is often referred to as technical debt. The main goal
of refactoring is paying back technical debt and with that, keep the
codebase easy and safe to be changed. That all translates into value added
to the business through faster feature delivery, less overall bugs, code that
is easier to maintain (and bugs that are easier to fix), a product that is more
reliable and stable, engineers that are more productive and happier with
their work, and ultimately, happier customers.

The biggest blocker engineers have when it comes to refactoring is
thinking that it requires big architectural changes. This is actually far from
reality as refactoring can be as simple as renaming a variable to a more
comprehensive term. All engineers, even the most novice ones, should
feel empowered to make improvements to the codebase as they identify
opportunities. Don’t make a big deal of it, keep in mind that your leaders
only expected you to refactor up to your level of experience using the
toolset you are already comfortable with. As small as they might seem, any

72

CHAPTER 2 TECHNICAL DISCIPLINE

improvements to the codebase should be celebrated and acknowledged as

a step toward a better codebase.

Once you break that initial barrier and start doing more refactorings

you might notice that there are some pitfalls that you should avoid. One

of the main risks for inexperienced engineers when refactoring is to lose

track of what their goals are and the amount of time they use. When you

start changing too many things at once, it’s quite easy to mess it up to an

irreparable point where it's hard to even get things back to the original

state. It’s also not uncommon to accidentally invest too much time on a

refactoring that turns out to be a dead-end or on a low priority issue that

ends up delaying your main assignments. It's important that you learn to

identify these traps in order to avoid accidentally falling into them and

setting some guardrail rules. What will make you comfortable and effective

with refactoring is practice and experimentation, so here are some

guidelines that you can use to develop this skill:

1.

First identify the part of the application where you
believe code can be improved.

Make a checkpoint commit in your version control
system that you can revert back to in case things
don’t go according to the plan.

Set a 20-minute timer.

Start refactoring and remember that you should not
add or modify existing feature behavior; your only
goal should be to improve the code without affecting
how it behaves.

a. Read the code and as you understand what it's doing
add comments; these can be temporary just to help
you through the process, but later on you might
decide to keep them if you think they are useful to
other engineers.

73

CHAPTER2 TECHNICAL DISCIPLINE

b. Start with small and easy things such as renaming

variables, functions and classes.
c. Try moving related code close to each other.

d. Try extracting blocks of code into self-contained

functions or classes.
e. Experiment with alternative architectures.

5. When the timer ends, you will then decide how to

proceed:

a. Ifyou like how things are going, estimate how long
it will take to finish the refactoring and if it fits your
schedule keep going. Set another timer to your new
estimation so you don’t lose track of time and risk

your other deliveries.

b. If you think you are not making good progress or
that you are heading toward a dead-end, revert
the changes and move back to your assignments.
Perhaps you can think more about the issue and try
again in another moment.

When using these guidelines it doesn’t matter if you will complete the
refactoring or not, the main goal of this exercise is to practice, lose the fear
of changing code, and experimenting with your ideas. Force yourself to
think about ways to improve the code for the entire 20 minutes, even if you
feel stuck do not give up. Keep in mind that even if you make no progress
you are only “wasting” 20 minutes, it’s not a big deal. Try to do this one or
two times per week until you get used to the process, soon enough your
brain will start to automatically spot refactoring opportunities and it will

be a natural part of your workflow.

74

CHAPTER2 TECHNICAL DISCIPLINE

Refactoring is a concept that is easy to explain to non-technical
business people as it makes logical sense, but, at the same time, it’s
frequently hard to get the buy-in from higher-ups because they will often
perceive it as trading new features for a hard-to-estimate and distant
benefit. The contradiction is that, later on, when the cost of shipping
features rises and things start to break, engineers will be the ones to
blame for letting that happen. The best way to avoid this situation is to
treat refactoring for what it is, a discipline that is part of the ongoing
operation of writing software and like so there’s no need to bargain
time for refactoring, you just do it as an integral part of your job writing
software. There’s no need to distinguish what is feature development
and what is refactoring, instead you should be continuously doing small
improvements to the code around the features you are working on.

Although the main goal is always to improve existing code, there are
a few different contexts where refactoring can be applied. Martin Fowler,
writer o many books about software development, divides them into six
categories; knowing their differences is useful in order to strategically plan
how you are going to act:

o Test Driven Development (TDD): This is the
conventional TDD flow, Red » Green » Refactor (we
will talk more about TDD later on).

e Litter Pickup: While on TDD, you are refactoring
something that you just wrote; on litter pickup, you are
refactoring something that you stumbled upon while
browsing the code or working on a task. It’s the girl/boy
scouts rule: always leave it cleaner than you found it.

¢ Comprehension: Sometimes we will stumble upon
a piece of code that requires a more careful reading
before we fully understand what it’s doing. While
this is a good sign that this code would benefit

75

CHAPTER2 TECHNICAL DISCIPLINE

from a refactoring, if you don’t have the time to

do it immediately, you can at least write a few

code comments or improve the naming of variables
and methods. The goal of this type of refactoring is to
help the next person understand the code quicker than
you have.

« Preparatory: Some code might seem fine, until you
need to add or change something in it. In this situation,
it’s often a good idea to first refactor it, preparing it for
the change before you actually work on the new feature.
This is one of the few situations where refactoring pays
off immediately.

« Planned: This is when blocks of refactoring are added
to a backlog and prioritized along with all the features.
The danger of it is that it’s hard to measure the value
of a refactoring especially when comparing it to a
feature so it’s easy for it to keep getting postponed. If
this kind of refactoring is happening often, it might
mean the team is not doing enough of the other types
of refactoring.

« Long Term: As the codebase gets older, some parts will
build cruft that cannot be fixed in a single sit-down
session. When this happens, the best idea is to break
down the task into small steps that lead to the final goal
but that do not need to be tackled all at once.

In the end, the ideal way to think about refactoring is doing small
changes that over time compound to big improvements. It’s inevitable
that from time to time your team will need to plan dedicated time in the
backlog to work on larger issues but that should not be the norm.

76

CHAPTER 2 TECHNICAL DISCIPLINE

Key takeaways:

e Refactoring is about improving the codebase to enable
better-performing teams and products.

e Allimprovements to the code are worthy and welcome
no matter how small they seem.

e Make refactoring a part of your day-to-day job as
an engineer, long-term gains usually come from
continuous small improvements.

e Be mindful about the time investment so refactoring
doesn’t impact roadmap activities.

2.6 Refactoring Patterns

Some patterns are clear indicators of refactoring opportunities; knowing
about them will allow you to address problems early on, improving the
quality of the code before cruft grows. There are many such patterns, here
we are going to list some that are easy to identify and that can help you
start practicing your refactoring skills.

Improve Naming

This is one of the simplest forms of refactoring as it simply consists of
changing the name of variables, functions, methods, classes, and modules.
Remember that the goal of writing clean code is to improve the work of our
fellow engineers; computers just follow instructions, they don’t care about
architecture or good practices. The nature of code is that it’s written once
and read many times so every opportunity we have to make the codebase
easier to understand is time well invested and it pays off in the long term.
].B. Rainsberger describes four stages of naming as

77

CHAPTER2 TECHNICAL DISCIPLINE

1. Nonsense

2. Accurate-but-vague

3. Precise

4. Meaningful or intention-revealing

Every time you promote names between stages, you are significantly
improving the code.

Rule of Three

The rule of three, as describe by Martin Fowler in the book Refactoring,
states that you should wait until you repeat something for the third time
before you create an abstraction (and refactor everything to use the new
abstraction). The rationale behind this is that the first time you write a
piece of code is the moment you have the least context about the problem
you are working on. Therefore, even if you expect that it should be
designed as a generic abstraction that can be reused multiple times, it’s
premature to do so. You shouldn’t try to predict the future, instead wait
until you have actually written similar code a few times, gathering more
information and context about the problem before you can better design a
generic solution that fits all cases.

Principle of Proximity

The Principle of Proximity, popularized by Adam Tornhill, states that “code
that changes together should be moved closer” It's only natural that as
software grows code will end up misplaced; this usually happens as people
gradually add new code focusing on completing their own task without
giving proper attention to the bigger context and architecture. It’s easy to
notice when this kind of pattern emerges: when working on a feature, you
will either notice that you are constantly jumping between files that are

78

CHAPTER2 TECHNICAL DISCIPLINE

positioned too far apart or that you have to scroll up and down too much
on a large file. If either of these are happening, it’s a sign that you might
benefit from moving code closer together. This can be done in multiple
ways such as reorganizing file structure, moving code from one file to
another, and grouping together classes and methods that interact with
each other in the same file.

Leveling Abstraction

Sometimes it’s possible to make code easier to read by grouping (chunking)
blocks and moving them up a level of abstraction, placing it in a self-
contained method, for example. When programming, we aim to create
layers of abstraction that allows other engineers reading the code to quickly
have an overall understanding from looking at higher level abstractions but
still allowing them to easily delve into the details for more context. Large
blocks of uninterrupted code, such as a method with more than 50 lines

for a reference, are likely mixing code that should be in different levels

of abstraction. To fix this you can move the code inside the method into
multiple self-contained methods that will be called from the original one.
The originally large method will end up with just a few lines of code that
simply call other [well named] methods. Now when someone needs to read
this method, it will be much faster and easier to get an overall understanding
of what it's doing. With a quick glance engineers can now grasp an initial
understanding of what the code does, which will be enough for most of the
time and only if they really need more detailed information about how it
works they will dig down into the lower level abstractions.

Highlight the Success Path

Clear software has a single success path, this means a couple things. First,
it means that any given method should have a single and clear purpose.
One of the ways to identify if you are doing this correctly is when naming

79

CHAPTER2 TECHNICAL DISCIPLINE

that block of code; if it’s hard to give it a simple name that conveys what
it'’s doing, you've got a sign something might be wrong. Second, it means
that the method’s success path (or happy path) is not nested. Methods
usually include code for data validation, error handling, and side effects,
although these are all very important, they are not the main reason

the method exists. The success path is the sequence of steps for when
everything happens according to the plan and the main goal of that code
is successfully executed. Code that is deep down into control statements,
such as if/else and try/catch clauses or for loops, is considered “nested”
and is usually harder to read. Ideally the success path of our methods
should be placed with as little nesting as possible. One of the main
techniques to achieve this are guard clauses; if you are not familiar with
this concept, it’s well worth looking it up. In summary, to highlight the
success path you should have methods with a single purpose and with a
flat (or unnested) success path.

2.7 Automated Tests

One of the first things all engineers will learn early on in their careers is
the direct correlation between changing code and it breaking. Computers
are built to precisely reproduce the instructions they are given so, unless
the parameters change, they should return the exact same result no
matter how many times you run a program. We know that this statement
is not always true as in practice hardware can fail and having software
that always runs with the same exact parameters is not very useful. But
this statement is insightful because we can derive from it that the riskiest
moment in the software development process is when we change code.
And I'm sad to give you the bad news: your job is to keep changing code,
and I guarantee that you will break things from time to time. If changing
code is an inherent risk to our profession, testing is our main weapon to
fight against it.

80

CHAPTER2 TECHNICAL DISCIPLINE

Testing is inevitable because either you do it or your users will do
it for you. The most basic form of testing a feature is just using it in the
same way you expect your users to. Suppose that to prevent bugs you
decide to test all the features of your system before deploying any new
changes to your users. The problem with this idea is that features don't
exist in a vacuum, they are built to interact with each other. In the moment
you connect two separate pieces of code, you are creating dependency,
meaning that they can now interfere with each other. Now your changes
in one part of the system can potentially generate bugs in the other part
that was previously isolated. Keep adding new features and shortly the
amount of interconnections become exponentially bigger and adding a
single line of code requires weeks of testing before it can be deployed. The
good news is that as software engineers we are specialists in automating
repetitive tasks, we can fight software with software! Notice that’s not to
say that manual testing doesn’t have its place, on the contrary, it’s very
useful in some contexts and even essential for many industries, but even
in these situations, they are more effective when done in combination with
automated tests.

Automated tests can be categorized in a spectrum that goes from
testing a small isolated function to simulating a human clicking through an
interface. Although there are many subdivisions, the three main categories
are unit, integration, and end-to-end tests. Unit tests are focused on testing
small blocks of code in an isolated manner, meaning it should not depend
on any shared resource or interact with anything external to the program
itself, such as a database or even the file system. Everything is done “in
memory” and because of that these tests are expected to run very fast. To
write pure unit tests for code that makes database queries or web API calls,
you need to replace these by “test doubles” that simulate the behavior of
these services without actually calling them.

The next category in the spectrum are the integration tests; its purpose
is to ensure that interconnected blocks of code or systems touching
each other are behaving correctly. While unit tests run in an isolated

81

CHAPTER2 TECHNICAL DISCIPLINE

environment where state is never persisted, integration tests are expected
to have actual interactions with external systems. For example, if a method
saves data in the database, the test should be able to query the database
and assert the date actually there. Because of that nature it’s not wise to
use the same environment of your production application to run these
tests as it could easily generate inconsistent data or risk corrupting data
from users. The solution is to set up a separate test environment with a
configuration that matches your production environment as closely as
possible. One downside for this, is that, although your test environment
uses the same or similar technologies as your production environment, it’s
not populated with real user data which is not always easy to reproduce.

If your test data is too simplified, there’s a good chance that your tests will
not pick up on problems that require more complex scenarios to show up.
The data used to pre-populate a test environment is commonly referred

to as “fixtures.” There are techniques that can help with the setup of text
fixtures. For instance, there are tools that can help you to automatically
generate random data. It’s also possible to use a copy of the production
data as fixtures (as long as user data is anonymized to prevent security
issues). There are pros and cons to each approach but most programming
languages have tools to assist with this task, it pays off to do some research
and get familiarized with the ones available in your stack. Keep in mind
that integration tests are noticeably slower than unit tests, as accessing
data through the network or from a file storage is naturally orders of
magnitude slower than accessing memory.

In the last category are the end-to-end (E2E) tests and these are by far
the slowest and more expensive to write and maintain. The goal of end-
to-end testing is to write software that uses the system just like an end
user would. Objectively, end-to-end testing is the best kind of automated
testing as it truly verifies how the system behaves from the most important
perspective, the user’s. It does not care about what language the software
was written on, or what algorithms are under the hood, it only matters
what the interface shows, that’s why it’s considered a black box test just

82

CHAPTER2 TECHNICAL DISCIPLINE

like a manual test performed by a human being. Unit and integration tests
break through the user interface abstraction and have access to things that
the user is not directly exposed to. Being able to use the system just like
end users comes with a high cost. Automated end-to-end tests are much
harder to set up, to write, and to maintain. They are also a lot slower and
often considered too brittle as they can fail due to small changes in the
user interface that do not necessarily indicate a problem. But, for that same
reason they have the advantage of being very effective at capturing subtle
bugs that otherwise could pass unnoticed and they are resilient to big code
architecture changes as they don’t care about the inner workings of the
software.

Notice that accessing resources outside of your local network is
usually, and preferably, out of the scope for unit and integration tests.
External API calls, for instance, are yet a few orders of magnitude slower
than querying a database located in the same machine as the test runner.
There’s the issue of consistency and reliability as automated tests should
not be subjected to downtime and instability from an external service
provider. And there’s also the complexities of setting up test data in an
environment that is not in your full control. In these situations automated
tests are better used just as validators of the contracts between systems. In
most situations there’s no need to make external calls in your automated
tests, focus on verifying that you are calling the right URL and passing the
parameters correctly.

After learning about these three categories and their pros and cons,
the next step is practicing when to employ each type of test. As always the
answer will greatly vary depending on factors such as the type of system
you are working on, its criticality, scale, maturity, number of engineers
working on it, size, and even the tech stack you are using. That said, there’s
a framework called the test pyramid that it's widely accepted as a good
reference to guide automated tests. At the bottom of the pyramid are
the unit tests; these are the cheapest type of tests to write and the fastest
to run so you can have a lot of them. On top of it, a bit more complex to

83

CHAPTER2 TECHNICAL DISCIPLINE

setup and slower to run are the integration tests, so you are a bit more
cautious with it. Try to cover most of the business logic with unit tests and
only use integration tests to check the interaction between components.
Some business logic requires integration tests, such as in situations
where there are side effects like sending emails or sending data to an
external API. Whenever possible, use abstractions that allow testing these
integrations within your local machine, for example, you can set up a fake
email server that receives the connection and confirms the integration

is working but that does not actually send an email. End-to-end tests are
on the top of the test pyramid, as the slowest and most expensive of all
three, they should be used cautiously. It’s often wise to only cover the most
critical application flows with end-to-end tests instead of trying to catch
everything there. Also because they are so slow it’s usually a good idea

to run them separately from the other types of tests and perhaps leave
them to the end of the pipeline so they only run after all the others are
successful.

Besides confirming that new code does what it’s expected to do and
developing a solid foundation that ensures old features don’t break as you
add new ones, tests can also be used as documentation. They describe
what each feature is supposed to do and, in a way, they are better than
text documentation as they are self-correcting, letting you know when
something gets outdated, which is a thing normal docs are known to
perform poorly. When you start working on a part of the codebase you are
not familiar with, try first reading its tests to acquire context about how
it works and what are the available features and parameters. If the tests
are well written, they will give you a lot of context not only on the goals
of that feature but also on side effects and edge cases that would be hard
to learn from just reading the code. Treating tests as docs will also help
you write better tests. Just like any other code, tests should be written for
a computer to execute but also for our fellow engineers to learn and keep
them updated as the system evolves. Keep them organized, easy to find,
and grouped by feature, use comprehensive and self-explanatory names

84

CHAPTER2 TECHNICAL DISCIPLINE

and descriptions. Just like in any other code, small blocks are much easier
to understand. At the same time don’t be afraid of being descriptive or
verbose, we want tests to be as simple and as easy as possible to read and
understand. Add code comments to your tests whenever you feel they are
going to help other team members.

Another benefit of automated tests is to reduce anxiety and cognitive
load for the team. Software should be easy and safe to change, by
keeping an extensive suite of tests you are making your job a lot less
stressful. One key benefit is that they allow you to safely work on parts
of the code that you are not familiar with, knowing that there will be a
safety net that prevents you from making a catastrophic mistake. This
enables you to work focused on the task at hand because you can passively
wait for the test suite to inform you that something is wrong rather than
actively trying to think about all possible ways your changes can break
existing features. Of course no amount of tests will ever guarantee that
software won't break, but with less context to account for you can keep a
paced work thinking about one thing at a time. By reducing the anxiety
of changing code, automated tests enable a team that is not afraid
of refactoring and that can fix bugs and add new features safely and
considerably faster.

It’s important to think about the developer experience of the test
suite if we want to keep it relevant in the long term. If it’s not enjoyable,
people will gradually stop caring about it, causing a snowball effect that
can quickly escalate and lead to abandonment. The number one factor of
discontentment with tests in a team is speed, so whenever you feel tests
are taking too long to run, invest some time on improving the speed of
your test suite. There are various techniques available to address this, so
do some research on what is available within your tech stack. Make sure
it’s easy to run a single test or a section of the test suite, it's very frustrating
and unproductive if one needs to frequently run the full test suite while
working on a specific feature. In fact, engineers should rarely need to run
the full test suite themselves, that job should be delegated to a Continuous

85

CHAPTER2 TECHNICAL DISCIPLINE

Integration (CI) tool that automatically verifies everything before new code
is allowed to be merged into the main codebase. Test coverage tracking
tools are good allies helping teams to develop a culture of writing tests
and ensuring they don’t let the ball drop. These tools measure what's

the percentage of the codebase that is currently covered by at least one
test so you can track progress and set a bar that the team needs to keep
up with. Although these tools provide a good reference metric, they
should be used carefully as they tell nothing about the quality of tests;
just because the test suite touches some part of the code does not mean
the tests are actually ensuring it is behaving well. For that same reason

it’s usually not productive to set the bar too high; 100% test coverage does
not guarantee anything and it’s often an unreasonable goal. For most
projects, somewhere between 75% to 90% coverage is good enough. But
don't forget, the quality of your test suit is much more important than any
coverage metric or even the total number of tests you have.

Despite still not being the norm for every engineer, from small startups
to big corporations (with very few exceptions due to scale contexts),
automated tests are an industry standard for every mature development
team. These teams don’t write automated tests because they think it’s
cool, they do it because it’s cheaper, faster, and more effective than not
writing them. Strategic engineers make automated tests an integral part
of their job and deeply care about the amount and the quality of the
tests they write as well as invest into making test suite's execution easy
and enjoyable for everyone. In order to be effective, tests need to be a
collective endeavor for the whole engineering team.

Key takeaways:

« Be mindful about the test pyramid and the architecture
of your test suite in order to optimize coverage,
maintainability, and speed.

« Beyond validating the correctness of code, tests can
also be used as live documentation.

86

CHAPTER2 TECHNICAL DISCIPLINE

e Leverage automated tests to reduce the cognitive load
and the anxiety of changing code, allowing teams to
move faster.

e Toincrease adhesion and promote usage, ensure that
tests are easy and fast to run.

2.8 Test-Driven Development (TDD)

Test-Driven Development, or TDD as it’s popularly known, is a
methodology that uses tests for guiding software development. Contrary
to the common misconception, it’s not a methodology to write tests, the
goal is to improve the quality of the code you write with a side effect
of producing a robust test suite in the process. The TDD methodology
defines a cycle with three steps RED — GREEN — REFACTOR:

o Red: Start by writing one (and only one) test that asserts
a small piece of the functionality you are developing.
Since the functionality does not exist the test will
obviously fail. This first step must end when you run
the test and confirm it fails.

e Green: Write the smallest possible code that will make
the test you just wrote to pass. At this point do not
worry about making the code look good or performant,
just focus on making the test pass.

e Refactor: Now that you have working software and a
test that confirms it, refactor it to a cleaner or more
performant form. Remember that *refactoring* implies
no functionality is added or removed.

e Repeat: Pick another part of the functionality and start

over the cycle.

87

CHAPTER2 TECHNICAL DISCIPLINE

This process is simple enough and easy to remember but it carries a
bunch of insights and benefits to the software development process. For
starters, TDD reduces the anxiety of working with big features. Instead of
trying to write a full solution to the problem, you can calm down and focus
on smaller parts of it. You just need to write enough code to make the test
pass, focus on that single thing, then move on to another small thing and
before you notice it you will have a complete solution. As you repeat the
cycle you will gradually build a robust test suite that backs up all the work
you've done and therefore there’s far less risk of accidentally breaking
things as you move. Another key factor is that by ensuring the test first
fails and only writing enough code to make it pass, you are ensuring that
the code you wrote does exactly what it was intended for and it’s what is
making the test pass. Knowing that you already have a working solution,
you take away a significant portion of the pressure and can progressively
refactor up to the point where you are satisfied with. Also, because you
end up with many tests, each focused on a small section of your code,
when something breaks your test suite will point right away where the
problem is.

You're likely to find the first few attempts at TDD challenging. It will
possibly seem unnatural or boring. Until you get used to it you will need a
bit of faith, your mind will eventually adapt to it and you will start noticing
the benefits. Do not give up, keep forcing yourself, it should pay off
eventually. One of the things that will help in this process is the feedback
loop, the sense of continuously making progress. Nevertheless, one caveat
of this process is that it will only work if you keep these cycles short. If the
test suite takes too long to run or if you write tests that require too much
code to pass, the magic won’t work. It’s rewarding to strike through a
bunch of quick wins, you will feel happy and productive with your work,
and that’s what’s going to make you fall in love with TDD. Remember, TDD
is a tool like any other, learn how to use it so it’s available to be employed

when you see fit.

88

CHAPTER 2 TECHNICAL DISCIPLINE

Key takeaways:
e Respectthe TDD cycle: RED » GREEN » REFACTOR.

e Make cycles short, write a test that asserts a small
progress and write the least amount of code to make

it pass.

e Focus first on making it work, and later, in the refactor

phase, make it better.

e Give TDD some time to settle before you understand
the flow and it starts making sense.

2.9 Reviewing Teammates’ Code

In most mature teams, it’s standard practice to have a rule that no code
goes to production without being reviewed by at least one engineer other
than the author or the code. There are some methodologies that are based
on this rule with slightly different ways of achieving it and each company
will have their own set of policies. The most popular way of implementing
itis through “pull requests,” which is how Github calls their code review
tool, but there are other approaches. For instance, one interesting way
(but much less popular) is requiring engineers to always be working in
pairs. In this and in the next sections we will be talking about the process
of peer reviewing code, first by addressing how you can be strategic

when looking at someone else’s code and then how you can improve

the way you submit your own code for others to review. As it’s not fully
standardized across companies, notice that in this book we will use the
word “merge” to describe the process of integrating new code (or any
kind of changes) to a codebase. “Merge request” will be used to describe
the process of submitting code for peer review. And we will use the word

89

CHAPTER2 TECHNICAL DISCIPLINE

“push” to describe the process of sending the code changes you made in
your machine to a common repository where it will be available to other
engineers.

The first thing to keep in mind is that a reviewer owns the code they
are reviewing as much as the person who wrote it. In fact that should
be your attitude toward everything in the product (we will discuss more
about this later in the Strategic Teamwork chapter). One of the goals of the
code review process is to share risks. As a reviewer you are as accountable
for a bug that goes to production as the engineer who originally wrote the
code. Don’t think of code review as a secondary chore; really get involved
as if it was your own code because in the end, it’s very likely that you will
eventually need to support and add features to it later on.

Before starting to review code it is imperative that you understand its
context. Carefully read the merge request description, check external links
and make sure you know what the changed code is supposed to be doing.
If the submission does not include enough information for you to gather
this context you should request it and only get back to reviewing it after
context is provided. It’'s a common practice to have a checklist template
listing the things that should be done or provided while submitting code
for review. If your team uses one, check if all steps were correctly followed.
As for how to review code, practices vary a lot, for instance, some teams
require reviewers to download the submitted code and run it in their own
machines to confirm it works as expected, others only expect that peers
inspect the code without running it. Even if your team does not require
testing the code in your own machine, you should consider doing so in
some situations as it will help you gain context about the feature and
therefore allow for a better review.

The most important thing to consider when reviewing code is of course
the correctness of the solution. Try to think about edge and corner cases,
consider data validation, error handling, performance, and security.
Ultimately the most important thing is ensuring the experience of the
users, but that’s not all that matters in a code review. Software is written

90

CHAPTER2 TECHNICAL DISCIPLINE

for other engineers to keep effectively working on it as the system evolves,
reviewing how the code is written is also important. Most teams are
composed of experienced and less experienced engineers and everyone
should be able to work in all parts of the system, so a good reference is
asking yourself if junior engineers would be able to easily understand
that code. Confirm that the code added is consistent with the patterns
and styles defined by the team. It’s even better if you use linters and code
formatters to automatize that work so people don’t even need to think
about this. Check for code duplication. Especially in big codebases, it’s
easy for people to rewrite functionality that already exist somewhere else
in the codebase. Don'’t forget to review tests, make sure they are covering
all the major success and failure flows as well as edge cases.

As you go through the code make comments as if you were having
an actual conversation with the author. Point out the things you did not
understand and ask questions, make suggestions on how to make the
code more readable or simpler and propose different ways to implement
algorithms. Be humble, before criticizing try to understand why things
were done in a certain way, perhaps the author had a different perspective
on the problem that you did not consider. The language and tone you
use in your comments is important, be empathetic, kind, and suggestive
and avoid criticizing directly. Instead, use indirect language such as
asking questions that both helps you to better understand decisions but
also exposes your ideas. For example, instead of saying “Don’t do X,
say “Have you considered doing Y? It seems more appropriate than X in
this situation.” Or, instead of saying “This is not clear,” say “How about
this other way, I think it would be more straightforward [and provide
an example].” Comments are a lot more effective when you provide a
reasoning, people are more receptive when they understand the “why.”
Don’t expect everyone to have the same context you have, things that are
obvious to you might not be as clear to others. By being explicit you are
avoiding an otherwise preventable back and forth conversation. Most
people think about merge requests as a place to fix what is wrong but they

91

CHAPTER2 TECHNICAL DISCIPLINE

are also a great opportunity to acknowledge and compliment. Don’t spare
comments like “This code is neat!” “I love what you did here,” “I was not
considering this case, great insight!”

Not all review comments need to be addressed or are worth investing
time on discussions, some are just personal preferences or stylistic
suggestions with a low impact. It’s ok to point these out in your review but
if you are going to do so, explicitly highlight that in your comment and
let the author decide whether they want or not to address the suggestion.
If they want to keep things as they are, don’'t make any other comments
about it unless the person explicitly wants to discuss more about it. In
these situations, the goal is more about exposing people to different points
of view, not necessarily to change their opinion; it’s ok if they don’t agree
with you and decide not to accept the suggestion.

Reviewing code is not just about preventing bugs and keeping
the quality of the codebase it's also a great opportunity for sharing
knowledge among team members. Use your comments as a medium to
teach fellow engineers about parts of the system they might not be aware
of, to explain why certain code patterns are better than others and where
they can learn more about these topics. Reference internal documentation,
share blog posts, recorded talks, and recommend books. Recommending
other people in the company who can provide more context is also
a great way to promote connections amongst the team. Using async
communication during reviews is great because it leaves a track of the
discussions and allows other engineers to jump in and participate, but in
case the submitted code drifts too far from your expectations or if it would
require a complex or long explanation, it might be worth it to break the
process and invite the author for a “pair review” session. The idea is to go
over the merge request explaining the problems and providing context
that would otherwise be too time-consuming to do over text. In this case,
it’s extra important to be careful with your language and posture, keep
the mood light and demonstrate your goal is not to criticize but to align
expectations and share information that the author might be unaware

92

CHAPTER2 TECHNICAL DISCIPLINE

of. Under no circumstances use this for unloading your frustrations or
use a judgmental tone; if you do this, it’s very likely that people will get
uncomfortable and defensive, defeating the purpose of the session and
making it unproductive. People should feel happy that someone is taking
their time to teach them, not anxious.

Code submitted for review is just a few steps from being available
for users and therefore generating value to the product. That means it’s
strategic to the team and to the business to treat them as a priority and
get them done as quickly as possible. At the same time, there’s no need to
drop everything you are doing just because there’s a new merge request
submission, finish what you are doing and then move on to the review.
A good practice is to check open merge requests before starting on new
things or when you are coming back from a break, that way you reduce
context switching. If you are working on an unusually complex and long
task that requires your full attention, consider sharing that with the team
and asking other people to step in for you so you don’t become a blocker.
Keep in mind that delaying code reviews is bad for the team performance
as it significantly slows down the development feedback loop, so do your
best to prioritize them.

Key takeaways:

e« Own the process of code review just like you own the
code that you write yourself.

e Before looking at the code, gather the context and goals
of the activity you are going to evaluate.

e Go beyond the happy path of the functionality, try to
think about what is missing such as edge cases and

non-addressed risks.

e Ensure the code is clear and easy to understand, even
by less experienced engineers.

93

CHAPTER2 TECHNICAL DISCIPLINE

« Be empathetic in your comments, prefer suggestions
instead of strong statements.

« If expectations drift too far, consider doing a pair review
to increase collaboration and get things sorted faster.

2.10 Submitting Your Code for Review

Just like when reviewing other people’s code, there are many practices

that will help you be more effective when submitting your own code. The
overall goal is to make the process fast, so you can deliver value to users;
efficient, so problems are captured early on; and easy for teammates

to collaborate. Once you have code ready for review, your number one
priority should be to get it merged. Although it is OK to start new activities
while you wait for teammates to review, try to be responsive to comments
and change requests, prioritizing fixing comments as soon as possible. The
sooner these are tackled, the earlier you will add value to users.

Prior to asking others to review your code it's important that you review
it yourself. While working on a feature you will be immersed in the context of
the project trying to fit your changes within existing code. Taking a moment
to look at your work in isolation helps to focus and makes it easier to identify
problems. Most code collaboration platforms provide a clean interface that
highlights which code was added, removed, or changed, so take advantage
of these. Read line by line confirming your code will be easy to understand
by your teammates, check if names are accurate, and that you are following
project conventions. This is also a good moment to review your assignment
instructions one last time, double-check if you've completed everything
that was specified, look again for corner cases you might have missed and
confirm that you've achieved the business goal of the assignment. Review
the tests you wrote and if you are satisfied with what is covered. Check if you
forgot to add or update code comments, logs, and docs.

94

CHAPTER2 TECHNICAL DISCIPLINE

Once you are finished with your self review, it’s time to think about the
experience of the people who are going to review your code. Remember
that you are ultimately responsible for the code you ship so when your
peers find problems and request changes it means you have the chance
of fixing those before they cause problems later on in production. The
easier it is for your teammates to review your code, the more effectively
they’ll do it, increasing the chances of catching issues. Before inviting
people to review, write a description, including what the goals of your
merge request are, provide context and link to relevant content such as the
original assignment document and other relevant assets. Inform if there
is any special setup the reviewer needs to do in order to run the code and
write down easy to follow instructions. Include a checklist of the things
you consider important to be verified. If there’s a user interface, take
screenshots and attach them or record a small video of the feature being
used. An effective practice, especially for more complex merge requests,
is to add your own review comments providing more context about the
changes you've made, you can also add notes indicating critical parts that
should be reviewed more carefully and even explicitly ask for people’s
opinions on things that you are insecure about in your code.

The amount of code you submit for review matters, the longer it is,
the harder it is for reviewers to concentrate and give proper attention to
it. Doing a good review is a time-consuming process, so when people
encounter a huge wall of code, they will naturally switch to fast glancing
through code so they can get it done in a reasonable time for them to get
back to their own assignments. As we said before, it’s in your interest that
reviewers thrive in their work so it’s in your best interest that they have a
great experience reviewing your code. Each merge request submission
ideally has a single objective, if you can’t write a title for it that does
not have the word “and” in it, it’s probably a sign that you are doing
too much at once. It’s better and a lot easier to review multiple focused
merge requests than it’s to do a single one that does everything. Another
advantage of short submissions is that because they can be reviewed

95

CHAPTER2 TECHNICAL DISCIPLINE

faster, they are less likely to generate code conflicts and when they do, it’s
usually easier to fix. Getting used to making short and objective merge
request submissions is also beneficial to your own flow of development
as it will help you to focus on a single problem at a time, reducing context
switching, and facilitating your self-review of the code. A good idea

is to define a policy on the max size of merge requests and make it a
team policy.

It's important that you are critical of your work and demonstrate to
your peers that you are open to receiving feedback. If there’s something
that you are not fully happy about the code you wrote, don’t wait for the
reviewer to pick it up, add a comment explaining why you decided to do it
this way but that you are not fully happy about it, explicitly ask if reviewers
can think of a better way to do it. Proactively identify and communicate
risks you are aware of, and tell how you are mitigating them but also
inform when you don'’t have full context about something in particular
so people with more information can fill in the gaps. When you are not
proactive about risks, you are giving the impression that either you don’t
know about them or that you decided they are not relevant enough; both
cases don’t speak well about your work. Collaboration is the main goal
of having a merge request process, so contrary to what many aim for, it’s
positive that your team is having discussions before merging new code.
As long as people are learning and not constantly repeating the same
mistakes it is actually a positive indication of a mature, well-oiled team.

Hopefully, after you submit your code for review, you will receive
feedback on things that you should change and questions about your
decisions. Regardless of the nature of the comments, it’s very important
not to take them personally. Remember they are comments about that
particular code that you wrote, not about you. As you go through the
comments, demonstrate that you are grateful for them, use phrases
like “good call, I'll make that change” to encourage more collaboration
and build a trusting relationship between you and your teammates. Be
empathetic and try to understand from people’s perspective why they are

96

CHAPTER2 TECHNICAL DISCIPLINE

making those suggestions. Asking questions instead of counter arguing is
a great tool to maintain a friendly tone and at the same time gather more
context before presenting your arguments. Very often people will disagree
because they each have different assumptions about the problem and the
solution, asking questions is very effective in identifying these different
perspectives. For example, you can say things like “can you explain a little
more why you did not like my proposed solution?” or “I didn’t understand
your comment, can you please explain it in a different way?” or even
“perhaps I'm missing something, can you point to me where I can learn
more about your suggestion?” It’s OK to push back and counter argue, if
you are going to do so, keep a professional tone, present your arguments,
provide links to external sources you are leveraging and give examples. At
the same time, it’s important not to overdo it; after you've made your point,
consider if the problem is really worth the time you and your teammates are
investing and if there’s really a significant gain in either approach. If there
isn’t just be pragmatic and say something like “I'm not 100% convinced this
is the best solution but let’s do as you say and perhaps we can reevaluate it
sometime in the future” and move on. Knowing when to stop is especially
important when arguing with someone hierarchically above you. Do not
refrain from presenting your professional opinion, it’s actually a great sign
of maturity when you do so. But watch for signs that the person has already
made their decision or that they don’t want to invest more time in that
discussion. Remember that there are no winners and losers, everyone in
the team is on the same boat working for the success of the product, you are
just disagreeing on the path that is going to take you there.

Key takeaways:

e Do aself-review of your own code before you invite
others to collaborate.

e Make it easy for your teammates to review your code
by writing a detailed description, highlighting key parts
and providing screenshots or diagrams.

97

CHAPTER2 TECHNICAL DISCIPLINE

« Keep your merge requests as short and focused as

possible.

« Keep an open mind and demonstrate you are grateful
for the feedback you receive.

2.11 Pair Programming

Pair programming is the practice of having two people simultaneously
collaborating on the same code. There are variations of the methodology
but it usually involves two people switching between the roles of pilot
and co-pilot. Despite the role each person plays, they should both
communicate throughout the whole time and decide together how to
tackle an assignment, but only the pilot is allowed to type while the
co-pilot can only review what is written. In most companies, pair
programming is used for teaching less experienced engineers on technical
and business topics they are not familiar with, unblocking and speeding
up the development of a task. While this is certainly a good use case for
the practice, there are many other reasons for a team to build a culture
of pair programming. When it’s used strategically, pair programming is a
great tool to continuously promote collaboration and knowledge sharing
amongst team members.

Some methodologies such as the Extreme Programming (XP)
preach pair programming should be employed full time by engineers.
While there are certainly some benefits to this approach, much can be
gained from a regular but less intense practice. Some situations where
pair programming can be extremely effective are when kickstarting big
projects, fixing complex bugs, refactoring, and while working on parts of
the system where knowledge is concentrated in a few individuals. These
are all situations where collaboration is key to the long-term success of the
project. Pair programming is also an excellent tool to increase the sense

98

CHAPTER2 TECHNICAL DISCIPLINE

of ownership amongst the team. When decisions emerge from collective
participation, people will naturally feel they have a greater mandate and
are more likely to defend and promote these ideas. Another great use
for pair programming is during the onboarding of new team members.
New hires face a great deal of challenges adapting to a team; having pair
programming sessions with different people accelerates their acclimation
on the project and helps in building bonds with their new teammates.
Keep in mind that just because you are programming with someone
else it does not mean that you are automatically getting the benefits of
pair programming. A good session is all about communication; practice
explaining what you are doing while you code, explain your decisions
and why you chose it over other options. Confirm your pair understands
your train of thought and that they are on board with the solution you
are proposing. Expect that some people will be less communicative
than others and make it your goal to involve and promote participation
from them even if this is the case. Explicitly ask questions that stimulate
participation and collaboration. By doing so you are creating an open
environment and given time, people will start to open up and feel
comfortable being more vocal. Be careful not to interrupt as people talk, let
them finish their thoughts before you give your opinion. When in the role
of co-pilot, avoid being too fast on pointing at mistakes from the person
in the pilot role, give them some time to perceive typos and mistakes
themselves. Constantly correcting over simple things can be annoying
and might come off as pedantic. When you feel it’s time to intervene, use
a suggestive or propositive tone so it feels like collaboration instead of
finger-pointing. Effective pair programming requires a safe environment so
it should be carried out with a kind, positive and friendly tone at all times.
An excellent way to promote a safe environment is by allowing yourself to
be vulnerable, don’t be afraid to recognize your mistakes and be honest
about what you don’t know and about your insecurities, for some people it
might be intimidating to pair with an overconfident person.

99

CHAPTER2 TECHNICAL DISCIPLINE

A key part of the pair programming discipline is switching roles so
both people have time as pilot and copilot. Some teams establish a fixed
time period for these switches to occur while others do it more freely as
the session progresses. As a rule of thumb, the greater the experience
gap between the people participating is, the more the person with less
experience should be in the role of pilot. Experienced engineers move
faster and sometimes they don’t identify when it’s too accelerated for the
other person. By having the less experienced person on the keyboard,
everyone is forced to communicate more and it’s easier to identify if
someone is just mindlessly typing without really understanding what
is going on. TDD is especially effective and fun to practice during pair
programming sessions. Some teams actually use it to govern the pilot/
co-pilot switching dynamic. In this approach, the pilot starts by writing
a failing test and roles switch right after so the other person is in charge
of typing while the pair works to make the test pass. Once it passes, the
same person in the pilot writes a new failing test and the roles are again
switched. This flow is repeated until the task is completed.

Although extremely useful and beneficial, pair programming can be
exhausting; the need for continuous interaction drains the energy from
some people a lot more than it does from others. To make the session
less tiring, define a break policy, for instance, you can make five-minute
pauses every 30 minutes or every time you make some significant progress.
Pausing is not just invigorating but you will notice it actually helps
unblocking and solving problems as rested brains are better at solving
complex problems.

Effective collaboration is hard, it requires trial and error and a lot
of practice and pair programming is one of the more intense forms
of collaboration for a software engineer. Coding with another person
is challenging as each engineer has their own way of thinking and
approaching problems; pair programming requires an active effort
from both parties to find a flow that is comfortable for everyone. It's a
good practice to periodically ask and give feedback to your peers after

100

CHAPTER 2 TECHNICAL DISCIPLINE

pair programming sessions, that way you are creating opportunities for
learning about what works best for each person in your team and have
the opportunity to learn and correct your own mistakes as well as realign
expectations.

Key takeaways:

e There are many benefits from the regular practice of
pair programming, from building bonds between team
members to sharing knowledge and promoting code
ownership.

e Continuous communication is the key for the success
of pair programming sessions, always explain your train
of thought and justify your decisions.

e Keep an honest communication, don’t be afraid to be
vulnerable,

e When pairing with a less experienced person, give
them more keyboard time.

e Give and ask for feedback so you and your teammates
can improve collaboration skills.

2.12 Collaborative Design

Designing software comprehends everything, from defining what the user
interface looks like to what architecture and algorithms will be employed
to the problem you are working on. There’s no absolute right way to build
a software component, decisions are always biased by engineers’ own
experience and the context it's surrounded. Strategic engineers know that
making technical decisions involves much more than just comparing the
available tools or choosing the fastest algorithm. For example, you might
know the perfect tool to solve a problem, if your team is not comfortable

101

CHAPTER2 TECHNICAL DISCIPLINE

working with it, you might be generating more problems than solving. At
the very least you will need to consider the cost of training people before
committing to it. Getting the input from teammates and promoting
discussions is one of the best ways we have to expand our often
nearsighted opinions and let others fill in the gaps by providing other
perspectives. Collaborative software design is all about being humble and
working through our personal limitations.

In the Development Flow section, we defined that before starting
to write software you should plan and validate your solution and that’s
actually the best moment to promote design collaboration. Once the code
is written it's much harder to change things, especially because the cost
of building it was already paid, so the decision becomes whether you
should release what you have or invest more time on a new solution. The
option that delivers value to customers right away will always have a
big edge in these situations. Not everything you work on needs more
collaboration than the usual pair programming or a merge request
process, but there are some signs you can pay attention to identify when
to promote other collaborative practices. The amount of code you will
need to add or change is often a good indication that you should invite
more people to the discussion. That includes big refactorings, changes in
architecture, and new product verticals. You should also take into account
how often teammates will need to directly or indirectly interact with that
piece of code; if it’s a central piece that connects with a lot of other parts
and that will need continuous maintenance and improvement, more
people should have a say on how it should be designed. The amount of
options you will need to evaluate before picking a solution is also a good
indicator of the need to provide more visibility on your decision-making
process. It’s also good that you trust your intuition. If you are not fully
happy with the solutions you’ve come up with or you feel that there are
edge cases you might not have considered, that’s also a sign to promote
more collaboration. In all of these cases, what you are ultimately doing is

102

CHAPTER2 TECHNICAL DISCIPLINE

evaluating risk; the higher the risk your work represents to the codebase
or to the product, the higher is the need to involve more people in the
discussion.

Debating code design is one of those things that work especially well
when done asynchronously through text documents. Explaining software
architecture is particularly hard to do if you don’t provide code samples
or let people take their time to analyze the existing context of the changes
you are proposing. In software teams, this kind of document to discuss
decisions is usually called a Request For Comments (RFC). RFCs were
originally created by the Internet Engineering Task Force (IETF), which
is the organization responsible for defining Internet standards; naturally,
they also standardized the format of the document people should
submit their proposals. RFCs were later adopted by open source projects
and have made their way into the corporate world. The goal of an RFC is
not to document what will be the final solution but rather to propose an
approach and have it scrutinized by peers. In the corporate world, there’s
less need for the formality of the IETF standards so teams mix and match
what makes sense for their context; commonly, an RFC document would
have at least the following sections: “Title,” “Context and scope,” “Goals
and non-goals,” “Proposal (the main body),” and “Alternatives considered.”
It’s pretty easy to find templates online that you can adapt to your team’s
context. After writing the document, publish it in a place where it’s easy for
your teammates to make comments and propose changes.

While you should always start by publishing a text document, it’s not
reasonable to expect that’s the end of your work. Perhaps on a very mature
team people will naturally start flocking in and posting their comments,
but that won’t be the usual experience for most people. After posting your
RFC you should make an active effort to bring people into the discussion,
so make sure you inform the team about it on a public channel. If there are
specific people with a lot of context on the topic you are proposing, send
them a direct message asking for their contribution. Use team meetings

103

CHAPTER2 TECHNICAL DISCIPLINE

to inform about the RFC and invite people to review the document

and participate in the discussion. You can also use these synchronous
moments to settle some specific points where the asynchronous process

is prolonging more than you wish. Scheduling a meeting to debate an RFC
when people haven't yet reviewed the document is usually not productive.
Either discussions will take longer because people will need to acquire
context before participating or they won't properly collaborate and just
accept whatever was proposed. Prefer promoting async discussions and
use meetings strategically only to decide on the things where arguments
are not converging.

RFCs are for people in all career levels; junior and senior engineers
should engage in the practice of publishing proposals and making
comments on other people’s documents. To develop a collaborative team
where people are propositive and critical of each other’s work as well as
their own work, always encourage the participation of less experienced
engineers in RFCs. Besides learning from being exposed to new technical
contexts and practicing their collaboration skills, they will often bring in
fresh ideas and will help identify decisions that are poorly described or
too complex; in both situations, this is good input for you to adapt your
document or rethink your solution. When responding to comments, use
the same principles you'd use for a merge request, making people feel
comfortable and welcome to keep ideas coming. Promoting collective
ownership is yet another benefit of RFCs. Allowing everyone to give their
opinions, identifying risks and suggesting different approaches should
build a sense that the whole team is responsible for the evolution of the
codebase. The idea of “my code” or “my architecture” should not exist. In
a mature team, people should own every part of the project, a collective
decision means everyone celebrates success when things go well and
everyone is accountable for mistakes and for fixing things when they
go wrong.

104

CHAPTER2 TECHNICAL DISCIPLINE

Key takeaways:

e Promote design collaboration early on before you start
writing the code so it’s cheap to change.

e The frequency people will need to interact with that
piece of software and the amount of code it will need
are good signs that more people should have a say on
how the code should be designed.

e Prefer discussing over text documents where
people have more time to reflect on your proposed
architecture and form their opinions, RFCs are a great
format for that.

e Don’t wait for people to join in the discussions,
actively invite them to participate, including the less
experienced teammates.

2.13 Documentation

Especially in small teams, documentation is often left behind as a non-
priority, which is very controversial because if you ask, most engineers
will recognize it as important and will probably say that they should

be investing more on docs. But, on the day-to-day when pressure from
stakeholders is on and fires are popping in, most will just leave docs to
another time when things are calmer, which, surprise! surprise! never
happens. That behavior generates the natural tendency of docs only being
prioritized, if ever, when it’s already too late and the lack of docs is directly
impacting team performance. Strategic engineers treat docs as part of
their work routine; just like tests, they are an integral part of the process of
developing features and fixing bugs. It’s a work that costs very little if done
gradually and pays off in the long run. It’s also one of those things that

105

CHAPTER2 TECHNICAL DISCIPLINE

doesn’t fully work if there’s only one person in the team doing it, so your
goals should be to build a culture where everyone is active and owns docs,
just like everyone owns the codebase.

Writing good documentation is no trivial task; the first problem is that
there are many types of documentation that apply to different contexts,
and what is considered a good practice in some situations might not
apply to another. There’s also the issue of considering the size of your
company, how often you are onboarding new people and what is the
level of these people joining the organization. Business context also
matters, if you are working on a product for law firms, it’s safe to expect
most engineers won’t have training in that domain so perhaps you should
be writing more documentation. Evaluating risk is another important
factor that should be taken into account. No organization should rely
on key knowledge stored in a few engineer’s heads, so it’s necessary to
consider what will happen if people change jobs, go on vacation, or are
for any reason unable to work. Lastly, team members, as co-owners of
the documentation process, should have a say on what they want to be in
their docs and how it should be written. It’s positive that this is an evolving
practice that adapts as the project grows, as long as it's being periodically
debated and evaluated it’s likely that you are on the right track.

Besides the benefits for the team, writing docs is an excellent exercise
to help organize ideas and consolidate knowledge. Writing docs has a
similar effect as pair programming in the sense that it forces you to think
about things and express them in a way that is convincing and easy to
understand. It will help you identify gaps in your solutions and be more
confident about your work. Equally, being able to write about your work in
a simple way is a sign that teammates will also find it easy to understand
it. The process of writing docs is also another potential point of validation
and alignment. You can send drafts of your work for review to teammates
so you can gather feedback to improve your writing but at the same time,
also have people reviewing the technical content of it.

106

CHAPTER2 TECHNICAL DISCIPLINE

Docs are only useful if people are reading them, there’s no point
in documenting things that will be left in a dark corner and that gets
remembered once a year when someone notices they are outdated and
useless. Documentation should be stored somewhere where it’s easy for
people to find, ideally some place people are frequently interacting with.
It's also important that the tool you use to store docs allows searching,
so it’s easy to find things when they are needed. Docs are a living organism,
they need to evolve and adapt as the business and the technology changes.
When deciding about what to document, it’s important to ponder about
maintenance. Outdated docs serve no purpose and can even lead to
communication and technical issues. It’s a known fact that it’s hard to keep
docs up-to-date, so the rule of thumb is, if it changes too often, it’s going
to require a lot of effort to keep it up-to-date; in that case, if docs are not
critical to the operation of the product it’s likely that you'd be better off
without them and just require people to look at the code or talk to peers.
For the sake of maintenance, different types of docs should be stored in
different places, the closer they are to the subject they address, the higher
are the chances of people finding them when they need and that they will
remember to update when there are changes.

As shown in the Development flow section, docs should be part of
your workflow as an engineer, they should not be a separate task from
the process of programming. The best moment to update docs is when
you are working on the things they describe, the second best moment is
while you are reading them and find issues or missing information. When
writing documentation, think about the situations where it’s going to be
consumed and who is its primary consumer. That will help you decide
how long the text should be, how deep you should go, and how it should
be formatted. Consider how much context you need to provide for the
reader to understand the information. Provide working code samples that
can be copied and pasted so people can quickly test things and use it as
a building block to adapt to their specific needs. Include external links

107

CHAPTER2 TECHNICAL DISCIPLINE

that complement the information in case someone needs more context,

or perhaps if it'’s a complex problem that’s been well covered in a book

or a blog post, providing that reference can save you the time to write the
content from scratch. If something is worth being documented, it’s usually
a good sign that it’s of people’s interest so always consider if you should
provide visibility to the team about what you added or changed. Even if it’s
not useful right away, just knowing that piece of information is documented
enables people to search for it when they need it later. In addition, that kind
of visibility serves the purpose of allowing more people to review your work
and provide feedback, and is also a good way to refresh people’s mind about
parts of the system they haven’t worked on lately or ever. This generates

a flow where there’s always someone sharing knowledge about different
topics and increasing everyone’s knowledge about the system. As the
product changes, you write and update: code, automated tests, and docs;
everything is bundled and part of your job as a software engineer.

Text is not the only way to document, video can also be used as a
form of documentation. For instance, suppose you know a lot about a
part of the system that a new hire is going to work on. Instead of writing a
documentation or even scheduling a meeting to explain how it works, you
can record a video and send it to the whole team so other people interested
in the subject can also watch in their own time. Using video as your main
source of documentation is probably not advisable in most cases. It might
work for some high level business or product overview and core concepts,
but other than that, it’s likely that it will get outdated quickly and, unlike
written documentation, it’s costly to produce and update video. There are
other problems with it, such as making it harder to search information,
and not allowing people to quickly scan over it to check if it contains what
they need.

Now that we've gone through many of the core concepts and
considerations on documentation, we can get a bit more practical and
apply what we discussed to some of the most common scenarios and
opportunities where docs can be used.

108

CHAPTER2 TECHNICAL DISCIPLINE

Documenting Code

Code documentation, especially in the form of code comments, is one of
those endless discussions among software engineers. Many will say that
code should be self-documented in the sense that, if it's not possible to
understand something just by reading the code it means that the code

is poorly written so it should be refactored to something that is more
comprehensible. While the vast majority of engineers will agree about the
importance of writing easy to understand code, it's reasonable to consider
that some problems are intrinsically complicated such that it is beneficial
to provide extra context in the form of code comments. More important
than picking a side in this argument is to understand the motivations
behind both approaches and use in your favor. When you feel the need

to write comments in order to make your solution more understandable,
use this feeling as an indication that you should invest a little more time
trying to improve your code. Consider inviting a teammate for a quick
pair programming session to see if they can propose a better solution or
have an insight to improve it. The key is not stressing out and knowing
when to stop, if you can’t come up with something simpler, just add code
comments and move on.

When writing code comments, focus on making explicit why things
were written in such a way instead of saying what the code is doing or
how it’s doing it. Most times, by using good variable and method names,
it’s possible to write code that clearly tells what it does. But explaining
why certain approach was chosen instead of some other or justifying why it
was necessary to employ some unusual construction it’s often not possible
to do just through the code. In all situations, be critical of your work and
use your judgment to spot what can be refactored to a clearer form and
what could benefit from comments.

Also in this category are “doc strings” which are code comments that
usually follow a standardized format to document classes, methods, and
their parameters. Standards will vary depending on which programming

109

CHAPTER2 TECHNICAL DISCIPLINE

language you are using but the key advantage of this type of code comment
is that they enable tools like code editors to pick up more information and
assist other engineers using that code. It’s also common and encouraged to
provide usage examples in the doc strings.

Documenting Interfaces

Whenever there’s communication between two or more systems or parts
of the code, there’s an interface, be it explicit or not. Interfaces define
boundaries and are extremely important not only for organizing code but
also to reduce cognitive load, they abstract complex things through smaller
(and ideally simple) facades, freeing your mind to focus on building new
things while enjoying the use of an abstracted service. While interfaces built
for usage within the same team often don’t require a lot of documentation,
the further the distance between who defines the interface and who
consumes it, the greater is the need for more and better documentation.
When building an API to be consumed by another team within
your organization, it’s a good idea to document the available endpoints,
the parameters, and what the responses look like. In fact that kind of
documentation can be written even before you start writing the software that
implements it. Interface documentation can be used as an alignment tool for
teams to discuss their needs and restrictions without the cost of rebuilding
software multiple times until a final design is reached. Once settled on an
initial version, both teams can start working each on their side of the project
basing their decisions on an agreed interface. That way, the team providing
the API will build their service from the documentation blueprint being
confident they are on the path to provide the right functionality and the team
consuming the API can also work on their side by simulating the expected
behavior while it's not ready for use. Of course that doesn’t mean there won’t
be changes along the way, but it’s a very effective way to start and promote
the changes as they are needed; if planning was well done, hopefully they
will be small and easy for both teams to adapt.

110

CHAPTER2 TECHNICAL DISCIPLINE

Building docs for a public facing API requires a lot more attention
and effort and they can make a big difference on the success of a product.
Integrating systems is a complex task but good documentation can take
alot of the pain out of the work. When writing docs, you must take into
account that people reading it will have very different levels of context with
regard to the business you are providing and different levels of experience
with programming. Provide as much information as you can and carefully
describe parameters and behavior, especially the ones that involve risky
operations. Good docs can save money and time by reducing the need
for customer support and they are usually a cost-effective investment
because public APIs are not meant to change often so they need less
maintenance. Besides the textual information you are going to write,
consider the user experience of the people reading your docs. Consider
breaking the document into sections providing a quick start guide and
examples on how to use each endpoint. Also think about the layout of the
page, is it easy to follow? Is it easy to search for information? Avoid building
documentation pages from scratch, there are many templates specifically
designed for hosting documentation; pick one and customize it to your
needs. Consider using standards like Swagger/OpenAPI to document
HTTP APIs, these are widely adopted by the software development
community and have an ecosystem of tools that support them. For
instance, there are tools to automatically generate a web page from these
specs for you to publish online. Other tools can help developers writing
code to integrate with your API by providing contextual information and
validation as they write the code.

Documenting the Repository

The industry standard for documenting code repositories is having a

file called README at the root folder. This file should have all the basic
information needed for someone to run the project without external help.
It usually starts with a brief description of what is the project followed

111

CHAPTER2 TECHNICAL DISCIPLINE

by a quick-start or setup guide that includes external dependencies and
installation instructions. It's also common to provide information about
the main features and operational commands such as how to write tests or
to make advanced configuration. Another good idea is to include a section
with known issues that can happen during installation and usage along
with instructions on how to fix them. Long documentation usually includes
an index at the top for quick accessing sections but it's not uncommon to
break it into multiple files and reference them from the README.

Documenting Architecture

Architecture is a broad term in software engineering, it can refer to things
like how to organize code in files, how to compose classes, definitions
on how different applications interact with each other in an organization
as well as the many in between concepts. Documenting architecture is
usually something that shouldn’t happen too early in the project’s lifecycle.
There is too much volatility in that initial phases and there’s a lot to be
tested, learned and consolidated. It’s probably better to let things settle
down before investing on documenting architecture. Conversely, as the
project and the team grows so does the need to write clear guidelines on it.
The best place to store architecture docs will depend on team
dynamics and people’s preference. Some teams will keep them in the
README file, others will have a separate document or repository and
some will move it away to a wiki or some form of shared file system.
There’s no right or wrong. It all depends on the current stage of the project
and people’s preferences. As long as it’s easy to search and find things
and people incorporate the tool in their routine, consulting and updating
docs as the system evolves, it should be fine. Diagrams are an excellent
visualization tool and should be encouraged in architecture docs, so it’s a
good idea to pick a tool where it’s easy to save and display images. At the
same time, images are hard to version and to update, so it’s even better if
you can use a tool that converts text to diagrams such as Mermaid.]S.

112

CHAPTER2 TECHNICAL DISCIPLINE

There are some established frameworks for writing architecture docs;
one of the most popular ones is the C4 model so consider adapting it
or incorporating some of its ideas; writing good architecture docs is not
easy and people have invested a great deal of time thinking and testing
what works best and what doesn’t, so there’s no need for you to reinvent
the wheel.

Another approach to architecture documentation leverages the fact
that architecture is dynamic and always changing, so instead of having a
single document with the consolidated state of the system, it embraces that
changing nature by tracking the history of evolution of the architecture,
much like Git commits tells the history of the evolution of the code. One
popular model that adopts this is called Architecture Decision Records
(ADRs). ADRs are immutable documents that detail things such as date,
context, considered options, risks, and decisions on changes made to the
architecture of the project. They are useful not only to understand what
is the state of the system but to allow looking back and understanding
why decisions were made in the past. They are also very effective for
communicating these changes to the team because they are shorter and
focused on just what changed from the previous standard. “Consolidated”
and “diff” approaches for architecture documentation are not conflicting
and they can both be employed for different situations in a single project.

Documenting Operation

Software projects are unique, each one is composed of a wide variety

of frameworks, external libraries, practices, tools, and a specific context
and business goals. Just knowing the tech stack is usually not enough for
one to be able to operate a minimally complex project. Mature projects
need an instructions manual with information about how to run and
perform routine operations such as running tests, deploying, executing
custom commands, and fixing common problems. One might think that
this kind of documentation is only useful for new people joining the team

113

CHAPTER2 TECHNICAL DISCIPLINE

but it’s actually very important for everyone, especially when a team

is maintaining many different projects. Nobody should be required to
memorize how to do everything in a project, this is an anti-pattern, and a
very unproductive one.

An especially important use for this kind of documentation is for
incident management. Ideally, the most probable ways the software
can break are already mapped and the steps to fix them are available
for use during a crisis situation. For web applications, some of the very
basic things to have documented is how to restore the database from a
backup and how to restart servers. Don’t assume that this is trivial or that
senior engineers will know how to do it, you have to account for the unique
characteristics of each project and the pressure that builds during a crisis
situation. Following clear instructions is much faster and safer than having
people trying to remember every step and command they need to run. The
process of writing this documentation is also important as you will often
learn that some things don’t work as you expected and have the chance
to fix them before they are needed in a critical situation, no one wants
to be debugging commands while the system is down. Brainstorm with
your team to gather what are the most important cases that you should be
prepared for and write guides on how to fix them.

It's very easy for operation docs to get outdated so your team should
nurture a culture of updating them whenever someone bumps into a
problem. For the most critical pieces, such as the incident management
guides, it's important to periodically revisit them from time to time and
execute the steps to confirm that it is still working as expected.

Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ) documents are a great form of
documentation. Usually the goal of FAQs is not to provide detailed answers
to questions but rather to provide a short summary on a topic. Each team
can decide how they want their FAQ document to be structured, but

114

CHAPTER2 TECHNICAL DISCIPLINE

it’s probably a good idea to keep answers short and provide a link that
addresses the issue in full detail in case someone needs more information.
You can bootstrap a FAQ document by brainstorming a few questions you
imagine a person joining the team would ask. This is a great way to get
things going, but the goal should be to keep feeding the document as the
project evolves. To identify what else should go in the FAQ, you can make
it a personal or team rule to never answer the same question twice, if that
happens, you are not allowed to write the answer again, you must add it
to the FAQ and send the link to the person who asked it. Be careful as not
to appear arrogant or intimidating when sending the link with the answer,
explain to the person that it’s a relevant question that other people might
have as well so it’s a nice one to be featured in the FAQ.

2.14 Remove Toil

Any repetitive activity required for the proper functioning of the system
or to the process of building the system and that requires manual
intervention from a human being can be considered toil work. As
systems grow, activities that used to require little effort start to need

more intervention; commonly, this happens gradually and it’s easy to go
unnoticed how much time ends up going down the drain. Engineers need
to constantly evaluate the use of their time in order to identify when
it's strategic to invest on solutions that remove toil work. To make that
decision you need to balance risk, cost of operation of the current setup,
cost of building a new solution, and cost of maintaining the new solution.
Identifying the right moment to act is also important; if it’s too early, you
might not have the full context, risking your solution not addressing the
actual problem. Or you might overestimate the future cost of the toil work
and end up with a solution that is more complex than what you needed
and in some cases that is more costly to build and maintain than the
original problem.

115

CHAPTER2 TECHNICAL DISCIPLINE

For an engineer, the most obvious solution to overcome toil work is
automation. There are many levels of automation, for example, if you
have to periodically clean up some database tables, at first it might be
good enough to just open the database administration interface and click
to delete the lines that shouldn’t be there; after some time, you get tired
of clicking and write a script that you can run from the terminal, further
on you might add a button to run the script with a single click, finally you
can set up a periodic cron job to fully automate the work removing the
need of any manual intervention. That kind of gradual progression is very
common to happen and is a good example on how to remove toil work
avoiding overengineering (we will talk more about overengineering in the
next chapter). At the same time it’s important to beware that automation
comes with a cost. In the previous example, the activity of cleaning up the
database might be a crucial one for the smooth functioning of the system,
so while it’s certainly better not to depend on a human for it to happen,
the natural tendency for something that gets automated is for us to forget
about it. There’s a reasonable chance that the automation will eventually
break due to any kind of unforeseen change and you will only notice the
failure when it causes an incident. In that case, the solution might be to
add some monitoring that can alert you as soon as it breaks. Notice how
fixing the initial problem leads to more software to maintain (both the
script and the monitoring tool); make sure you understand the trade-offs
so the net result is positive.

Customer support is frequently a great toil work accumulator and
deserves special attention. In the rush to get problems fixed and customers
happy, it’s easy to just do whatever is quicker at the moment and not look
at the big picture. While on support duty, observe what are the issues
and requests that are constantly showing up. Often when looking at one
individual task, it’s not worth the effort to build a robust solution, but when
observing the aggregated time spent on similar tasks, the upside becomes
clear. Repeating support tasks are also good indicators of missing features
in the product so consider if the best solution is to automate the work of

116

CHAPTER2 TECHNICAL DISCIPLINE

engineers in support or to go the extra mile and invest in a user facing
feature and eliminate the need for people to get in contact with support
altogether.

Complexity is another source of toil that is often overlooked.
Complexity can be categorized as essential or accidental. Essential
complexity is good complexity, it is the type that is related to the domain
of the problem you are working on and it is required to deliver value to
users. Conversely, accidental complexity is bad complexity, it’s caused by
bad architecture and intentional and unintentional decisions that could be
avoided or fixed with no loss to engineers or users of the product.

In one of Vinta's projects we had a critical part of the system depending
on an unreliable external integration that ran once per day. Because
this integration would fail from time to time the team created processes
to manually check if things were properly executed for the day. As the
product grew and more features were built around this integration, they
naturally started investing more time ensuring everything ran as expected.
The situation got worse to the point where we noticed that we were
almost dedicating the whole day of a full-time engineer just to monitor
this integration and fix issues. Instead of investing time to improve the
system to automatically deal with the problematic integration we were
continuously in damage contention mode. To counteract the situation
we formulated a new plan: we would have two engineers working as a
dedicated squad for this integration. That way, even if one of them needed
to spend their whole time fixing problems to ensure the execution for
the day, the other would still be able to keep working on automation and
making the system more resilient to self-recovery from failure. Within a
few months of work, the results of these actions were crystal clear. Where
it would sometimes take until the end of the day to finish processing the
data, the system was now finishing everything automatically before the
first engineer started working. This is a great example on how accidental
complexity can start as a minor inconvenience and slowly work its way
into unproductive use of engineers’ time.

117

CHAPTER2 TECHNICAL DISCIPLINE

Leaky abstractions are a kind of accidental complexity, they happen
when parts of the code, especially complex ones, require too much
context, or understanding of its internals to be used. For example, suppose
your project has an integration with an external service but whenever you
want to call an endpoint from their API you need to deal with the process
of authenticating the request. Authenticating a request is a repetitive
process that often requires understanding of complex protocols and that
changes for each service provider. The people responsible for building the
integration must know about those but there’s no need for every engineer
that will use the integration to know about these details. They should be
able to just call a method that gives them the information they need. This
kind of problem might not be as clear for small teams, but as the codebase
and the team grows it becomes more noticeable. There’s a moment where
it’s not possible to have everyone keeping up with every part of the system,
so it makes a huge difference to have concealed interfaces that abstract
unneeded complexity away from the people consuming it.

Every line of code you write or piece of infrastructure you add
increases the load of maintaining the system. Products with a lean mindset
need to focus on the things that bring direct value to their clients. While
having a database is essential for most products, provisioning, configuring,
and maintaining the database infrastructure is a time-consuming activity
that has no direct impact on clients [as long as it’s working as expected]
so it’s probably a good idea to pay a little extra to delegate that work to
someone else by using a managed solution and use your time to build
features. If you are working on a small team, use off-the-shelf tools such as
open-source libraries and managed infrastructure whenever possible. As
the product grows you can gradually evaluate financial costs and decide
whether it's more advantageous to switch to in-house solutions or to stay
with the more expensive managed tools.

Engineers should constantly be looking for ways to make their work
more efficient by avoiding spending time on non-strategic activities and
evaluating costs and trade-offs between alternative approaches and

118

CHAPTER 2 TECHNICAL DISCIPLINE

solutions. The benefits of this mindset go beyond business and financial
achievements, it promotes a more stimulating and enjoyable work
and career.

Key takeaways:

e Toil work naturally builds up as the product and
team grows.

e Automate things to a level that is compatible with your
current context, but keep in mind that there’s also cost
to every line of code you add.

e Code complexity can also be considered toil so create
abstractions to simplify the use of common tools.

e Ifpossible, prefer off-the-shelf tools and managed
infrastructure so you can focus on work that adds direct
value to users.

2.15 Tooling

A software engineer, like a craftsperson, should master and leverage the
use of tools to design and produce their best work. In some cases, it’s
possible to deliver great work using tools that are in bad condition or
that are not the ideal ones for that particular job, but it surely takes a lot
more time and effort than having a toolset that is not only appropriate
but well cared for. A knife with a dull blade can deliver a meal that is just
as tasteful as one prepared with a sharp blade. Using the right tool is not
just about speed, it’s also about consistency. Engineers need to deliver
good software over and over throughout multiple years of their career;
mistakes are going to happen due to lack of knowledge or accidents,
but using the right tools can help you avoid many of them.

119

CHAPTER2 TECHNICAL DISCIPLINE

Text editors and IDEs are the source of heated debates among engineers
and that’s kind of understandable given how much of our time is spent
reading code, typing, and searching for things. But the reality is that
there’s no single better tool for writing code; it will always depend on what
programming languages you are using, your personal preferences, the
company you are working for, and what tools your teammates are using.
Pragmatically speaking, the criteria to pick a programming environment
should have the following order of precedence: the one that is officially
supported by the company you work for, the one that is most popular
among your team members, the one you are most comfortable with,
and lastly, the one that is most popular among the community of the
programming language you are using. If there’s an officially supported
IDE in your company, it probably means that there are recommended
configurations and plugins that will assist your work in that particular
context and these will surely help you to get up to speed faster. If there’s no
official programming environment, then it’s probably better to use whatever
your teammates are using. More important than using the best editor is
having other people to support you when things break and to point out
configurations and tools they've been using to improve their performance.
If there’s no consensus among the team and each person is using their
preferred tool, do the same and use one that you are already comfortable
with. If none of the previous is true and you are switching to a new context,
such as a new stack, just pick whatever the community is using so you can
benefit from the tools that are already available to that ecosystem. After
you've picked an editor, it’s often worthwhile to learn your way around, how
to configure preferences, how to effectively search, what are the most useful
and popular plugins, and what shortcuts are worth memorizing. The point
is: there’s no need to get obsessed, be pragmatic and choose the tool that is
more likely to guide you to writing good software.

More important than code editors are the tools that automatically
ensure code standards regardless of how team members configure
their personal environment. Continuous Integration (CI) tools can be

120

CHAPTER2 TECHNICAL DISCIPLINE

configured to run verifications at every step of the development process,
such as on new merge requests or before deployments. If it needs to be
enforced, it should be verified on the CI. The rule of thumb is to never trust
people’s personal environment, the main source of truth is the CI; when
someone makes a mistake, the CI should automatically prevent that code
from being integrated into the main codebase. CI tools can be configured
to run automated tests, ensure test coverage, make security verifications,
check for spelling and grammar errors, verifying code styling and linting,
and much more. Mature software development teams assume everyone,
regardless of how much experience they have, is prone to making mistakes
so they leverage the use of CI to enforce their standards and to collectively
increase the consistency of the codebase and consequently the experience
of the people using the software.

As of the writing of this book, using artificial intelligence to write
code is growing in popularity among software engineers. These tools
use publicly available software to build a knowledge base that can
automatically generate code from a human language specification or by
picking up context from your project’s code. Provided that such tools are
legal in the jurisdiction your company operates and that you are allowed
by your company to use them, you should consider incorporating them
in your development process. When doing so, always keep in mind that
you are ultimately responsible for the code and the consequences of it in
your project so don’t blindly accept whatever Al generates, double-check
everything and test if the code is actually doing what you expect it to do.

It goes without saying that you should always improve the tools you
use to work, both by upgrading the ones you already have and by looking
for new ones. Just like your computer gets slow every few years and needs
an upgrade, you also need to keep evolving the toolset you use for software
development. Read release announcements about the products you use
to find out about new features that can make your life easier. Research
and try new tools that can make you more productive, and check if you
can optimize the tools you are already using. In one of Vinta’s projects,

121

CHAPTER2 TECHNICAL DISCIPLINE

we had an extensive test suite that grew over time to the point where the

CI pipeline was taking more than one hour to run. Not only that, but we
also had a few flaky tests that would make the suite fail randomly, further
degrading the development experience. We decided that this was no
longer reasonable and invested time parallelizing the test suite, making
optimizations in the tools and fixing the flaky tests. With relatively low
effort we were able to reduce the CI time to five minutes. The gains in team
satisfaction even superseded the productivity and financial gains that were
already quite significant.

Lastly, don’t overlook your health and invest in a comfortable
workspace (especially if you work from home). Engineers spend a
considerable amount of their day sitting in front of a screen. Use a table
and a chair that is adequate to your height (and keep a good body posture).
If possible, use an ergonomic keyboard and mouse (and remember to
stretch every once in a while). If you are on a remote team, invest in a good
headphone and microphone set, it will help to make communication
more effective both when you're listening to others and when you are
getting your point across. Consider learning touch typing. Touch typing is
a technique that allows you to use the keyboard without looking at it and
with minimal wrist movement, it is a very fast typing technique and it can
prevent diseases such as repetitive strain injury (RSI). It’s easy to find touch
typing training tools online that teach the concepts and help you practice, it
takes some time to get used to but it’s definitely worth the investment.

Key takeaways:

« Care for and specialize in your work tools just like
a carpenter does for their saw blades, hammers,

and nails.

« Use whatever will make you more productive,
but prefer tools that are officially maintained and
supported by your company so you benefit from built
in guardrails.

122

CHAPTER 2 TECHNICAL DISCIPLINE

e Leverage the CI tool as the main source of truth so
problems are caught regardless of people’s personal
development setup.

e Ifyou are allowed, consider using Al code assistants,
but keep in mind that you are ultimately responsible for
the code you push.

e Investin your workspace, a good chair makes all the
difference and so does having a good headset if you are
frequently making video calls.

2.16 References and Further Reading

e “The Future of Programming” by Robert Martin
https://www.youtube.com/watch?v=ecINPzGEbFc

« “Basal Cost of software” by Eduardo Ferro https://
www.eferro.net/2021/02/basal-cost-of-
software.html

« “TDD is Not Magic” by J. B. Rainsberger https://blog.
jbrains.ca/permalink/tdd-is-not-magic

« “TDD Should be Fun” by James Sinclair https://
jrsinclair.com/articles/2016/tdd-should-be-fun/

« “The flat success path” by Filipe Ximenes https://www.
vintasoftware.com/blog/flat-success-path

e “Quickly improve code readability with Proximity
Refactorings” by Nicolas Carlo https://
understandlegacycode.com/blog/quickly-improve-
code-readability-with-proximity-refactoring/

123

CHAPTER2 TECHNICAL DISCIPLINE

124

“Don’t make Clean Code harder to maintain,

use the Rule of Three” by Nicolas Carlo https://
understandlegacycode.com/blog/refactoring-rule-
of-three/

“The Four Elements of Simple Design” by
J. B. Rainsberger https://blog.jbrains.ca/
permalink/the-four-elements-of-simpledesign

Google’s eng-practices repository https://google.
github.io/eng-practices/

“How to build an effective code review process for
your team” by Rahim Mitha https://leaddev.com/
software-quality/how-build-effective-code-
review-process-your-team

“Don’t rely on memory: knowledge management for
engineering teams” by Hugo Bessa https://www.
vintasoftware.com/blog/dont-rely-on-memory-
knowledge-management-for-engineering-teams

“Engineering Planning with RFCs, Design Documents
and ADRs” by Gergely Orosz https://newsletter.
pragmaticengineer.com/p/rfcs-and-design-docs

“What You Need to Know About Your Documentation”
by Daniele Procida https://www.youtube.com/
watch?v=qC10YK50qDo

“Writing docs well: why should a software

engineer care?” by Lorin Hochstein https://
surfingcomplexity.blog/2022/11/24/writing-docs-
well-why-should-a-software-engineer-care/

“Pockets of rest enable careers” by Will Larson
https://lethain.com/pockets-of-rest/

CHAPTER 3

Risk Management

© Filipe Ximenes 2024 125
F Ximenes, Strategic Software Engineering, https://doi.org/10.1007/979-8-8688-0995-8_3

CHAPTER 3 RISK MANAGEMENT

Risk is part of life, there’s no escaping from it; every decision we make is
consciously or unconsciously imbued with some level of risk management.
At work;, just by picking one activity over another we are already managing
risk. It might be the risk of losing market share to competitors due to a
delayed feature, the risk of making customers unhappy due to a postponed
bug fix or the risk of having an incident due to a feature that is performing
poorly. Risk management is being conscious about the intrinsic risk of
things and leveraging that information to make strategic decisions. The
concept of risk management is quite simple and easy to understand, what
is much more complex is measuring it so it’s possible to objectively make
decisions.

One simple way of quantifying the risk of a certain event is to multiply
the likelihood (or frequency) of that event happening by the impact it
generates in case it happens (or its criticality). Evaluating the risk of
things that are either very likely to happen or that are very impactful is
usually quite easy. It’s obvious these are the events that we need to be
prepared for. What is much harder is prioritizing the things that are not in
these extremes, especially in the context where you are juggling between
demands from multiple stakeholders and have competitors and customers
pushing you to deliver quickly and move on to the next thing.

In an ideal world, everybody has all the time to work on every single
edge case and optimize algorithms to be performant for every possible
scenario, in practice this is far from reality. In fact, choosing which risks are
going to be prioritized is a huge competitive advantage for a team working
on a product. So is deciding which are the things that are going to be
delayed even though it’s known that they might cause the system to break.
Making decisions inherently requires taking risks. In practice this means
things like letting known issues slip by, accepting an imperfect version
of the product in order to deliver faster and building solutions that don't
scale at first. That principle applies from high level things such as deciding
what's the next feature to ship to very low level such as choosing variable

126

CHAPTER 3 RISK MANAGEMENT

names in the code. Strategic engineers consciously balance their own
experience, the business context, and technical factors to evaluate risk and
make their decisions.

An important insight on risk management is that most of the time
we will be fighting to reduce risks, not to completely remove them. There
are many reasons for that, sometimes it is because it’s just impossible to
completely remove risk but often it is because it’s just inefficient to do so,
the costs don't justify the benefits. Throughout this chapter, we will be
talking about how strategic engineers identify risks, evaluate criticality,
balance trade-offs, and use tools, techniques and communication to build
better software.

3.1 Own Risk Management

Since there’s risk in everything we do, risk management cannot be a job
only for the leadership, everyone in the team needs to own it and actively
contribute to it. Planning your activities before starting to execute them is
one of the most important things you can do in order to manage risk. During
planning, reflect on how things can break, look potential blockers, and what
can take longer than people expect to build. Of course many issues are not
predictable and you will only learn about them in the execution phase,

but trying to identify them early on is significantly cheaper. Once you start
writing code you've already committed to a certain approach to the problem
and rewriting things takes a lot longer than replanning them.

When planning, consider the worst case scenarios, really try to break
your assumptions and brainstorm different scenarios. But once you are
ready to start crafting a solution, evaluate what is the practical risk of
these scenarios occurring and the cost of mitigating them so you can
properly decide what actually deserves investment. Taking risks is good
and is an expected part of an engineer’s job, but it becomes a problem
if it’s not properly shared with your team. Align with stakeholders your

127

CHAPTER 3 RISK MANAGEMENT

decisions and make sure they are on board with the risks you are taking, be
explicit about what are your assumptions and why you think yours is the
best approach. Inform how things will break in case assumptions prove
incorrect. It shouldn't be a problem when things break due to a known
and planned risk, the failure doesn't change the fact that you took the
best decision with the information you had at the time.

After finishing your work, don’t throw away everything you've
brainstormed in the planning process, explicitly communicate to your
team through code comments, docs, and meetings the risks that are not
covered in your solution. It’s very important that this is kept in a place
where it’s easy for teammates to consume and that is likely for them
to stumble upon when they are going to integrate or work on that part
of the code. The goal is to keep people aware of the conditions where
your solution will and will not work and the risks involved. Often the
best place for this is right along the code in the form of comments, but
as we discussed in the Documentation section, writing an Architecture
Decision Record (ADR) can also be a great way to consolidate this kind of
information.

Don't be afraid to give bad news, the earlier people know about the
problems, the earlier everyone can act to mitigate them. Trying to hide
or delay information adds negatively to your response performance,
itimpacts how people perceive your judgment and risk management
skills and makes you look irresponsible and reckless. Worse than seeing
an iceberg coming toward you is not saying anything because you
are embarrassed you didn't see it earlier. By being proactive you can
sometimes turn a negative perception into a positive one even when the
issue was caused by your actions. Consider how you want to communicate
depending on the situation, for things that look absolutely critical it might
be a good idea to broadcast the problem to the whole team even before
you confirm it’s actually a problem. If it doesn’t look that important,
perhaps you should do your own investigation before sounding the alarms.
Constantly grabbing everyone’s attention to non-critical problems means

128

CHAPTER 3 RISK MANAGEMENT

more context switching and stress for your teammates. In some situations,
it will be better to first communicate to your direct leadership to confirm
the criticality and importance of the issue before passing it on to the team.
In the end, the decision on how to communicate should take into account
the impact to the product and the noise to the team. But as a rule of thumb,
if you are in doubt, it’s better to overcommunicate than to risk something
critical slipping by.

Risk management is an integral part of the job of an engineer and it’s
not just about things breaking. While working on any activity you should
be attentive in order to inform your leadership early on if it will take more
time than you initially planned. This enables the team to react fast, adapt
accordingly, and mitigate the risk of this delay snowballing. Another
example is writing a proof of concept before committing to a final solution;
by doing that, you are ensuring your solution actually works and mitigating
the risk of spending too much time on a dead-end. The same applies to
validating assumptions and clearing decisions with stakeholders instead of
guessing and risk working on the wrong things.

Strategic engineers know that every decision is ingrained with risk and
are consciously thinking about which are worth mitigating and which are
not, depending on the current context and future plans for the project.
They also own risk management beyond the scope of their job title. Your
goal is to make the product as a whole successful, so every time you notice
something that doesn’t seem right or simply breaks your expectations,
you should raise your hand and communicate. That goes for all company
areas such as business, design, infrastructure, and even to projects from
other teams.

It’s also important to keep in mind that people in leadership roles
are not superhumans; they are not all-knowing and are prone to making
mistakes and forgetting things; the same goes to everyone else in your
team. Never assume that because something is done in a certain way it
means it must be the best solution; whenever you see documentation
or code that looks strange or seems overcomplicated, ask questions and

129

CHAPTER 3 RISK MANAGEMENT

propose other solutions. That kind of attitude will often reveal unknown
problems and even when it doesn’t, it is usually a great way to identify
opportunities for refactoring or to improve documentation. Collaborating
with teammates is also a way to mitigate risk. Offer help when you
see someone having trouble with their work. Ask questions and make
suggestions when analyzing documents, reviewing code, and during team
meetings. It's impossible to make software that is 100% fail-proof, but when
everyone is constantly alert about each other’s work, risk management
becomes a lot more effective, which translates into reliable products and
effective teams.

Key takeaways:

« Evaluate worst case scenarios when planning your
solutions but ponder the trade-offs to decide what is
actually worth mitigating.

« Consciously taking risks is a good thing as long as it’s
communicated and acknowledged by stakeholders.

« Risk management is not just about the things that can
break, just by communicating the progress of your work
you are helping managers to mitigate business risks.

« Making the product successful is everyone’s job so
don’t be afraid to report the risks you identify in areas
beyond your job title.

3.2 Mitigate Risk

In practical terms, eliminating risk is very expensive and often impossible,
so it’s important to understand that mitigating risk is not a binary decision,
there are levels to it. A simple mitigation can be a document defining

what will be done in case a certain feature breaks, while a complex

130

CHAPTER 3 RISK MANAGEMENT

solution might be to implement an automated self-healing capability for
the system. Both solutions mitigate the same risk but with very different
impact on users and engineers. In between these two, there are an infinite
number of other solutions, so the job is not only prioritizing what risk to
mitigate but also deciding how much of it should be mitigated. There’s
no single answer to that, it’s all going to depend on the very specific
context your business and product are in and even different people will
have different opinions on how to proceed. The key is always balancing
cost and benefit, and since risk is the product of likelihood times the
impact, you can tackle the problem by either tackling one or both of
those variables. For example, suppose you are building a checkout cart
for an ecommerce store, this is a risky feature because you are going to
manage everything related to the payment such as security and the credit
card transactions. You could manage the risk of something breaking

and people not being able to conclude their purchases by building a
monitoring system that sends alerts whenever an unusual amount of
transactions fail. That way you would be mitigating the risk by reducing the
criticality of a failure event as you would be able to detect and fix issues
faster. But you could also heavily invest in making your infrastructure
fail-safe, or perhaps integrate with a more reliable/expensive payment
processor, thus reducing the likelihood of things breaking.

Mitigating risk is directly dependent on identifying it. It's a common
situation that people fail to mitigate risk not because they don’t know how
to do it, but because they fail to identify it. Known risks are manageable
by business decisions and prioritization, unknown risks are just disasters
waiting to happen when you least expect. Notice that choosing not to
mitigate a certain risk is very different from not knowing what the risks
are; in the former, you are in control of the situation while in the latter,
you are left to fate. There are two main ways to learn how to identify risks.
The first one is by failing over and over until you develop a repertoire of
the things that don’t work in certain situations. It’s a costly but effective
method because you are the one suffering the consequences of your own

131

CHAPTER 3 RISK MANAGEMENT

mistakes so your brain easily assimilates how to identify the same situation
again in order to avoid it. The second approach is to learn from other
people’ mistakes. You can do that by reading articles and books, going to
conferences, and watching videos, or by learning from seeing coworkers
dealing with their mistakes. This is a cheaper method but less effective as
it’s harder to assimilate and adapt other people’s context to yours. Getting
involved during incident resolution is a way to learn that combines both
approaches by giving you hands-on experience while learning from other
people. In all cases, you can only benefit from being capable of identify
risk if you employ this skill by actively investing time reviewing your plans
and trying to identify what and how things can break. A few minutes of
intentional thinking can save a lot of time and money directly wasted on
bugs and incidents, and indirectly, on context switching and stress.

There are some techniques that can help you to anticipate what can
go wrong. An interesting methodology consists in writing “pre-mortems.”
While post-mortems (more on post-mortems in the Learn from mistakes
section) are retrospective documents about problems that already
happened, pre-mortems are an analytical exercise of starting from a
problem and trying to work backwards into what could lead to it. It’s
a very effective way for groups and individuals to brainstorm possible
failure points of the system they are working on. Another approach is to
write playbooks on how to fix problems that are likely to happen. Just like
some home appliances have manuals on how to deal with error codes,
software teams can write playbooks that list and have instructions on
how to fix problems. This kind of playbook has the benefit of empowering
more people in the team to act upon a failure or incident, enabling faster
responses and therefore making the whole product more resilient. It also
makes the operation of the product safer as following instructions is much
safer than making up a plan on the go and it reduces risk of human error,
especially in a stressful situation. This process of writing a playbook is
also beneficial as it’s yet another opportunity to reflect on the ways things
can fail.

132

CHAPTER 3 RISK MANAGEMENT

Conversely, a more hands-on way to mitigate risk is by employing
fault-tolerance. The idea is to assume every software is prone to breaking
in ways that are hard to predict and, with that in mind, design itin a
way that reduces impact when problems happen. A good parallel to
fault-tolerant software in the physical world are fail-safe devices. For
example, elevators are designed in a way that when it loses power, brakes
are automatically deployed not letting the cabin fall. There are many
ways to make software fault-tolerant; one of the most basic ones is to
make extensive use of logs as they can be used to debug problems and
in some critical situations even enable recovering lost data. More robust
techniques include things like compartmentalizing the software and
reducing interdependencies. That way, different features don’t interfere
with each other and users can keep using a limited version of the product
even when some part of the system is broken. It’s also possible to have
built-in fallback tools and solutions that automatically switch on when a
primary solution fails. And features can be designed to self-audit and send
alerts when things don’t seem right. For data recovery a more appropriate
and robust solution than relying on logs is to implement techniques such
as Change Data Capture (CDC).

We had a situation in one of Vinta’s projects where an application used
a secondary database to store metadata about user’s actions. These were
relevant information but non-critical to the operation of the system. An
issue caused by our infrastructure provider during a planned maintenance
window took down this secondary database but it didn’t affect the main
one. Unfortunately, the application code was designed in a way that made
the error in the secondary database to affect and break some of the main
flows of the product. We evaluated the situation and decided that it was
more important to restore the application to users even if that meant losing
some of the metadata. So our first step was to comment out all calls to the
secondary database and deploy a new version of the application so people
could get back to using it. We then deployed a new secondary database,
restored the data from a backup and uncommented calls. At this point the

133

CHAPTER 3 RISK MANAGEMENT

application was back to fully operational and the team out of crisis mode
so we could take our time to design and build a long-term solution that
would prevent the issue from happening again. The final solution was to
decouple calls to the secondary database from the main application flow
so they would happen asynchronously and not interfere in a downtime
situation. This is a good example of how simple techniques can make
software more fault-tolerant.

Since many software problems are caused by engineer mistakes,
architecture also plays an important role in fault tolerance. All code
should be designed to be maintained by engineers that have a lot less
context than the person who wrote it initially. If a certain function has a
destructive behavior, you should make sure that this is explicit in its name
so the person calling it knows straight away that they are dealing with a
risky action. Clearly communicate side effects so they don’t catch fellow
engineers off guard.

Feature toggles (or feature flags) are one of the best techniques to
mitigate risk. The idea is to make it easy to switch on and off functionalities
in your application on demand. Toggles can be used for many purposes
such as launching a new feature, fixing a bug, making a complex migration,
or testing a new algorithm. The main goal is to give engineers and
product managers more control over when features will go live and also
the ability to turn things off in case they are not behaving as expected. In
practice, feature toggles are just if/else statements that can be activated
or deactivated without the need to deploy a new version of the software.
They will usually be controlled by a key-value store database but any tool
that allows storing and reading a value will work. For more complex team
structures and applications it might be worth contracting a dedicated
service to store and manage toggles. In all cases, it’s important to keep
in mind that the place where toggles are stored needs to be fast as it will
be frequently accessed. Another extremely important aspect to keep in
mind is that feature toggles can be operated simultaneously and they will
often affect each other. It’s key that you design the system to work in all

134

CHAPTER 3 RISK MANAGEMENT

combinations of features on and off or you’ll risk causing incidents. For
that same reason it’s important to plan the life cycle of toggles, they should
exist to fulfill a goal and should be removed once that goal is met. Feature
toggles can introduce a lot of complexity, so in order for the benefits to
outweigh the costs and risks, you need to properly manage them.

Integrations with external services are a particularly sensitive part of
software and require special attention when it comes to risk mitigation.
They are a double-edged sword. They allow you to delegate certain parts
of the system to a third party that is going to run and manage things for
you, but they also have the downside of you losing some control over
them. Which means that when something breaks, your hands are tied and
you depend on someone else to fix them. It's not reasonable to assume
that things will always work with your integration partners just like it’s not
reasonable to assume your own system is never going to fail. Take that into
consideration when opting to use any external tool that you don’t have
direct access to the codebase or to the infrastructure and prepare your
software to deal with eventual problems from them. What happens with
your system when the external integration breaks? Does it go down or
your users can still use features but with some limitations? How do you
communicate to your users about the problem? Does this impact your
contracts with clients? Should you have more than one integration partner
so you can automatically switch between them in these situations? There
are many techniques to manage this kind of problem; if you want to learn
more about them, some of the terms to look for are “circuit breaker” and
“kill switches.”

Don’t take design for granted, even if your team has designers defining
the specs of the features you are going to work on, don’t abstain from
thinking critically about the user experience of what you are developing.
Be vocal about the things you think are not clear to the users. One simple
example of this is when dealing with features that can lead to destructive
actions; sometimes just adding a confirmation modal can save you a lot of
trouble.

135

CHAPTER 3 RISK MANAGEMENT

Pacing your deliveries in small and incremental changes is another
great way to mitigate risk. Bugs are inevitable, by avoiding making big
changes all at once we are reducing the amount of things that are going to
break together and consequently decreasing the impact these will have.
We are also making it easier to spot the problem and, in many cases, also
making it easier to roll back the changes. The riskier the thing you are
doing is, the more you should try to break it into multiple small steps. That
approach also has the benefit of improving the code review process by
enabling people to focus on smaller scopes at a time and thus increasing
the chances of identifying problems. The criticality of the changes you
are making should also impact how it’s going to be tested before it
reaches users. While automated tests are often good enough for most
of the code you will be writing, there are situations where they won’t be
enough to ensure things are going to work in the production environment.
Automated unit tests can only take you so far, in critical situations is well
worth the effort to invest on a staging environment that has a similar
infrastructure and data to the production one.

Keeping this mindset of making small changes is also positive because
it allows you to better level your risk mitigation strategy. As we mentioned
earlier, risk mitigation is not about completely removing risks but
sometimes it’s hard to decide how much of it we need to do. By breaking
your plans into multiple phases you will be able to see the impact of each
change. At some point you might even notice that you already have enough
and will be able to avoid spending time and effort on a more complex
solution than you needed.

Key takeaways:

¢ There are levels to mitigating risk, you will need to
evaluate your options and balance cost and benefits.

« To mitigate risk you first need to identify it. Actively
invest time mapping how things can break.

136

CHAPTER 3 RISK MANAGEMENT

¢ Build fault-tolerant features, and write code that makes
it harder for your teammates to make mistakes.

e Pay special attention to integrations with external
services, your code should expect them to fail from
time to time and know how to handle these situations.

e Deploy continuous and incremental changes to
the code to facilitate reviewing and reduce risks of

catastrophic incidents.

3.3 Trust Nothing

Risk management is a broad topic and there are many different techniques
that will help you build a consistent way of ensuring each type of risk, from
business to infrastructure, is understood and under control throughout
the product life cycle. Each of these techniques will have different levels

of complexity and assertiveness, so in certain situations the gains will be
well worth the effort, and in other situations it might introduce too much
bureaucracy for gains that are not that significant given the business
context. For example, hiring a consulting firm to perform a security
analysis in your software from time to time is a great way to manage

the risk of getting hacked, but depending on the type of software you

are working on, it might make very little sense to do it before it has a
reasonable user base.

One of the cheapest and easiest ways to manage risk in all phases of
product development is by being skeptical. As an engineer it is essential
to build the habit of questioning everything that is not clear to you.
Being skeptical allows you to identify and manage risk regardless of the
business context of what you are building. By doing that you will be able to
avoid a lot of problems even in projects without mature risk management
processes in place. This is a skill that applies to all areas of your work, for

137

CHAPTER 3 RISK MANAGEMENT

example, you shouldn’t assume product and design decisions to be error-
free. If you have a hunch that something is missing or not looking right,
make sure you are going to express that out loud and that you are going
to ask questions until someone gives you good answers. Or when you are
evaluating architecture and technical decisions of old and new features,
you shouldn’t settle until everything has a reasonable explanation. Even
if the explanation doesn’t make sense or if you consider it a bad decision,
at least you will have the context needed to evaluate the risks and propose
improvements.

Adopting this mindset is especially useful while investigating bugs and
reviewing data from dashboards, logs, and reports. Always be critical of the
information you are looking at. If what you are seeing doesn’t match your
expectations, even if it is just by a small fraction, you should look for other
sources that can assert the validity of that information. For things that are
critical for the business, you should double-check everything even if they
are looking right. Use that same skepticism for every new code you deploy
to production, that’s one of the moments of highest risk in the software
development life cycle. Write your code in a way that allows you to verify
everything went according to plan. Even when things look right in the
interface, review that the flow of the data through the code in the backend
was the expected one, check if side effects were properly triggered, check
if other parts of the code that have touching points with what you changed
did not get affected.

Be careful with biases, things that disprove your expectations are
more important than the ones that confirm it. Never assume things are
correct until you actively check it. That is especially true when someone
makes a question to you. Unless you are sure about the answer don’t
give people the false sensation of security, confirm you have the right
information and then give an assertive answer. Or, if you are not 100% sure
about something, make that clear in your answer and, if possible, ask the
person to personally double-check the information before they make any
important decisions. Notice that this is not about refusing to answer, quite

138

CHAPTER 3 RISK MANAGEMENT

the opposite, speak out the information you have and even your personal
beliefs, but don’t be afraid to explicitly distinguish what you are certain
about and what needs double-checking.

Being skeptical is not about distrusting your teammates, so you should
be careful as not to sound confrontational during these conversations.
Instead, always frame it as curiosity, a genuine interest to know more
about something that you feel you don’t fully understand or that you need
more context. Say things like “my expectations were that this would behave
in X way, why is it doing Y?” and “did you consider Z?” or even “have you
tried W?” Instead of telling people that something is wrong try to ask the
questions that will lead them to reach the same conclusions you have.

Ponder the criticality of things, things that can lead to significant
problems deserve to be scrutinized, but it’s ok and often positive to let go
of what is not critical. Give visibility about your mental models, explain
what information is guiding your train of thought and what assumptions
you are making. By doing that you are creating opportunities to learn by
identifying the flaws in your understanding of the situation and at the same
time assessing and sharing risk with your team.

Key takeaways:

¢ Question everything that doesn’t make sense to you
and find out the reasoning behind decisions.

e Don’t blindly trust data from a single source, if things
are not matching your expectations seek other sources
to confirm the information.

e Always review your deliveries after they are live in the
production environment.

e Be clear about the level of confidence you have in the
answers you give.

e Be careful with how you communicate, your goal
should be to generate collaboration, not confrontation.

139

CHAPTER 3 RISK MANAGEMENT

3.4 Avoid Overengineering

There are multiple ways to write a software that solves a particular
problem, some are straight up inefficient, some are mathematically
optimal, some work well in certain scenarios but not in others, some are
easy to understand, some require a PhD degree, some can be written with
minimal number of lines while others require complex architectures.

A strategic engineer knows that the ideal solution depends on context,

so their job is to understand the domain where the solution is going to
operate, learn what the constraints are, and pick a solution that reasonably
fits within these parameters. Engineers also understand that constraints
change over time so they also consider in their decision the trade-offs of
picking a solution according to what they expect to happen, but knowing
that it may or may not actually turn out in the predicted way. Many
problems in computer science have mathematically proven optimal
solutions, conversely in software engineering, it’s often impossible to
determine what is the best solution for a minimally complex problem. The
main reason for that is because frequently it’s simply not possible or viable
to quantify parameters or precisely measure outputs.

Overengineering is the act of planning, developing, or adopting a
solution that is disproportionately more complex or robust than what is
needed to be for a given context. Commonly it does not happen out of
naivety, it's actually an intentional decision often justified by an urge to be
prepared for a situation that is theoretically possible, but that in practice
the cost of investment outweighs the probability of it happening or of
it significantly impacting the system. In other words, overengineering
comes from employing expensive solutions to prevent problems that
are cheap to mitigate in case they materialize. Notice that a high cost
of building or maintaining the solution is the precondition and we are
balancing two other parameters to make our decision: cost to mitigate
and expected risk [see the decision matrix below]. This misalignment
between expectations and reality leads to solutions that are more complex

140

CHAPTER 3 RISK MANAGEMENT

than needed, more time-consuming to implement, and more costly to
operate and maintain. As previously said, we should always leverage all the
information we have to make our decisions. The problem starts when we
prepare for something that is not a business requirement or that we have
no factual indication of it happening or generating a significant problem.
Other situations that lead to overengineering are: desire to use certain
tools or technologies (often newly released ones or that are picking up
attention from other engineers), underestimation of the capacity of a tool,
overestimation of future demand, miscommunication with stakeholders
(that can happen from both ways), and lack of experience with the
technology or the business domain.

Overengineering decision matrix

high low
expected risk expected risk
-
28
S o worth the either buy the risk [
5 "é engineering effort or play it safe
oF -

overengineering

i 4 oo verengineerin
until it materializes overengineering

low cost
to mitigate

The best vaccine against overengineering is taking decisions based
on concrete data and resisting the urge to predict the future. Trying
to fix problems that have no indication of actually happening is a bad

141

CHAPTER 3 RISK MANAGEMENT

investment not only because it wastes resources on an unneeded solution
but also because you will find out that it’s often a game of cat and mouse,
the actual bottleneck will show up in some other place that you didn’t
predict and things will still break. Instead of trying to predict and cover all
the possible ways things can break, which is impossible to do, you should
focus on making it easy to collect and review data from your system so
you have more information to decide what is the best solution and when
to employ it. That means that by delaying decisions you are allowing
yourself more time to observe and learn from that data and therefore
increasing the chances of doing the right investment. The Rule of Three for
refactoring is a great example on how delaying decisions is a good idea, by
waiting before you've seen a similar problem at least two times and only
considering a generalization on the third time you are gathering more
information about the problem and ensuring that the more complex, but
better solution is actually worth the investment.

Our field of work evolves rapidly and it’s only normal that professionals
want to be on the cutting edge of available tools; after all, they make
our job easier, faster, more efficient, or even just more enjoyable.
Unfortunately, this behavior often leads to overengineering. Before
adopting a new process, tools, or technology, consider the costs involved,
such as the setup and adoption time, the learning curve, and cognitive
load and compare it to the short- and long-term benefits. With all things
considered, is it still a good investment? Keep in mind that new is not
always better and what works for other people might not be the best
approach for you or your current context. Most software teams are not
dealing with problems at the scale of Google so your team probably needs
much simpler solutions than Google needs. Be pragmatic about your
decisions and choose wisely what’s worth your time and energy and your
company’s money.

Time and money are the two constraints that are transversal to
pretty much all real world projects. Usually all projects, since their very
beginning, have a limit on how much money is going to be invested and

142

CHAPTER 3 RISK MANAGEMENT

arough expectation on when it should be done (whatever the definition
of done is). That means that at the very least all engineering decisions are
bound by these two constraints. Engineers don't need a perfect solution,
they need one that works and is cost-effective, sometimes these two
are the same, most times they are not. In fact, perfect solutions can harm
projects by blowing up budgets or losing time to market. It’s usually better
to have a quick but imperfect solution released early than to invest too
much on a perfect one that still has no guarantee of winning clients. This
is again the same pattern we've applied in other contexts throughout this
book: first make it work and then make it better, but in this situation only
make it better if you actually need to.

Overengineering is a well-known issue in software engineering and
many methodologies and popular practices will reference or promote
measures to disencourage and counteract it. The widely adopted Lean
Startup methodology popularized the concept of Minimum Viable
Products (MVPs) as the way to bring business ideas to life. It's baked into
the MVP idea that you start by building the smaller product that delivers
some value and take it to be tested by real clients as soon as possible,
learning from that experience and planning a new cycle of build, measure,
and learn from there. Overengineering is clearly an anti-pattern to the
Lean Startup approach of building software. Another example is the
Agile Manifesto, some of the supporting principles of it include “Our
highest priority is to satisfy the customer through early and continuous
delivery of valuable software,” “Deliver working software frequently, from
a couple of weeks to a couple of months, with a preference to the shorter
timescale” and “Simplicity, the art of maximizing the amount of work not
done, is essential.” While not as explicit or directly related, it’s also easy
to understand how overengineering can go against these ideas. Some
well-known expressions within the software engineering community also
directly address overengineering, two of the most popular ones are YAGNI
(You Aren’t Gonna Need It) and KISS (Keep It Simple, Sweetie).

143

CHAPTER 3 RISK MANAGEMENT

Finally, beware of the cost of software maintenance. It’s intuitive to
think that the cost of software is only the time it takes to implement it
when in reality every added line also introduces a cost of maintenance
that is permanent until the project ends or until it's removed. Most people
underestimate what software maintenance comprehends. It involves the
more obvious cost of fixing bugs and updating things, but it also includes
things like the cognitive load of dealing with one more moving part every
time you want to change something, managing security, and the learning
curve of training people joining the team. More software equals more
problems.

Key takeaways:

« Engineering decisions need to leverage many
parameters such as technical complexity, team
maturity, business context, existing demand, expected
demand, risks and costs of mitigation.

« Overengineering is building expensive solutions to
prevent easy to mitigate problems with unclear chances
of happening.

« Avoid overengineering by postponing high cost
decisions until you have reliable data to back it up.

« Start from solutions with the lowest possible cost that
meet the requirements, observe how it performs and
take your next decisions based on the data you collect.

« Time and money are always going to be important
constraints, especially for growing companies and in
high competition markets.

144

CHAPTER 3 RISK MANAGEMENT

3.5 Technical Debt

Technical debt is everything in a software system that is known to be in
aless than ideal situation, including infrastructure, code, and product
functionality. There are two types of technical debt: intentional and
accidental. Intentional debt happens when a piece of code that represents
a short-term benefit but that is knowingly problematic for the mid or long
term of the product, is consciously introduced to the software. In that
situation, technical debt works similarly to money debt, you are going to
get something now, which is usually a faster time to ship, but that will need
to be paid off with interest in the future, which usually means you are going
to need to do some refactoring or a complete rewrite as it starts to become
a problem. This is a good type of technical debt because it allows you to
make strategic decisions based on business and considering the technical
trade-offs. It’s also frequently a good opportunity to have meaningful
discussions with fellow engineers and product stakeholders about what
the priorities are and to get a better understanding of the business goals.
The second type of technical debt actually does not involve the
addition of any new code. Accidental debt is generated at the moment
someone notices an existing part of the software is incompatible or a drag
for current or upcoming goals of the product. Code that was thought to
be adequate to the technical and business goals at the time it was written
suddenly becomes debt. This can happen due to business factors such as
changes to product goals, priorities, or even to the frequency and the way
users are interacting with a certain feature. Technical factors are also big
generators of accidental technical debt: development tools are constantly
evolving and the release of new versions, changes to conventions, or the
emergence of new technologies can quickly turn once perfectly good
software into technical debt. Even the process of engineers learning new
things and growing in their careers can generate debt as they will naturally
identify problems with their past decisions. The same happens when
someone new joins the team or when there’s a handover from one team to

145

CHAPTER 3 RISK MANAGEMENT

another. Whenever you inherit code from other engineers there’s always
going to be technical debt, both because you don’t have all the context
about why decisions were made and because each person has their own
set of skills that would lead them to do things differently anyway. Avoid
using this as a platform to undermine the work of others, it’s not strategic
and you gain nothing from doing that. You are much more likely to learn
something and avoid making mistakes if you adopt a humble attitude and
try to understand why and what decisions led the software to that state.
Also accept that dealing with “bad code” (often known as “code written by
other people”) is just part of the job. Focus on making a plan to promote
the changes you think that are necessary, and more importantly, in
executing that plan which is always the hardest part.

Just like money debt, technical debt compounds and over time you will
be forced to pay it whether it’s by finally finding time to invest in fixing the
problems or by the effects accumulated debt has on the product and the
development flow. Not paying debt leads to software that is difficult and
slow to change so adding new features and fixing bugs take a lot more time
than it should. This leads to ever more frustrated stakeholders as simple
things now take unreasonable time to get done. Over time, the product
also tends to become unreliable, buggy, and risky to operate. Bad solutions
are added on top of each other in order to overcome problems without the
need to invest time in designing and implementing proper solutions. Code
gets coupled and now to fix one debt you need to change five other things
that depend on it. Every time you postpone the problem it becomes even
harder and costlier to solve. By now it should be clear that it's impossible
and also not strategic for a project to have zero technical debt but
simply ignoring it is also not an economically smart decision for any
team with long term goals. The best we can do as engineers is to learn
how to manage technical debt as part of the usual development process,
making conscious decisions based on context and known trade-offs, and

periodically reassess these decisions.

146

CHAPTER 3 RISK MANAGEMENT

A project I was working on for one of Vinta’s clients had a deadline
to launch a new feature. But, for it to work properly we needed to make
performance improvements to another existing part of the system.
Because of the short timespan there was not enough time to write the
code for the feature and also make the improvements. To remediate the
situation, we proposed to increase our infrastructure costs by bumping
the memory and CPU specs of the machines we were using to make up
for the inefficiencies of the code so we could launch the feature and work
on performance improvements later on. By doing that we were quite
literally buying a technical debt that allowed us to meet the deadline and
also buying the team time to pay the debt with the benefit of relieving the
pressure and stress of doing things in a rush.

Fixing technical debt is rarely something easy to do, but the main
reason for that is not usually technical. In real world projects, there are
many forces pushing you to postpone things just a little more. Over
time, problems keep accumulating until something breaks catastrophically
and suddenly everyone is questioning how things got to that point. As
engineers, the most important thing is understanding that we own
technical debt, there's no one in the project other than us that can
properly evaluate the risks of the code we wrote. It’s not the role of
business and product stakeholders to ask if we want to pause everything
and spend a whole quarter just refactoring and fixing technical debt,
their job is to keep pushing us into delivering value to the users. Unless
we explicitly explain what, why, and when we need to work on technical
debt, they will rightfully just keep expecting us to deliver more features as
fast as we can. It’s our responsibility to inform stakeholders about what
we need to do in order to keep things running smoothly and the risks and
consequences of not doing it. But we need to do it in a way that resonates
with their goal of delivering value to the user. For instance, when you
say that you need some time to improve the deployment process of the
project, it communicates very little about the value you are adding. But
if you rephrase that to something like “The current process is slow and

147

CHAPTER 3 RISK MANAGEMENT

requires too much manual intervention which has lead to X incidents in
the past month. It’s important to automate it to make it faster and more
reliable especially as the team grows,” it gives stakeholders a lot more
information about how that work is going to impact the product and a
better understanding of the risks of not doing it. That way, it becomes
easier to compare and prioritize that demand with everything else in the
backlog. Doing a good job making a case for the needed work on technical
debt doesn’t mean it’s going to be smooth sailing from there on, expect
pushbacks and be prepared to negotiate. Defending the codebase is an
ongoing effort, there will always be things to improve and you need to work
with (not against) other stakeholders in order to find the right balance
between keeping the lights on and adding new features.

So how do we tackle technical debt? There’s a great article by Matt
Greenberg and Keya Patel titled “Tech Debt Isn't a Burden, It's a Strategic
Lever for Success” that answers this question with all the depth it needs
considering many of the nuances it requires. I'll try to summarize some
of the main concepts here so you can grasp the idea. The first thing to
consider is the size of the debt, acute debt is low effort and can be fixed
quickly, this type of debt is a lot easier to deal with, you just get it done
as you move forward with your work. Systemic debt is much bigger and
requires a lot of effort to get fixed so it requires prioritization, planning,
and dedicated time. So beyond the technical challenge of fixing the debt
there’s the challenge of finding the right time to do it in between the busy
schedule of any product team. The five variables you are going to balance
in order to prioritize it are

« Confidence: How likely is it this debt going is to lead to
bigger problems?

« Time: How long will it take for it to become an
unmanageable issue?

¢ Impactto user: How much or how likely is this going to
impact end users?

148

CHAPTER 3 RISK MANAGEMENT

e Sequence: Does it block the team from achieving

some goal?

e Accumulated debt: How much debt have you

accumulated?

The answer to these questions along with the business stage of your
project should give you a good framework to think strategically and decide
with other project stakeholders how you are going to manage technical
debt throughout the project life cycle.

Another interesting way to tackle technical debt is to pick your own
personal battles to fight. Although this is usually a good way for you to fix
issues that are annoying you and that might also be bothering teammates,
it requires a lot of discipline and responsibility as it shouldn’t impact
roadmap tasks. If you are going to spare some time to work on these
projects, make sure it’s either very small or that you are going to break it
down into small deliverables so you can gradually build your way into
your goal with no major impact to other activities. But other than that it’s
alot of fun to have this kind of personal goals and results will usually be
appreciated by your teammates.

Key takeaways:

e Leverage intentional debt to gain short term benefits
but don’t forget that it will need to be paid later on.

e Accidental debt is inevitable, avoid criticizing others

and focus your energy on fixing them.

e Communicate the impact of debt to the product to and
to the development flow and practice negotiating with
stakeholders.

e Fix the issues that bother you, but be careful managing
time investment so it doesn’t affect your roadmap
deliveries.

149

CHAPTER 3 RISK MANAGEMENT

3.6 Consider the Non-functional
Requirements

Non-functional requirements (NFRs) are the parts of the software that,
although necessary for the operation of the system, are not directly related
to the business logic of it. For instance, a functional requirement to a video
streaming service is that it plays the video in the users’ browser, but what
if the service takes too long to load or easily goes down under any small
spike in demand, is it really fulfilling its role? The goal of the software is
to provide value to its users, it doesn’t matter if certain features exist if, in
practice, it doesn’t work when users need them. Functional requirements
describe what the feature does in a “naive way,” it answers the question “is
the system capable of executing the task?” Non-functional requirements
answer a different question “will users be able to use the feature whenever
they need it?” It’s a subtle difference but an important one because it
determines if, in the end, users will accomplish what they need.
Considering and planning for the non-functional requirements of what
you build must always be part of your risk analysis. Each system has its
own constraints so you need to understand the business and who are its
users in order to plan what needs more attention, what can be addressed
in a later moment and what is not relevant to that particular context. Here’s
a list of some common non-functional requirements in software systems:

e Accessibility: What are the obstacles users might
encounter due to personal limitations when using
the software? How do you make things easier so that
everyone can benefit from the product?

¢ Availability: Is the system up and running when users
need it?

150

CHAPTER 3 RISK MANAGEMENT

e Cost-effectiveness: Is the infrastructure you are
planning to use in accordance with the company’s
financial expectations? How does it affect the final
pricing to users? Are you dimensioning resources (such
as memory, CPU, database size) effective according to
the expectations of the software usage?

e Fault tolerance: When something breaks, does it take
down the whole system? Could failure be handled in
a smoother way or in a way that has less impact on
the user?

e Security: Does the system attend basic industry
security practices? Are there any security practices
that are specific to the domain you are working on? Is
the development team trained on security practices?
Which are the critical vulnerabilities that can affect
the system?

e Recoverability: How hard is it to restore the system
when it breaks?

e Scalability: Can the system adapt to surges in demand?
Is it designed to adapt to business growth?

« Extensibility: Does the code architecture enable for
new features to be added with low effort and risk of
breaking the existing ones?

o Developer Experience (DX): Is the development setup
easy for team members to do their best work? Is it easy
for new members of the team to onboard?

These are just some examples of the things that are intrinsic to the
development of any software, there are of course an infinite number of
other aspects that may or may not be relevant to a given business context.

151

CHAPTER 3 RISK MANAGEMENT

Notice how concerns related to the maintenance of the software from the
engineer’s perspective are also considered non-functional requirements.
Now that we have a better understanding of what non-functional
requirements are and their importance, let’s dig a little deeper into two
topics that are common to most software products operating in a real
world environment: observability and performance.

Side note: the term “non-functional requirements” is not very
descriptive of what it means and because of that some people have been
pushing for it to be rebranded as “cross-functional requirements” (CFRs).
This new term, while not fully adopted yet, provides a better sense on how
it addresses expectations from a diverse set of technical and non-technical
perspectives.

Key takeaways:

« Think beyond the feature specs; what are the technical
and non-technical aspects that will make the feature
to successfully deliver value to all users in all desired
conditions?

« Youdon't need to address everything but it's important
that you consciously choose what should be covered
now and what you are leaving for later when demand
catches up.

3.7 Observability

Observability is the practice of tooling a system in order to gain visibility
over its components and behavior. The goal is to ensure things are
executing according to expectation with regard to factors such as
availability, performance, rate of failure, and security to facilitate
debugging and, in extreme cases, to recover state that was lost due to an
incident. It can be used to track user experience, goals defined by the

152

CHAPTER 3 RISK MANAGEMENT

business and even to uphold contractual requirements. Observability is
one of the most important assets for engineers to manage risk, and it does
it from many perspectives; it enables investigating and fixing ongoing
problems, identifying issues before they happen through alerting, and
planning future growth in order to dimension infrastructure accordingly.
There are many approaches to observability such as logging, tracing,
monitoring, and alerting. The best approach will vary depending on what
you want to achieve but most applications require a combination of tools
and techniques to accomplish their observability goals.

Logging is the most basic and common approach to observability,
its goal is to record the history of your application. The most frequent
mistake people make is to only think about it when problems arise and
the only thing they can do is to regret not having more visibility over some
part of the system that would be key to solving the problem. In order to be
useful, it needs to be an integral part of building features, just throwing
text messages around your code is not the best way to do it as it often
leads to the cluttering of worthless information. It requires looking into
the future so it requires planning, just like you plan application flows and
performance requirements. Logging requires an exploratory process to
identify what information is really going to be useful later on when you are
investigating a bug or an incident. How can the application break? What
data will allow me to identify what was impacted and how it was impacted?
What do I need to reconstruct the system state at a certain point in time?
These are some of the questions that you need to ask while planning and
the answers will help you find the right information to log.

Logs are only useful if you can easily analyze them when they are
needed; that means all logs from an application and its related systems
should be centralized in a single place and that it should be easy to filter
for time period, terms, and source. Logs that are not easy to consume or
that are scattered over multiple locations are a nightmare to deal with,
especially in a crisis situation where you are under pressure and have a lot
of things to manage.

153

CHAPTER 3 RISK MANAGEMENT

Another important consideration about logs is security. It's a major
concern for your application and your users in case someone gets hold
of your logs, so be careful about how they are stored and who has access
to them. At the same time, no team is exempt from a security breach so
it's important to be careful with what goes into logs. Never log Personally
Identifiable Information (PII), these are any piece of information that
can identify who are the users of your system, things such as names,
email, phone numbers and addresses, instead use internal ids to point
to individual users. Also make sure that secrets such as passwords, AP,
and session keys are never exposed in logs, this is a common occurrence
when someone forgets to remove a debug statement that accidentally goes
to production. If this happens, immediately rotate the leaked keys and
invalidate the old ones. Depending on where in the world your users are
and the kind of data you are dealing with, some regulations may apply, so
do some research to make sure you are following the right set of practices.

Logs are good for investigating single events and troubleshooting;
however, they may not be the best option for displaying general status
of the system or showing aggregated state. For this, metrics are much
more effective. This type of monitoring consists of aggregating data from
various parts of the application and its infrastructure and displaying
this information in a way that is easy to visualize and to spot anomalies.
This practice is frequently referred to as Application Performance
Monitoring (APM) and there are many tools that specialize in it. These
tools usually require little effort to integrate with your application and can
provide aggregated views of the data as well as single out events for you to
analyze step by step what happened during the execution of the code. The
metrics you should monitor will vary depending on the type of application
you are developing. Common infrastructure metrics include: CPU and
memory usage in servers, network traffic, disk 10, database query response
time, and latency. Web applications usually need to monitor things like:
endpoint response time, throughput of requests, duration of batch jobs

154

CHAPTER 3 RISK MANAGEMENT

and error rate. Other types of applications might need to observe power
consumption, graphics performance, data collection and CPU temperature
for example.

Especially for distributed applications, it's important that you can
observe as data moves across systems; that ability is called tracing.
Tracing consists in generating a token that will be passed throughout the
different parts of your application being tagged to logs and that can be
used to reconstruct the sequence in which operations happened. That in
combination with centralized logging will make it much easier and save
you a great deal of time when debugging. Without these two techniques,
it’s safe to say that it would be impossible to do it in any reasonably big
application.

So far, we've talked about metrics that are measured from within the
application, they require special access to the infrastructure and code in
order to gather detailed information on how each component is behaving,
but there’s another approach to monitoring which gathers data from the
perspective of an actual user; it’s called synthetic monitoring. It consists of
defining a sequence of operations that are automatically run and simulate
a user performing a task in the system. The advantage of this approach is
that it's much more accurate in reporting the true experience of your end
users using the system, confirming that they can actually complete an
activity in the expected time.

For some applications external integrations are critical, if this is the
case for you, it’s often a good idea to monitor these dependencies and
write software that is resilient to failure or at least define a plan of what to
do in case these integrations stop working. It’s also a good idea to build
dashboards with the most important metrics from their system so it’s
possible to have an overview of how things are with a quick glance.

The techniques presented so far can be categorized as Active
Observability. While it’s extremely important to build visibility through
metrics, if you stop there, the product will always depend on users to

155

CHAPTER 3 RISK MANAGEMENT

report a problem before someone can use logs and metrics to find the root
cause and fix the issue. Or even depend on a specific tech team watching
dashboards all the time.

To improve on this we need passive observability. Alerts exist to bridge
that gap and enable a system that self-reports when something is not
behaving as expected. Most of the metric tools available in the market also
provide a mechanism to trigger alerts once a certain data point reaches or
goes over a certain threshold. That signal can be connected to an action
such as sending an email, a message to the team chat tool, calling a phone,
or even making a request to an endpoint in another system. It might seem
trivial to set up alerts but it actually requires some considerations in order
to make it effective. Make sure you pay attention to the thresholds of
your alerts, having a low threshold allows you to be notified before things
actually break which may allow you to fix the issue before it becomes
noticeable to the users. But it might as well lead to a situation where
you are constantly dismissing alerts because they are not yet critical. It's
fundamental that you always treat alerts as critical events. If you start
ignoring them and don’t take immediate action, they become useless
and become a source of noise. Ignored alerts are not only unhelpful, but
they can also hide other alerts that might be truly important. That'’s also
why it’s necessary to have a routine of tuning your alerts, making them
more akin to how the system evolves over time. When you don't treat alerts
with the consideration they need, the result is a team that stops paying
attention which leads to incidents that could’ve been prevented.

Different metrics should have different policies, and not all metrics
need to trigger an alert; you will need to plan a strategy that makes sense
for your application and business context. But in most cases, you should
be tracking basic infrastructure metrics such as CPU, memory, and latency
between components as these are clear indicators of slowdowns and
outages. Lastly, consider how alerts are going to be sent. Email messages
are rarely effective to communicate critical events as it’s not reasonable

156

CHAPTER 3 RISK MANAGEMENT

(and counterproductive) to expect engineers to be constantly checking
their inboxes, but they might work for less critical issues that can wait a
few hours to be fixed. Using the team chat tool is slightly better than email
for critical situations, especially if people have it installed in their phones
but it is still not ideal as it’s easy to ignore or dismiss notifications. The
best approach is usually to use an on-call rotation tool, it allows setting
up a phone call rotation schedule where it tries to contact one person
after another until someone acknowledges the incident. This is especially
useful outside business hours because you don’t want the whole team
being notified every time an alert goes off, someone can kick off an initial
investigation and escalate the problem to other team members as needed.

Observability is an extensive subject and one that is frequently
overlooked, people often only care about it when it’s too late and they need
information that cannot be recovered anymore. It’s a key feature of any
well-built software and it’s a special one because it needs to be transversal
to everything else you build otherwise it easily loses its purpose. In
many ways, it is a concept that is trivial to understand which may steer
some people to think it's easy to build their own monitoring system, but
doing it reliably, especially at scale, is very hard. At the same time it’s a
solved problem, there’s no point in reinventing the wheel, try the many
solutions available and choose the one that best suits your technical and
business needs.

Key takeaways:

e Plan your logs just like you plan your features. Consider
what can go wrong and how logs can help you
investigate and fix problems.

e Centralize logs from all sources in a single place,
be careful with PII and use traces to easily observe
information flowing through different parts of
the system.

157

CHAPTER 3 RISK MANAGEMENT

« Use metrics to visualize the global state of the
system, identifying unusual behavior and estimating
future demand.

« Alerts should only be triggered in critical situations and
should prompt immediate actions from the team.

¢ Build an escalation policy so you don’t have your whole
team being notified all at once.

3.8 Performance

Whether you think about it or not, performance is an intrinsic part of all
software you write; for any real world application there’s always going to
be an upper limit on how much load it can take. If you are not actively
thinking about performance it either means that you are dealing with a low
demand software or that it’s very likely that things will break and you will
be caught off guard. Nonetheless, thinking about performance does not
mean building software that can withstand any load, it means attending
the current and the planned demand. An important part of engineering
is being cost-effective, and preparing for any possible demand would cost
a lot on hardware provisioning and in engineer’s time to plan, develop,
and maintain such a solution. It makes no sense to expect a product
with a couple hundred users to be built in a way that, with no change or
intervention, can handle hundreds of thousands of users, unless there’s a
clear expectation that this kind of growth will happen in the near future.
The key to a healthy, performant system relies on two principles:
monitoring and performance testing. As we discussed before, observability
is basic to systems of all sizes and should be your starting point when
thinking about performance. Whether you are writing a new feature or
fixing an existing one that is abnormally slow, it’s easy to start guessing
what is the source of the problem based on superficial code analysis or

158

CHAPTER 3 RISK MANAGEMENT

gut feeling. Don’t fall for that, when you are working in the dark it’s easy to
end up wasting time on things that look important but have little impact,
or that are a lot less significant when compared to other existing issues.
The guiding principle to balancing your investment on performance is
working based on data and fighting the urge to rely on instinct. Application
Performance Monitoring (APM) software is widely available and is in most
cases trivial to set up and start collecting data. It will give valuable insight
on the most time-consuming parts of your application and within those
what are the operations that most contribute to the problem. With a few
clicks you should be able to identify whether your problem is related to

an inefficient database query, a slow API request, or if your application is
demanding too much CPU usage.

Monitoring allows prioritizing the work so less effort leads to a bigger
impact. The Pareto principle is one of the most important things you
should be using as an engineer, it states that “80% of consequences come
from 20% of the causes.” Suppose a certain service in your application is
spending 9 seconds querying the database and 1 second processing the
data. Suppose you want to make this service run faster, you can either focus
your efforts in making fewer or faster database queries or in improving your
data processing algorithms. If you decide to invest your time writing the
perfect algorithm, the best you can do is to make the overall performance
of the service 1 second faster, only a 10% improvement. But if you invest
your time tuning the database queries, it’s likely that simpler improvements
will result in a bigger overall performance impact. A great way to observe
how the Pareto principle works in practice is by plotting the frequency of
usage of services or features of your system in a histogram, ordering by the
most used to the least used. It’s typical that you will end up with a long tail
distribution signaling that a few items are responsible for the vast majority
of the interaction in the system. The same goes, for example, if you plot the
average time web endpoints take to respond or background jobs take to
run. An interesting metric for performance analysis arises from multiplying
the frequency and the duration of data points as it can be used as an

159

CHAPTER 3 RISK MANAGEMENT

indicator of the impact different parts of the application have on the system
and it can be very useful in helping to prioritize performance investment.

Long tail distribution

AV VAL VALV WV

Since we are talking about graphs as a way to visualize performance,
it's important to be attentive about what is the information you are plotting
in order to not be misled into the wrong conclusions. We are trained
through life to think that averages are a great way to aggregate data and
itis in fact very useful in many situations. But averages hide important
information that should be considered in a performance analysis. Let’s
take, for example, the distribution of the response time for a particular web
endpoint, in other words, let’s take the response time of all the requests to
this endpoint and plot it in a histogram that has frequency in the y axis and
the time it took to execute on the x axis. This graph can take many shapes,
a common one is known as the normal distribution or “bell shape.” In this
situation, taking the average of response times of this endpoint would give
you a value that is equal or very similar to the most frequent value of the
distribution. Since most values are condensed within a small range of the

graph, the average is a good representation of the data.

160

CHAPTER 3 RISK MANAGEMENT

Normal distribution

A AVVWTTIVTT]
AV TVTRRVY]
AWV T

el

But suppose you have a situation where 90% of the time the endpoint
responds faster than 1 second but 10% of the time it takes more than 1

minute. Now the average of all data points would not by itself give you
much information about how this endpoint is behaving and wouldn’t be
very helpful in your investigation to why some users are complaining the
system is slow even though it looks fine for most people.

Multimodal distribution

ARV ARVAA VAN A

ARRARARNY

Y

[\\W]
v

161

CHAPTER 3 RISK MANAGEMENT

A great tool to improve this kind of analysis is using percentiles,
not just averages when it comes to performance. Instead of just saying
that X endpoint has an average response time of 600ms, you can also
add the information that its 90 percentile (or 90p) is 200ms, meaning
that 90% of the time it responds faster or equal to 200ms. Graphs with
percentiles provide much more information than just averages and it's a
good idea to track at least the 50p and the 90p, but you can tweak these
values to the context of your application. Percentiles are also great for
communication as it makes it easy to convey to teammates in simple
terms how a distribution looks like. In the previous example, it’s easy to
deduce, for instance, that the topmost 10% of the requests take a lot longer
to respond because they are significantly contributing to the average time,
an information that can be extremely valuable when investigating the root
cause of the problem.

While monitoring allows fixing the performance of the code that is
already live for users, performance testing allows benchmarking scenarios
in a controlled environment. It consists in using automated software (a
probing tool) to generate a load that can be shaped to replicate how the
system is expected to be used or even to force it beyond its limits. The
advantage is that it can provide visibility to how your system behaves
under certain types of load, how much load it can take and what breaks
first (the bottlenecks) in these high demand situations. It allows you to fix
things before your users are impacted by slowdowns or downtimes. From
that perspective performance testing might look like a better solution than
monitoring, but the problem is that no matter what technique you use, it’s
impossible to simulate every way users (or attackers) will behave so it’s not
areplacement for monitoring, it's a complement. When running tests, you
will need to define what is the load and the parameters the probing tool
will use. This includes things like what parts of the system will be probed, if
there’s a particular set of steps it should follow, what is the content and size
of the payload and how many requests will be made during the session.
Some of the common reasons to run performance tests include evaluating

162

CHAPTER 3 RISK MANAGEMENT

what is the maximum load an application can take while responding
within a desired threshold, submitting it to stress and see what breaks and
benchmarking a new or changed feature comparing results to confirm
things improved or at least didn’t get worse. You will need to adapt your
benchmarking environment and probing tool setup depending on what
you want to achieve.

The environment you are using to run your performance tests
should reproduce the production environment as closely as possible,
otherwise there’s a high chance your results will look very different from
how your real application behaves. There are two parts to this: the first is
reproducing the infrastructure, that includes using a hardware of similar
or as close as possible capacity as your production setup and deciding how
to deal with external integrations. Ideally it should make calls to external
integrations just like the real application because you will have a more
accurate result, but this is often too risky or simply not possible. In that
case, try at least to mock or simulate the behavior of the external service.
For instance, if you are going to mock an integration that is expected to
be slow, you can make your application sleep for some time to replicate
what is expected to happen in production. The other part is populating the
application with data that is similar to the data in the production setup.
One way to do this is simply by cloning your production database, but that
is usually not a good idea as it can increase the risk of leaking customer
data, violate privacy laws and produce incidents such as sending incorrect
emails or making accidental requests to integrations. Another way is to
generate your own fake data to populate the database; in that case the data
should look as similar as possible to the real production data but doing
this is not trivial. There are open source libraries that can help you with the
task of generating names, dates, numbers, and addresses, but making it in
a way that is consistent with your application business rules requires some
effort. The other approach is to start from your production database and
anonymize all the Personally Identifiable Information (PII) so there’s no
risk of having real users data in the test environment. All approaches have

163

CHAPTER 3 RISK MANAGEMENT

pros and cons, evaluate what makes sense to your technical limitations
and business constraints and pick the one that works best for you.

There are three key concepts that are tightly related to performance
and worth knowing about because of how common they are: N+1, Big-O,
and caching. N+1 is an issue related to database data retrieval and it
commonly happens in applications using an Object Relational Mapper
(ORM) tool where there’s an abstraction layer for developers to fetch data
without explicitly writing SQL queries. In this situation, the developer
is fetching data for an object that is linked to multiple other instances
resulting in multiple queries to the database that linearly increase with the
number of items and generating a performance issue as the application
grows. The name N+1 comes from this behavior of doing one query for
the root object and N others for each of the related instances. The solution
to this problem is to fetch all related objencts (N) in a single query before
starting to process the data.

Big-0O is a notation to convey the magnitude of the computational time
required to run an algorithm. A program that always takes a fixed amount
of time to run regardless of how many items it’s processing is deemed as
O(1), meaning it runs in a constant time. If the time to run the program
grows linearly with the number of items it’s processing, we classify it as
an O(n) problem. Counting the number of items with value greater than
10 in an array or varying size is an example of a O(n) algorithm. But if
your want to generate a table with the product of all numbers in that
array, that algorithm will need to do n*n operations so it will be classified
as O(n”2). The key concept is that for large numbers of items it makes a
huge difference if your program runs on O(n”2) or O(n), and learning how
to evaluate your code is great to help you improve performance and to
communicate with your peers.

Lastly, caching is a technique to store data that is either slow to query
or slow to process, in a place where it can be quickly accessed, usually
a “key-value” database or directly in the computer memory. There are

164

CHAPTER 3 RISK MANAGEMENT

many situations where caching can speed up applications by orders of
magnitude, making otherwise complex to run in O(1). The problem with
it is that when you have two [or more]| copies of the same data in your
system you create a situation where any changes need to be applied to
all the copies of the data in order to keep them updated. This leads to the
common and well-documented problem of “cache-invalidation’; or in
other words, how to determine when a cached value is no longer valid
and needs to be fetched again or re-calculated. All of these three concepts
are not simple and my goal here was just to provide you with an initial
introduction to them. If you are not acquainted with them It’s well worth
the investment to study more about them.

When planning for performance, remember to include some
slack both when defining thresholds for alerts and when evaluating
performance test results. Make sure your alerts notify your team before
things start to break, while there’s still time to fix them. It’s good to know
that database memory usage is at 100% but if you were receiving alerts that
it was frequently reaching 70% you could have migrated to a more capable
infrastructure earlier and avoided an outage. If you expect to have one
thousand simultaneous users due to a planned event, perhaps you should
test if the application can take two thousand users. The goal is to reduce
the risk of incidents and also to avoid falling into the vicious cycle of only
investing in performance when things are in a critical state.

There’s no absolute reference value for performance, it’s actually
tightly linked to the user experience, what is good will depend on
technical, business, and user expectation constraints. It’s also interesting
to notice that performance and user experience are concepts that feed
into each other; performance enables different user experiences and a
particular user experience triggers different performance expectations. For
example, in a data export feature, users probably expect that after clicking
an export button the download starts instantaneously, but if exports are
sent via email perhaps they wouldn’t care as much if it took a couple of

165

CHAPTER 3 RISK MANAGEMENT

minutes. By tweaking how things are shown and what data is displayed in
the interface you can make the job of optimizing performance a lot harder
or a lot easier. So keep that in mind; perhaps sometines the best approach
is not to focus energy optimizing your database or building a complex
caching solution, sometimes you can just hide some information or load
itin a separate request with little or no impact on user experience. Lastly,
your software does not need to scale indefinitely, instead of wasting time
making all features perfectly performant, focus on collecting data, aligning
expectations with stakeholders and being clear about what the limitations
are. Everything is a trade-off, and your job is to manage risk according to
technical and business constraints.

Key takeaways:

« All systems have a capacity limitation, performance
implies hardware and engineering costs so it needs
to be planned according to reasonable demand
expectations.

« It’s easy to make wrong guesses about bottlenecks, use
metrics to ensure you are tackling the actual source of
the issue.

« Leverage the law of Pareto to focus your efforts on the
things that have the most potential to generate impact.

« Alotofrelevant information can be hidden on
averages, use percentiles for better visualizing the
shape of the data.

« Use probing tools to test how your application behaves
under different types of load.

¢ Study the Big-O notation, make use of caching [but be
careful with its traps], and avoid the N+1 problem.

166

CHAPTER 3 RISK MANAGEMENT

e Ensure your system operates with a safe margin so you
can identify and fix performance issues before they
generate incidents.

e Consider how the UX impacts performance and
leverage UX to improve the perception of performance.

3.9 Learn from Mistakes

Knowing that managing risk doesn’t mean not taking risks, it’s easy to infer
that it is natural and expected that all software will have problems and no
team is exempt from dealing with incidents from time to time. Although
these problems are expected to happen, it’s not strategic to keep failing
over and over due to the same known issue, so it would be a waste of
opportunity if failures didn’t lead to learning and improvement. It’s easy
for individuals to learn from their own mistakes; the challenge for a team
is how to turn that individual learning into collective growth so the team as
awhole and the product become more robust and don’t fall into the same
issues again.

Sharing knowledge is easier said than done, especially during a
crisis situation, everyone’s natural way of dealing with incidents is to
focus on getting things fixed as soon as possible so they can get back to
whatever they were doing before. It takes a conscious effort to recognize
the importance and organize what you learned so others can also benefit
from it. Building a culture where these learnings are constantly feeding
back to the team is the first step. This can be done in multiple ways and
teams should mix and match approaches until they find what works
best for them. It can be as simple as using retrospective meetings to talk
about these learnings, or having an exclusive ceremony where engineers
can share and discuss in more depth technical challenges. Writing
collaborative documents where people can open discussion threads and

167

CHAPTER 3 RISK MANAGEMENT

add comments and suggestions is also great and it has the advantage

of being async and generating a historical register that can always be
referenced back to. At the same time, if your team doesn’t have a good
async work culture, it’s easy for this kind of document to become just a
bureaucracy that doesn’t achieve the goal of collective growth. In that case,
it doesn’t mean it’s not a good idea to use written documents but perhaps
that they should also be brought for discussion during synchronous
moments. Regardless of how you do it it's essential that the team is in
accordance to the prime directive of retrospectives “regardless of what we
discover, we understand and truly believe that everyone did the best job
they could, given what they knew at the time, their skills and abilities, the
resources available, and the situation at hand.”

A step beyond that is using a standardized post-mortem process where
it becomes a formal practice of the team to always write documents in a
pre-defined format after all incidents. Post-mortems are usually divided
into sections and commonly include information like the severity of the
incident, a timeline of all the events from the moment the incident was
identified to the moment it was resolved, a list of the things that were
positive during the process of resolving the problem and a list of the things
that didn’t work as well, a root cause analysis of the problem, and a list of
next steps with the short- and long-term actions the team needs to take in
order to avoid new occurrences of the problem. These documents should
be dated and stored in a common place where it’s easy for everyone in
the team to access. They can also be used as a way to build trust through
transparency, especially when incidents affect corporate customers. Some
companies publish a version of their most relevant post-mortems openly
in their blog or send them via email to users.

As important as sharing knowledge amongst the team is to enhance
the product so it itself becomes more robust. That can be done by
improving the architecture of the codebase so it’s harder for engineers
to make the same mistakes, even if they don’t have the full context of

168

CHAPTER 3 RISK MANAGEMENT

past incidents. Just building a knowledge base and expecting people to
remember things by heart is a naive strategy. Over time the amount of
documents will keep growing to a size that is not reasonable for engineers
to keep up with everything. In addition, software is constantly evolving

so documents naturally become outdated. If this is hard for the people
that are already in the team, remember that we need to account for new
people joining in. It’s unreasonable to expect that newcomers will be able
to quickly absorb all that information. A more effective way to prevent
bugs and incidents from happening is to build guardrails into the software.
These guardrails can be built in many different forms, a simple example
is naming a function in a way that clearly alerts about the risks of using it
(e.g., “DANGEROUS_update_user_profile”). Rust and Go are examples

of languages that employ this technique. Other ideas include requiring
an explicit confirmation before executing some code and hiding complex
operations behind a more friendly interface that simplifies things for the
most common use cases. The idea is that you make it harder for other
engineers to make mistakes.

Lastly, it’s important to evaluate what can improve on the team'’s risk
management skills. If the problem happened due to a known risk, the team
should review if there was a problem with the risk assessment. Sometimes
there’s nothing that could be done differently, the team opted to prioritize
other things that were more important at the moment leaving it to chance
for known issues to happen. But when things fail due to unknown risks,
the team should review their individual and collective practices in order to
identify where the failure points are and to empower and train people to be
more critical and careful going forward.

Key takeaways:

e Every failure is an opportunity to learn.

e Build a culture of sharing knowledge so the whole team
learns from each other’s mistakes.

169

CHAPTER 3 RISK MANAGEMENT

3.10

170

Use post-mortems as a tool to discuss what happened,
identify root causes, and discuss short- and long-term
improvements.

Build guardrails into the code that prevent engineers
from making common mistakes.

Develop your own risk assessment skills and train
teammates so they too can identify and prevent pitfalls.

References and Further Reading

“Tech DebtIsn’t a Burden, It’s a Strategic Lever for
Success” by Matt Greenberg and Keya Patel https://
www.reforge.com/blog/managing-tech-debt

“Technical Debt Quadrant” by Martin
Fowler https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html

“Web Application Monitoring Best Practices” by
Andriy Obrizan https://leanylabs.com/blog/web-
monitoring-best-practices/

“RICE Scoring Model” https://www.productplan.
com/glossary/rice-scoring-model/

CHAPTER 4

Strategic Teamwork

In a connected world with competitive and fast-changing markets, it’s rare
for a solo engineer to build a product that stays relevant in the long term.
In most situations you are going to need a team in order to consistently
build something to a large audience, especially if your are building

© Filipe Ximenes 2024 171
F Ximenes, Strategic Software Engineering, https://doi.org/10.1007/979-8-8688-0995-8_4

CHAPTER 4 STRATEGIC TEAMWORK

enterprise software. Doing effective work and growing a career in software
requires developing the skills necessary to work a group. You can be the
best programmer and master the discipline to deliver high-quality and
high-performing software, but if you are not able to collaborate with other
people in your organization, it’s likely that your work won’t have as much
impact or deliver the expected value to users.

Strategic engineers understand that their success is directly linked
to the success of their team and that a successful product is the main
performance indicator of a team. In a company these metrics of success
are deeply related, caring about the product and the team is as important
as caring about your individual career. Because of that, improving how
you interact and collaborate with teammates is as important as mastering
programming languages and learning algorithms.

4.1 The Success of the Team Is
the Success of the Product

The goal of any software is to deliver value to users or to an organization.
The term “value” in this statement is intentionally vague because it can
mean different things to different customers, businesses. The definition of
value can also change over time due to changes in people’s expectations
and market conditions. Even what is considered success will frequently
mean different things depending on context. The most obvious form of
success for a business is generating revenue. But as we discussed in the
Own your career section, revenue is not always the short-term goal for a
company. Understanding what success means is the first thing a software
team needs to do before they can start writing any code. To do that, they
will need to gather knowledge about the business domain they are working
on, but it’s equally important to understand why they are building it, what
are the short-, mid-, and long-term goals and expectations the project’s

leadership has for it.

172

CHAPTER 4 STRATEGIC TEAMWORK

It’s always better, when possible, to benchmark team progress and
the success of work using metrics. In a for-profit company, the amount of
money a product or feature generates is always going to be the ultimate
way to measure the value delivered in the long term, but as software
engineers, most of the time we will rarely have direct access to that kind
of information. To compensate for that, it’s often possible to find some
other proxy metric such as the engagement of users in a certain part of
the product or to collect qualitative feedback data, for example. In larger
companies where each team specializes in a smaller part of the product,
it’s going to be harder or even impossible to directly link results to the work
of a specific team; in that situation, it’s useful to come up with metrics that
your team can directly impact and that can be linked to mid-term business
goals. To do that you should involve business stakeholders that can
contribute and validate your plans. Beyond just identifying the parameters
of success, this process of debating with business stakeholders has other
benefits. It will frequently generate alignment, calibrate expectations, and
put everyone in the team in the same page and mood to do their best work.

Your team can only be as successful as the product you are building.
Although as engineers we have many ways to measure our work with
things such as performance metrics, uptime indicators, and the velocity
the team ships new features, business leadership will rarely judge success
using only these parameters. Business leaders care about business metrics,
the things that increase customer satisfaction and directly or indirectly
bring in revenue. If the business indicators that are impacted by the
work of your team are looking good, it’s very likely that the team will be
positively evaluated. So does this mean we should ignore any metrics that
are not business-related? Of course not, velocity metrics and technical
metrics are extremely important because they indicate that the team can
deliver in a consistent and reliable way, and that’s a precondition to doing
anything else. But an equally important part to the equation of a successful
team is ensuring that everyone is working on the right thing, and that is
whatever has potential to turn the needles of the business metrics in the

173

CHAPTER 4 STRATEGIC TEAMWORK

direction the business people want. Technical and business metrics go
hand in hand, there's no point in having an extremely performant team
if they are delivering the wrong product.

Conversely, it’s important to be attentive because there will be times
when companies will start caring more about these technical and velocity
metrics. That often happens when things are going bad with the business.
When business metrics are not matching stakeholders; such as CEOs and
investors’ expectations, that’s often when leadership will start looking
around what needs to change, or even worse, what they can cut to reduce
costs. Teams should always keep track of their own performance and
proactively find ways to reduce inefficiencies, remove bottlenecks, and
increase delivery throughput. Frameworks such as DORA and SPACE
can give pointers to what parts of the development cycle your team can
measure in order to identify inefficiencies and improve performance. They
were developed based on large scale empirical studies with software teams
and are what we have closer to scientific knowledge on this topic. We will
not dive into them as this is a complex topic that requires dedicated focus
beyond the scope of this book, but I encourage you to go research more
about them. In any case, more important than picking a certain framework
it’s to align expectations with managers and other stakeholders, as they
might have a different perspective on what performance is and how it
should be measured. There isn’t yet an industry consensus on what is
the best or right way to measure the performance of software teams. The
best you can do is to get acquainted with what are the tools available and
promote the discussion with your team.

The goal of software teams is to deliver products, not code. Code is an
unfortunate requirement of software products: it’s hard to build, hard to
maintain, and it requires specialized and expensive personnel to do the
work. From the users’ point of view, and consequently the business point
of view, if there was some other cheaper and reliable way to solve their
problems they would never choose to have a single line of code in their
products. Of course this statement is not literal, it is just an extrapolation,

174

CHAPTER 4 STRATEGIC TEAMWORK

but the point here is that, as software engineers, we should never think that
our primary goal is to write code or even that it is to build features. Our
job is to provide value to our customers, code is just the means to achieve
it. Programming algorithms, designing architecture, and following good
practices are all tools to help us deliver value. If our customers are not
happy with the product, nothing else matters, you won’t get any mercy
if you show them how beautiful your code is. The same applies to the
features we build, adding functionality to the product is not the end goal,
work is not done after we push code to production, it ends after we have
positive confirmation that the change we made improved the life of users.
Teams need to keep learning from mistakes, testing new approaches, and
improving on what they build in order to keep delivering consistent value.
Key takeaways:

e Before doing any work, teams need to understand what
success means from the business perspective.

e Leverage managers and stakeholders to provide the
vision on the expected outcomes for your team.

e In afor-profit company, money is always the ultimate
goal, but find proxy metrics if you don’t have access to
finance data or if your team works on features that do

not directly impact revenue.

e Teams should be accountable for their own
performance and aways be looking to fix inefficiencies.

¢ You are not being paid to write code, you are being paid
to solve problems; leverage code as a tool to achieve
your goals, but don’t forget you can also use other
tools if they provide a better value.

175

CHAPTER 4 STRATEGIC TEAMWORK

4.2 Your Success Is the Success
of Your Team

We've all heard stories about the lonely hacker who built an amazing new
technology that revolutionized the world and these stories are, not always,

but sometimes true, at least to some extent. A single engineer can create an
innovative piece of software that captures a huge audience, but it's rare for
along-lasting commercial product to be maintained by one single person.
Software engineering is majorly a team work and most of its complexity comes
from that nature. Solo engineers don’t need processes nor documentation,
and even good practices are dispensable to some extent, most of the software
engineering tooling we have was created to cope with the challenges of having
multiple people working on the same codebase. On top of that, most software
with a reasonably large audience is way too big and complex to be built by a
single person, it's humanly impossible to write and maintain that amount of
code. That means it is unlikely that a single engineer working alone is going to
be responsible for the long-term success of a product, you'll most likely need
a team working together to build any meaningful system that keeps delivering
value over time, otherwise it would be easy for competitors to outcompete the
product and quickly take over market share.

If the success of the team is the success of the product and you cannot
build the product alone, then we can infer that your success is the success of
your team. No matter how good of a software engineer you are, you'll need
a team doing good work in order to deliver what needs to be done in time.
Because of that, it’s strategic to treat assisting other people and improving
the performance of your team as part of your job. When your teammates
become better engineers it makes it more likely that you will deliver value
to customers so everyone’s odds of being positively evaluated grows and
so grows the chances of everyone advancing in their careers. Every time
you do an attentive code review, pair program with a teammate, present
or recommend a technical content, or give feedback to someone, you are

176

CHAPTER 4 STRATEGIC TEAMWORK

also investing in your own career. It’s in your best interest that everyone in
the team is happy and performing well, so be intentional in fomenting the
environment where other people can flourish and do their best work.
Keep in mind that promoting your teammates won’t hinder your
protagonism, it will supercharge it. Your teammates, especially folks who
are less experienced, will certainly remember the attention and help
you give to them. It’s natural that peers pull each other up when they
grow. A study called “A typology of organizational cultures” by Dr. Ron
Westrum found that teams that foster a culture of information flow and
trust, perform better. A framework devised from this study became known
as “Westrum organizational culture” and it defines six principles that
influence the effectiveness of teams, they are

e High cooperation: People from multiple functional
areas of the organization collaborate to achieve goals.

e Messengers are trained: When people bring in bad
news, it's used to fix the problem, not to blame the

messenger.

e Risks are shared: There’s no single person or group
of people with sole ownership of the product or parts
of it, everyone shares and owns responsibility when
things break.

e Bridging is encouraged: Barriers between people from
different areas of the organization are weak and people
can easily and directly communicate.

e Failure leads to inquiry, not to individual blaming.

e Noveltyis implemented: New ideas are welcome and
are given proper attention, not just put aside.

Your organization might directly or indirectly discourage that kind
of culture. If that’s the case, the best you can do is try to promote these

principles and educate people about the benefits.

177

CHAPTER 4 STRATEGIC TEAMWORK

Another way to empower the team to be successful is by making
yourself dispensable. Yes, dispensable, not indispensable. In fact, ideally,
your absence should not provoke a noticeable change in the short-term
performance of your team. In a mature and functional team, every
person should be able to go on vacation, take time off to recover
from illness, and assist their relatives with the peace of mind that it
won't have a major impact on the overall performance of the team
or lead to an incident. This is only achievable when everyone becomes
dispensable. Being dispensable means that you do your work publicly
and that you communicate progress, it means you write good code that
is understandable and easy to maintain, it means that you plan and write
documentation and that you capacitate other people to execute routines
that you are in charge of.

Notice that pretty much every practice we covered in this book is
designed to improve how you work collaboratively in a team. Your success
is directly tied to the success of your teammates so every time your work
empowers them to be more effective or prevents the team from failing
you are not only directly contributing to everyone’s career but also
promoting yours.

Key takeaways:

« Software development is majorly a teamworlk, it’s rare
for a product built by a single person to keep relevant in
the long term.

« It's strategic for your career that you help your
teammates to grow.

« Promoting a culture of trust and sharing among team
members leads to better performance.

¢ Teams should not be dependent on individuals in order
to function, temporary absence should not lead to
operation hiccups or incidents.

178

CHAPTER 4 STRATEGIC TEAMWORK

4.3 Own the Product

Strategic engineers have a broad vision about the company, the team, the
product, and how their work impacts business and its customers. In other
words, they own the product. Owning the product is not about being an
expert in all the knowledge areas required to run a successful business,
this is unattainable. Being a designer or product manager requires years of
focused study and practice to master. Owning the product is about being
genuinely interested in the success of what you are building beyond
the context of software engineering. It's knowing that you can influence
parts of the product and the company that are not directly linked to the
job you were hired to do. It’s also about having customers in mind at every
decision you make and being empathetic to them. It’s understanding that
your job is to add value to the users, to the company, and to your peers.
And it's understanding that there are multiple ways to do it that are not
necessarily related to writing software.

As an engineer, one of the best ways to own the product is by being
critical of what is asked from you to work on. We've talked about the
importance of knowing about the business goals of the product, you
should use that information to reflect on the assignment you are given and
evaluate if it really matches with the company goals. If you don’t think you
are working on the right thing, you should feel encouraged to talk to your
leadership and question them about the scope of the work or its priority,
preferably by also proposing what you think it should be working on instead.
When doing this, keep in mind that you don’t have the final say on what
gets built, so do it in a humble and propositive way. Assume you don’t have
the full picture and gather more information before you form an opinion.
Some leaders will happily provide an explanation on why they made certain
decisions but others won’t; while that’s not ideal, there’s not much you can
do about it (perhaps not much beyond sharing your feedback, if that’s a
welcome practice) so don’t worry too much. Keep in mind that your goal
is to build a successful product, not to be right. After you've gained enough

179

CHAPTER 4 STRATEGIC TEAMWORK

context, you can then present your opinions and explain why you think

you should be working on something else. Again, don’t worry if your ideas
are dismissed, that’s part of the job. Companies have a chain of command
exactly to deal with the problem of knowing who has the final word, just say
thank you and go work on your designated project.

Even if you were assigned to a task that is very well aligned with the
business goals, there’s still a lot of value in being critical of it. One of the most
strategic things you can do is to look for ways to simplify things. Is there any
part that can be removed with a low impact on the overall user experience? Is
there something that could be left out for a later version? Is there something
that is too complicated to implement and that could be done much faster if
it was changed a bit? Remember, the sooner you deliver, the sooner you add
value to users, and the less code you write, the smaller is the potential for bugs
and the simpler it is to maintain the code over time. These same principles
apply to the design specs. You might not have a degree in design but you do
have experience using digital products. Use that to make suggestions, talk to
designers and point out how similar things are done in applications you enjoy
using. Try to look at things from the perspective of users:

« What are they trying to accomplish with that
functionality?

« Isiteasyto accomplish that in the feature you are
developing?

« How many clicks and forms does the user need to fill

before they can get what they want?
« Isiteasytolearn how to use the functionality?
« How could you prevent users from making a mistake?

« What happens if something fails, how can users know
about it and fix things without needing to talk to a
support person?

180

CHAPTER 4 STRATEGIC TEAMWORK

e Isthere anything that might take longer to run than the
user expects?

e How s this break in expectation going to be
communicated through the interface?

Answering these questions is commonly a part of product designers’
jobs, but engineers can certainly be a part of the design process by
identifying issues that designers didn’t consider at first or that are linked
to technical constraints that only a person with a technical software
knowledge could’ve spotted.

Keep in mind that you can and should contribute to the product
with your ideas. Did you think of a functionality that is missing, or do
you know of a better way to do something that the product already does?
Tell people about it! People have different perspective of the world, you
might be seeing something that is not obvious to others. Sharing your
ideas is not about hitting the jackpot in one shot, it's about bringing
light to something and letting other people form and express their own
views about it. Sometimes people will agree, straight on, that your idea
is good and it should be executed. But more often, sharing ideas will
lead to a collaboration process where they suggest changes to the initial
idea resulting in something better. Or even, it will compel the team to
think more about the subject which will result in completely different
ideas. All of these situations are positive because they all lead to your
ultimate goal of adding value to the product. As we've seen, owning the
product is a lot about speaking up, communicating and collaborating with
your teammates. In the next section we will explore how to be strategic
throughout these interactions in order to increase your chances of success.

Key takeaways:

e Owning the product is thinking holistically about the
business and knowing that you can participate in all
phases of building and running it.

181

CHAPTER 4 STRATEGIC TEAMWORK

« Don’t assume things are immutable, be critical about
your assignments and make suggestions about the
things you think that can be improved.

« Prioritize simplicity and explain trade-offs to
stakeholders so they can better balance cost and
benefit.

« The goal is not to have the winning idea, but to spark
collaboration that will eventually lead to a better
product.

4.4 Collaborate

Knowing the importance of collaboration to the success of a team, you
should treat it as a key aspect of your work as an engineer. That means
that, once again, you should be very intentional and strategic when
interacting with your peers. Every meeting, document, chat, code review,
or pair programming session should be viewed as an opportunity to help
individuals grow, to share knowledge, and even to improve team morale.
These seemingly small interactions add up and can make a big difference
in the team’s overall performance. It’s not surprising that communication
is key to successful collaboration. The way you approach your teammates
during these moments is decisive to the effectiveness of your actions. You
might have all the knowledge in the world, but if you can’t communicate
your ideas to your teammates, you are going to significantly reduce the
potential impact of your work.

The first thing to understand is that collaboration is only effective if it’s
positive to all parts involved. If you turn collaboration opportunities into
an argument with the goal of winning over someone, you automatically
lose the majority of the benefits of that interaction. Everyone in the team
should be seeking the success of the product, which should be above

182

CHAPTER 4 STRATEGIC TEAMWORK

the success of any individual. If you are not willing to accept that other
people’s ideas can be better than yours or that they can improve on what
you originally suggested, it means that you are prioritizing something

else other than the success of the product. That kind of behavior is
unproductive, especially if what you are prioritizing is your ego. Even when
you have a strong opinion and think that everyone else is wrong, it’s not
strategic to assume an inflexible position. Your goal is to get the ideas you
believe in picked and executed by the team, so you have to do what will
most likely lead to that outcome. If you are harsh and derogatory, people
will get defensive and you won'’t achieve your goal. Instead, keep a positive
and constructive attitude, slowly lead peers to understand your reasoning
and get them to agree with you topic by topic. People are more likely to

be receptive to your ideas if they also feel that you are receptive to theirs.
Explicitly highlight the things you liked about their contributions and
make them feel heard and considered. Making concessions on details that
you judge secondary is also a great strategy. By doing that, you make others
part of the solution, bringing in allies to your side. It’s a small toll you pay
to get people onboard with your ideas. Remember: It’s only collaboration
if it generates a net positive to everyone involved. If you use collaboration
opportunities to spit out opinions with no regard for other people, it has
the complete opposite effect. It's detrimental to your peers, to customers,
to the product, and to your career.

How you present your ideas also matters a lot; communication is a
skill that can be learned and that needs practice to be mastered. When
people don't understand what you are saying, the burden of improving
the communication is yours, not theirs. Experiment with different forms
of communication, perhaps you are more effective when you do some
prior preparation, or when you use visual aids such as a presentation or
even screen share the code you are debating. You can experiment with
different strategies of presenting your ideas. For instance, you can try first
giving a quick overview of the topic before diving into detailed items. Try
first presenting your end goal before explaining the steps that will lead to

183

CHAPTER 4 STRATEGIC TEAMWORK

it, or try investing more time explaining your reasoning before jumping to
conclusions. The success rate of techniques will vary depending on who’s
communicating, who's the audience, and what is the context, so you need
to experiment with different approaches. Practice until you discover what
works best for you, and adapt your strategy accordingly. In fact, even factor
in that the people you are communicating with might be having a bad day,
or that they are really focused on something else at the moment. That way
you might decide that is more likely to get your point across if you move
a meeting to some other time, make it shorter or even replace it with an
email. At the end of the day, what matters is that you get your point across.
Collaboration is not a one-time thing, it happens over extended
periods and every interaction counts toward a long-term successful
outcome. Remember that you are dealing with human beings and that
not everything is about efficiency. Cultivating a healthy relationship with
coworkers beyond your strict work activities can lead to a more integrated
and collaborative team. Build stronger connections with people by chatting
about non-work topics, ask questions about them and demonstrate interest
in their lives. If they are willing to share, don’t be afraid to share things
about yourself too. How people perceive you also matters, no one likes
working with arrogant people, exercise humbleness, be assertive but leave
space for doubt, explicitly differentiate what are the facts and what is your
opinion, encourage people to speak up in case they don’t agree with you. If
you don’t know about something don’t be afraid to ask for context, showing
vulnerability leads to more trustful relationships. Assume good intentions,
there’s no gain in making enemies. Strictly speaking, there’s no strategic
benefit in mistreating people or making their lives harder, even if you
two didn't hit it off. Avoid taking things personally; in most cases, people
are just trying to do what they believe to be the right thing. Everyone
has their own professional objectives and interests in mind so it’s natural
that sometimes there will be conflict. Control your impulses, try to keep
cool and avoid escalating the situation. The more allies you have among
your teammates, the greater are your chances of being successful.

184

CHAPTER 4 STRATEGIC TEAMWORK

Don’t be a source of noise to your managers. As mentioned before,
being open and explicit about your opinions is a positive trait in a team,
but overdoing that can be harmful. No one likes to work with a person
who’s constantly complaining about the same things over and over. Do
your best to bring attention to the things you consider important but
also learn to stop once you notice people do not agree with you. If your
manager tells you that they are not going to make your issue a priority at
the moment or simply downplays the importance of it, there’s no point in
insisting on it every time you meet. Back off for a while and bring the topic
up again sometime later when priorities have changed, or when you notice
there’s a higher risk to it than it had before. Keep in mind that it’s not
your manager’s job to solve your problems. They are certainly there to do
whatever they can to enable the team to do their best work but they have
ownership to choose what gets prioritized. Practice finding other paths
to get what you want, perhaps there's someone else in the company
that can help you out, or you can try mobilizing people in the team to
vouch for you. In some situations it’s better to just accept things are not
going to happen the way you want. Your idea might not be aligned with
the company strategy and that’s just the way things are, learn to accept
defeat and move on without letting it bother you too much. Be careful with
topics that might be sensitive so you don’t put your managers and peers
in a tough position. Perhaps a meeting with everyone in the team is not
the best place to bring up certain topics. Instead, first chat privately with
your leader and ask if you can take the issue openly to the team. As usual,
form is important. Reframe complaints as propositions and suggestions,
that way you are more likely to get your point across and the issue resolved
than when you sound grumpy.

Finally, don’t let detractors hinder the success of the team, use
your influence to talk to people and convert detractors into allies. Offer
assistance where you can help, direct people into using the company
policies and tools that might get them back on track. In case you don’t
feel capable of dealing with a situation or if your efforts are not yielding

185

CHAPTER 4 STRATEGIC TEAMWORK

results, don’t hesitate to report to your leadership. When reporting,
don’t use personal opinions and feelings about the person. Be direct and
professional, focus on the practical actions that you believe to be affecting
the team. Your goal should be to fix the issue and there are many ways to
achieve that, if it’s out of your control, do your part and leave the decision
to who's in charge of it.

Key takeaways:

« Ifyou are not the one in charge of making the final
decision, communication and collaboration are the

tools you have to have your ideas picked.

« Hear what people have to say and make them allies by
acknowledging their contributions.

« Ifpeople are not hearing what you say, consider
that you might not be properly communicating, try
saying things differently and explore other forms of
communication until you find what works best for you.

« For a happier and more effective team, build
meaningful relationships with your colleagues.

« Don'tinsist on approaches that are not working, look
for alternative ways to get what you want and know
when to back off.

4.5 Block Noise and Keep Focus

While there are uncountable benefits to collaborating in a group, it’s
inevitable that there will be distractions. People easily lose their focus
and get hung up on the wrong things. A single comment is sometimes
enough to get the whole team wasting time on parallel discussions and
even to derail major delivery goals, leading to investment on things

186

CHAPTER 4 STRATEGIC TEAMWORK

that don’t add value to the product and delays shipping (this is known

as “bikeshedding”). It's impossible to prevent these distractions from
happening so the challenge is learning how to reduce its impact and how
to keep your individual effectiveness as an engineer despite the chaos.
Noise is everything that directly or indirectly, doesn't contribute to
the business, product, or team objectives, especially when done at
inappropriate moments. Strategic engineers keep their eyes on the goal,
consciously avoiding focus traps and help steer their team’s attention and
time investment in the right direction.

In a team there should be space for everyone’s opinions. People should
be able to speak and raise their hands to expose what they have in mind,
as long as it's done in a respectful and professional manner. However that
doesn’t mean any space is an open stand for them to bring in any of their
ideas. There is a proper time, place, and way for things to be discussed in
order to make communication effective and keep the team productive.
As we discussed in the first chapter, meetings should have a predefined
agenda, which doesn’t mean absolutely no sidetrack is allowed. If there’s
some parallel topic that needs discussing, it’s ok to squeeze it in between
the planned agenda, but it’s important to keep a close watch on the time.
That period was reserved to achieve some objective or reach a certain
decision and there’s usually people depending on its outcomes. If you
notice that parallel topics are deviating too much focus, it’s ok to bring
that to the attention of participants so you can get back on track. Propose
scheduling another dedicated meeting to discuss that matter or take it
asynchronously. Equally, if you have a question that is not directly related
to the meeting topic, wait to bring it up at the end of the meeting if there’s
some time left so you don’t derail focus.

Finding the right time to discuss things is important. Things that are
going to happen far in the future sometimes require a lot of preparation
in advance, but at the same time, discussing things too soon often
means there’s going to be a lot of speculation on information that is still
incomplete or missing and that you might be drawing scenarios that are far

187

CHAPTER 4 STRATEGIC TEAMWORK

from reality when things come to be. If you notice that people are investing
too much time discussing topics that could be decided later on, when
there’s more data available, don’t hesitate to propose to wait a little more
and schedule another moment to close the matter. Delaying precipitated
discussions can reduce the anxiety of overthinking things and keep the
conversation more assertive and based on reliable information.

A situation where there’s usually a lot of noise is during incidents and
crises. In these situations, people tend to get overwhelmed by the pressure
to fix things and either end up spending effort on the wrong initiatives or
simply become paralyzed. Without someone to steer focus, chaos tends to
grow, leading the team to spin in circles and delaying action. Keeping calm
during these situations is key and is something that you should actively
pursue. Practice blocking out the noise so you can think strategically about
what you need to do. In the first moment, all your energy must be focused
on mitigating the damage; it doesn’t matter what broke or who'’s responsible,
do whatever you can to reduce the impacts of the problem. Distinguish the
problem from the symptoms. Unless you already know what the problem is
and how to fix it fast, start by working on the symptoms. Depending on the
situation, reducing damage might mean bringing the whole system down,
isolating the problem by turning off a feature while allowing other parts of
the system to keep working, or even issuing an announcement to affected
parties. The goal is to reduce pressure to allow the team to work in a more
stable environment where they can properly identify root causes and design
the adequate solutions. Pressure makes complex decisions even riskier so
you want to be in a position where you have more time to plan and assess
the situation before investing on the actual solution to the problem. One
other important tip related to incidents is learning to read the room. There
are situations, especially when you don’t have enough context, where it’s
better to step back so you don’t become a source of noise to other people.

If this is the case, make yourself available and wait until your assistance is
requested. Or perhaps you can do your own investigation alone and just
report back in case you find something worth sharing.

188

CHAPTER 4 STRATEGIC TEAMWORK

Another common source of noise is conflict between team members.
These situations are harder to deal with because they might involve
personal issues and, depending on the case, getting involved might
be quite tricky. Unfortunately, this kind of conflict can affect team
performance so, if you know the parts and feel comfortable, it might be a
good idea to jump in and help mediate the issue in order to restore team
harmony. If you don’t feel comfortable and the situation seems to be
escalating, it might be a good idea to get help from your leadership or use
the proper company channels to get some guidance on what to do. If you
find yourself in a conflict with a teammate, do your best to reflect on the
situation and evaluate what is the outcome you expect from it. Try to think
straight and leave part of the feelings aside, think strategically if there’s
any positive outcome possible and if they would surpass the negative side
effects. If you conclude that it’s not really worth it, don’t be ashamed, just
let it go or even apologize if that would disarm the situation. Having that
level of self-control is of course not easy, but you can practice by avoiding
being reactive and giving yourself time to think strategically about what
you expect from the situation and what action would lead to the best
outcome for yourself and to the team.

Key takeaways:

e Distractions are everywhere, know what are your
goals and help the team stay on the right track to
achieving them.

e Find the appropriate moment to bring up the things
you want to share in order to avoid disrupting other
discussions.

e It'sunproductive to waste time speculating about
things that can be decided later on when more
information is available.

189

CHAPTER 4 STRATEGIC TEAMWORK

« Keep calm during incidents, first focus on stabilizing
the situations so you can reduce pressure and think
clearly.

« Helpin disarming conflicts and only engage on the
ones that are worth your time and that can generate
positive outcomes for the team.

4.6 Disagree and Commit

Conflict, when properly managed within the boundaries of professional
behavior, is a powerhouse for evolution. When engineers with different ideas
and points of view work together collaboratively, the result is usually a more
robust product that is resilient to a broader set of risks. It’s also more likely
to deliver value because it has more eyes validating it’s going to do what it’s
expected to do. Unfortunately, consensus is a scarce asset in the real world
and so is the time available for engineers to keep battling over their personal
opinions. It’s not reasonable to expect everyone to completely agree on
every project decision, so it’s important that people learn to identify when
discussions stop being productive and turn into blockers of progress. In

the end, the ultimate test for any idea is making it a reality, observing how

it performs, learning from the results and improving it, or throwing it away
in favor of something else. Disagree and commit is a state of mind where
a person truly embraces a decision they are not in full agreement with
because they understand that, sometimes, it's more important to make a
decision and put it to the test than it is to win an argument.

The ability to disagree and move forward with a decision is a basic skill
to anyone working in a group. Without it, nothing would ever get done
because people would be constantly wasting time on endless discussions.
During a conflict, most people are capable of disagreeing and moving on
with their lives leaving the situation unsettled. “Disagreeing” is the part
of “disagree and commit” that everyone gets and can perform reasonably

190

CHAPTER 4 STRATEGIC TEAMWORK

well, but “committing” is not always fully understood or put in practice.
Committing goes beyond not complaining about the decision, it is really
internalizing and believing in the decision that was made. It means

doing your best to make that plan successful, rooting for it, and feeling an
integral part of the outcome of it even when you previously were explicitly
against it or preferred to go in another direction. This is a difference that
might seem too subtle or even irrelevant because it’s effectively just a small
change in how you face the situation, but when working in a group it can
make a real impact on the outcome. People are usually happier and form
a greater sense of collectiveness when they are working in a team where
everyone is supportive to group decisions.

Given that the success of the product is the goal and that a decision
was already made, the only strategy that can maximize results is to fully
embrace the decision. It’s already settled that the team is going to invest
their time and effort in that direction, so not being supportive of it can, at
best, diminish the chances of it succeeding and the investment going to
waste. Even when you disagree with the group, it's beneficial to yourself
to promote and advocate for the collective decision. The best strategy will
always be to behave as if you truly believed in that decision, doing good
work and helping your teammates to thrive. Detractors mine the chances
of an idea from possibly working, sabotaging experimentation and even
leading the team to draw the wrong conclusions about a solution that
could’ve been positive for the product. So first commit to the strategy,
do your best (including communicating risks you observe), wait to see
how it performs and in case it fails, you can then influence the team to try
something else. Remember that either the whole team is successful or
no one is, proving people wrong does not make you successful.

Disagreeing and committing does not mean you don'’t fight for
your ideas once someone opposes it, even when that comes from your
leadership. As we talked before, generating friction is positive and usually
leads to better results so you should definitely sustain your opinions and
use everything in your power to convince people of your points. What is

191

CHAPTER 4 STRATEGIC TEAMWORK

important is that you don’t overshoot and learn when it’s time to stop. Be
attentive to what your teammates are saying against your proposition and
especially how they are saying it. Leaders are not always going to explicitly
say that they've already made a decision, they know people perform better
when they are on board. That means sometimes they are promoting
discussions just to help their team feel engaged in the cause, not because
they are really willing to change their mind. Pay attention to that and once
you notice the decision has been made, stop insisting and start planning
how you are going to help bring that vision to life with your team. Finally,
learn to pick your battles. You are not always going to win so focus on the
things you judge more important, do your best to improve on the ideas you
don’t fully agree with and identify when fighting is not worth it. If this is the
case, accept and commit to the group decision.

Key takeaways:

« Disagree and commit requires that you fully embrace
the decisions by doing your best to make it successful
despite your disbelief.

¢ Once a decision has been made the most strategic thing
you can do is to fully support it, it’s in your best interest
that it works because if it fails it’s bad for everyone.

« Pickyour battles, fight for the things you really consider
important and avoid wasting energy on the things that
are not worthy.

4.7 Master Giving Feedback

Giving feedback is one of the most powerful tools for teamwork. It is a
great way for you to contribute to your teammates’ growth and impact

the long-term success of the team. These small and continuous course
corrections make a big difference in anyone’s personal career and can help

192

CHAPTER 4 STRATEGIC TEAMWORK

quickly address issues that could cause severe damage if left unattended.
In a healthy team, feedback should be part of everyone’s routine and
happen between every team member regardless of hierarchy or level of
experience. Junior engineers do have relevant contributions to make to
senior folk. Building a culture of feedback in a team is not easy, it requires
an intentional effort from everyone before it picks up momentum and
becomes natural. Even if that’s not something your team already does, you
can start practicing yourself and show people the benefits of it. Although
the concept of giving feedback is easy to understand, you can greatly
improve its effectiveness with small adjustments in the form you do it and
by having the right mindset and expectations about it.

A common misconception when thinking about feedback is only
considering constructive feedback. Although constructive feedback is
certainly what yields the most significant results, giving positive feedback
also plays an important role. With constructive feedback you provide
information about the behaviors you'd like changed but there's also
value in expliciting things you want to keep happening, so providing
positive feedback prevents things that are good from stop happening.
It also has a significant impact on a team’s culture, by making feedback
moments lighter and removing some of the negative stigma of it. That
way when someone says they want to give feedback people don’t have
to assume they made a mistake, thus reducing some of the anxiety from
the process. Feedback should not be a burden, it should be a light and
enriching experience for both parties. Positive or constructive, when
feedback is properly handled it always has a positive outcome. When
giving feedback, your intentions should always be to help someone to
improve on something, not to drop a bomb on their hands and let them
handle it by themselves.

With a few basic tactics you can greatly improve the quality of your
feedback. First of all, give it the importance it deserves by preparing for it.
Reserve a few minutes to think and write down what you want to say.

A few sentences listed in bullet points to use as a guide is usually enough.

193

CHAPTER 4 STRATEGIC TEAMWORK

If you are worried that you might not deliver the message properly or forget
something, it might be worth it to actually write full sentences that you can
justread aloud. Reading during a feedback meeting might make things
sound too mechanical and remove the personal touch that is important for
feedback, so use it as a way to practice until you get comfortable enough
with the process to not need it. One key advantage of writing things down
while preparing to give feedback is that you can send it asynchronously
to the person after the meeting, thus giving one more tool to help them
understand the message. Use this preparation moment to refine the
message you want to convey, try to really identify the key points you want
to communicate and how you are going to express them in a clear and
concise way. To help with that, try to be specific and avoid using broad or
generic affirmations. Back your ideas with examples of actions the person
did that led to the issue. Take the opportunity to review your biases: are
you being fair? Are your expectations well aligned with that person’s job
title and experience level? Reflect among the things you listed which are
critical and which are less important. Check if you are only touching on
points that the person can actually change, and that all topics are work
related. Make sure to be explicit about priorities when you are giving
feedback, people can usually work on two or three things at a time, so just
dropping a bucket of ideas won't help them fix what matters the most first.
Feedback represents the point of view of the person who is giving it,
it should be based on facts but will always be molded by one’s personal
perspective. Don’t forget that what you are saying is just your perspective
of the facts, not an absolute truth. Also don’t just assume people have the
same view of the world as yourself. Explain why you consider the situation
an issue and the impact you are observing. The person receiving the
feedback is not obligated to agree with you and sometimes that can make
them get into a defensive stance. If that happens, don’t try to respond, just
reinstate that you are only giving your perspective on the subject and move
on; feedback is not a moment for heated arguments. Using expressions
that explicitly highlight that “biased” nature of feedback is also a great

194

CHAPTER 4 STRATEGIC TEAMWORK

technique to avoid getting into conflict. Instead of just saying “what you
did was wrong,” try to use expressions like “In my opinion ...,” “the way I
see it...,” or “my understanding of the situation is ...” Talking about how
things affected yourself can also help, for example, you can say: “it made
me anxious to see things were not done properly,” “I felt sad by the way
you expressed yourself in that meeting,” or “it worries me when you forget
about the things we agreed on.” Often, it is less important to decide what
did or did not happen and instead focus on how it was perceived and
what can be done to change that perception.

Besides giving a perspective of the facts, good constructive feedback
should also communicate what changes are expected. Being explicit about
that is important because even when people agree on what the problem is,
it’s possible that they have different ideas about what is the right solution
to it. By saying how you expect the problem to be fixed you are providing
tools to help the person receiving the feedback. Discussing solutions is also
another mechanism to validate if the message was properly transmitted
and understood.

As we've seen multiple times over this book, the form of your
communication matters. Feedback should be assertive. Softening the
message is a risky approach and usually results in miscommunication. For
years in my career I thought that providing good explanations and being
clear was enough for giving good feedback. I noticed that despite my effort,
some people would not fully grasp the importance of what I was saying
and would keep going back to the same issues. Studying about feedback
and experimenting I learned that tone has an essential role in this kind
of communication. If something is critical, it’s not enough to state that
it’s critical, your tone also needs to convey it. I started noticing that the
feedback where I maintained a firm tone and I was more assertive were
more effective, and that this was beneficial for everyone because it meant
people would better understand the importance of what I was saying and
improve faster.

195

CHAPTER 4 STRATEGIC TEAMWORK

Being direct and using a professional tone is in most times the most
effective way to communicate. At the same time, feel free to leverage
your relationship with people to adapt the tone. If you know that the
person is more sensitive, perhaps you can use a calming tone to help the
conversation to run more smoothly. The opposite also happens, some
people don’t react unless they notice it’s a critical issue, if that’s the case,
it'’s ok to be a bit more direct and incisive. Remember that your goal is to
improve things, so be intentional and use the strategy that is most likely to
generate the desired outcome.

Key takeaways:

« Prepare and practice giving feedback to improve your
technique.

« Bekind and empathetic, but don’t refrain from being

assertive.
« It'sokif people don't agree with your feedback.

« Use all the tools you have to help get your point across
effectively.

4.8 Master Receiving Feedback

Just like when you are giving feedback, there are things you can do to
improve how you receive feedback. At first sight, it might seem strange to
think that the person receiving feedback has to do anything other than
hearing what others have to say. But the rationale behind improving

on how you receive feedback lies in recognizing the importance of it in
your career growth and understanding that giving feedback is hard for
everyone. It's in your best interest to make it a good experience for
people to give you feedback so they are willing to do it often and are
comfortable talking about difficult topics.

196

CHAPTER 4 STRATEGIC TEAMWORK

The first thing to keep in mind about receiving feedback is
internalizing the right mindset. Feedback is a tool for visibility, it is an
opportunity to learn about something that you can improve in your
behavior or in the way you do your job. The opposite of not receiving
feedback is keeping on failing without ever knowing about it until things
irreversibly break. It’s also essential not to treat feedback as a direct
attack on yourself. The fact that you failed on something does not mean
you are intrinsically incompetent, it just means there’s something you
can improve in the way you are doing your job, and now that you know
about it, you can deliberately make the appropriate changes to improve.
Consider it a privilege that your teammates care about you and are
willing to invest their time helping you to get better at your job and be
thankful for it.

Another important shift is to stop wasting time on trying to agree on
what or how things happened and focus on how things were perceived by
the person addressing you. It doesn’t matter if you were right or wrong,
someone perceived it as negative, so at the very least you can change your
behavior so that it will be perceived more positively the next time. When
you adopt these changes in perspective it becomes a lot lighter and easier
for you and for the other person giving you feedback to handle this delicate
interaction.

Ask for feedback both from your peers and your leaders. In teams that
do not yet have a strong feedback culture, the natural tendency is that only
leaders give feedback to their subordinates. Until people develop a regular
habit of giving feedback, you can accelerate that process by directly asking
for feedback from the people you interact with. Being specific about what
you want feedback about helps a lot in the quality of the information you
will get from people; ask things like “can you give me feedback on how I
handled X situation?” When you don't specify, people will usually bring up
generic comments that are less helpful.

197

CHAPTER 4 STRATEGIC TEAMWORK

There are many small behavior tweaks that can facilitate feedback
sessions. For instance, you should pay attention to your body posture
and use positive face expressions that indicate you are receptive to the
things being said or at least try to stay neutral. Avoiding responding
right away is also helpful, first listen to what the person has to say and
use that moment strategically to collect more information, do your best
to fill in gaps of information, and to make sure you understand what is
the problem and how it affected others. It’s ok to give your perspective,
but in these situations, it’s possible that it will sound like you are trying
to justify yourself, so if you want to do that, make it explicit that you are
not contesting the feedback. Most importantly, don't ever engage in an
argument; if you notice things are heating up, take a step back and
assume a listening posture. If you feel the feedback is too generic and
are having difficulty relating to it, you can ask the person to provide some
practical examples. The same goes if you are not sure what you can do to
improve; you can ask if the person has a suggestion.

It’s a good idea to write things down during the conversation if you can
do it without losing concentration, that way you reduce the risk of forgetting
something. Otherwise you can also spend a few minutes after the session
writing notes, try to do it as soon as possible so you have a fresh take. Ending
the session by summarizing the top items is also a great way to recap and
ensure you got all the main points. Don't forget to show gratitude and thank
the person for taking the time to give you feedback. In a later moment, use
your notes to reflect on the things you learned; if you notice something is
missing or if you have any extra questions, don’t hesitate to schedule a new
session or ask asynchronously. Once you are confident you understand
the situation, define an action plan with the things you are going to do to
address the main issues. In some situations, especially when the feedback is
coming from a direct leader, you might want to present your plan so it can be
validated. In that case, don’t forget to keep regular reports about your progress
and ask for feedback on them. Having someone with an external point of view
who you can discuss with can be extremely useful during this process.

198

CHAPTER 4 STRATEGIC TEAMWORK

Be grateful that people feel comfortable being vulnerable with you,

receiving honest feedback is a privilege. Do your best to enhance the

experience of the people giving feedback to you and don’t expect to agree

with everything you are told. Use the opportunity to gather as much

information as you can, reflect on what you consider important and make

an improvement plan. Remember that more is better, don’t hesitate to

explicitly and regularly ask for feedback and seek a second opinion if you

feel it’s going to be beneficial to hear someone else’s take.

Key takeaways:

Receiving feedback is something to be grateful about,
it’s an opportunity to reflect on how you can improve.

Make it easy for others to give you feedback so they are
comfortable doing it regularly.

You don’t need to agree with the feedback you receive,
reflect and act on what you consider relevant.

Learning about how things were perceived is more
important than agreeing on what actually happened.

Periodically ask for feedback from the people around
you; for better results, be specific about the things you
want feedback about.

4.9 References and Further Reading

“Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High Performing Technology
Organizations” book by Nicole Forsgren, Jez Humble,
Gene Kim

199

CHAPTER 4 STRATEGIC TEAMWORK

200

“The SPACE of Developer Productivity” by Nicole
Forsgren, Margaret-Anne Storey, Chandra Maddila,
Thomas Zimmermann, Brian Houck, and Jenna Butler
https://queue.acm.org/detail.cfm?id=3454124

“Are you an Elite DevOps performer? Find out with the
Four Keys Project” by Dina Graves Portman https://
cloud.google.com/blog/products/devops-sre/
using-the-four-keys-to-measure-your-devops-
performance

“DevOps capabilities” https://cloud.google.com/
architecture/devops?hl=en

