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Preface

ØMQ in a Hundred Words
ØMQ (also known as ZeroMQ, 0MQ, or zmq) looks like an embeddable networking
library, but acts like a concurrency framework. It gives you sockets that carry atomic
messages across various transports, like in-process, inter-process, TCP, and multicast.
You can connect sockets N-to-N with patterns like fan-out, pub-sub, task distribution,
and request-reply. It’s fast enough to be the fabric for clustered products. Its asynchro‐
nous I/O model gives you scalable multicore applications, built as asynchronous
message-processing tasks. It has a score of language APIs and runs on most operating
systems. ØMQ is from iMatix and is LGPLv3 open source.

The Zen of Zero
The Ø in ØMQ is all about trade-offs. On the one hand, this strange name lowers ØMQ’s
visibility on Google and Twitter. On the other hand, it annoys the heck out of some
Danish folk who write us things like “ØMG røtfl”, and “Ø is not a funny-looking zero!”
and “Rødgrød med Fløde!” (which is apparently an insult that means “May your neigh‐
bours be the direct descendants of Grendel!”). Seems like a fair trade.

Originally, the zero in ØMQ was meant to signify “zero broker” and (as close to) “zero
latency” (as possible). Since then, it has come to encompass different goals: zero ad‐
ministration, zero cost, zero waste. More generally, “zero” refers to the culture of min‐
imalism that permeates the project. We add power by removing complexity rather than
by exposing new functionality.

How This Book Came to Be
In the summer of 2010, ØMQ was still a little-known niche library described by its
rather terse reference manual and a living but sparse wiki. Martin Sustrik and I were
sitting in the bar of the Hotel Kyjev in Bratislava plotting how to make ØMQ more
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widely popular. Martin had written most of the ØMQ code, and I’d put up the funding
and organized the community. Over some Zlatý Bažant, we agreed that ØMQ needed
a new, simpler website and a basic guide for new users.

Martin collected some ideas for topics to explain. I’d never written a line of ØMQ code
before this, so it became a live learning documentary. As I worked through simple
examples to more complex ones, I tried to answer many of the questions I’d seen on the
mailing list. Because I’d been building large-scale architectures for 30 years, there were
a lot of problems I was keen to throw ØMQ at. Amazingly, the results were mostly simple
and elegant, even when working in C. I felt a pure joy learning ØMQ and using it to
solve real problems, which brought me back to programming after a few years’ pause.
And often, not knowing how it was “supposed” to be done, we improved ØMQ as we
went along.

From the start, I wanted the guide to be a community project, so I put it onto GitHub
and let others contribute with pull requests. This was considered a radical, even vulgar
approach by some. We came to a division of labor: I’d do the writing and make the
original C examples, and others would help fix the text and translate the examples into
other languages.

This worked better than I dared hope. You can now find all the examples in several
languages, and many in a dozen languages. It’s a kind of programming language Rosetta
Stone, and a valuable outcome in itself. We set up a high score: reach 80% translation
and your language gets its own guide. PHP, Python, Lua, and Haxe reached this goal.
People asked for PDFs, and we created those. People asked for ebooks, and got those.
About a hundred people have contributed to the guide to date.

The guide achieved its goal of popularizing ØMQ. The style pleases most and annoys
some, which is how it should be. In December 2010, my work on ØMQ and the guide
stopped, as I found myself going through late-stage cancer, heavy surgery, and six
months of chemotherapy. When I picked up work again in mid-2011, it was to start
using ØMQ in anger for one of the largest use-cases imagineable: on the mobile phones
and tablets of the world’s biggest electronics company.

But the goal of the guide was, from the start, a printed book. So it was exciting to get an
email from Bill Lubanovic in January 2012, introducing me to his editor, Andy Oram,
at O’Reilly, suggesting a ØMQ book. “Of course!” I said. Where do I sign? How much
do I have to pay? Oh, I get money for this? All I have to do is finish it?”

Of course, as soon as O’Reilly announced a ØMQ book, other publishers started sending
out emails to potential authors. You’ll probably see a rash of ØMQ books coming out
next year. That’s good. Our niche library has hit the mainstream and deserves its six
inches of shelf space. My apologies to the other ØMQ authors. We’ve set the bar horribly
high, and my advice is to make your books complementary. Perhaps focus on a specific
language, platform, or pattern.
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This is the magic and power of communities: be the first community in a space, stay
healthy, and you own that space for ever.

Audience
This book is written for professional programmers who want to learn how to make the
massively distributed software that will dominate the future of computing. We assume
you can read C code, because most of the examples here are in C (even though ØMQ
is used in many languages). We assume you care about scale, because ØMQ solves that
problem above all others. We assume you need the best possible results with the least
possible cost, because otherwise you won’t appreciate the trade-offs that ØMQ makes.
Other than that basic background, we try to present all the concepts in networking and
distributed computing you will need to use ØMQ.

Conventions Used in This Book
We used the following typographical conventions in this book:
Italic

Indicates new terms, commands and command-line options, URLs, email address‐
es, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, and environment variables.

Constant width bold

Shows user input at the command line.

Constant width italic
Shows placeholder user input that you should replace with something that makes
sense for you.

This icon signifies a tip, suggestion, or general note.

Using the Code Examples
The code examples are all online in the repository at https://github.com/imatix/zguide/
tree/master/examples/. You’ll find each example translated into several—often a dozen
—other languages. The examples are licensed under MIT/X11; see the LICENSE file in
that directory. The text of the book explains in each case how to run each example.
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We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “ZeroMQ by Pieter Hintjens (O’Reilly).
Copyright 2013 Pieter Hintjens, 978-1-449-33406-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ZeroMQ-OReilly.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.
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For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Andy Oram for making this happen at O’Reilly and editing the book.

Thanks to Bill Desmarais, Brian Dorsey, Daniel Lin, Eric Desgranges, Gonzalo Dieth‐
elm, Guido Goldstein, Hunter Ford, Kamil Shakirov, Martin Sustrik, Mike Castleman,
Naveen Chawla, Nicola Peduzzi, Oliver Smith, Olivier Chamoux, Peter Alexander,
Pierre Rouleau, Randy Dryburgh, John Unwin, Alex Thomas, Mihail Minkov, Jeremy
Avnet, Michael Compton, Kamil Kisiel, Mark Kharitonov, Guillaume Aubert, Ian Bar‐
ber, Mike Sheridan, Faruk Akgul, Oleg Sidorov, Lev Givon, Allister MacLeod, Alexander
D’Archangel, Andreas Hoelzlwimmer, Han Holl, Robert G. Jakabosky, Felipe Cruz,
Marcus McCurdy, Mikhail Kulemin, Dr. Gergö Érdi, Pavel Zhukov, Alexander Else,
Giovanni Ruggiero, Rick “Technoweenie”, Daniel Lundin, Dave Hoover, Simon Jefford,
Benjamin Peterson, Justin Case, Devon Weller, Richard Smith, Alexander Morland,
Wadim Grasza, Michael Jakl, Uwe Dauernheim, Sebastian Nowicki, Simone Deponti,
Aaron Raddon, Dan Colish, Markus Schirp, Benoit Larroque, Jonathan Palardy, Isaiah
Peng, Arkadiusz Orzechowski, Umut Aydin, Matthew Horsfall, Jeremy W. Sherman,
Eric Pugh, Tyler Sellon, John E. Vincent, Pavel Mitin, Min RK, Igor Wiedler, Olof Åkes‐
son, Patrick Lucas, Heow Goodman, Senthil Palanisami, John Gallagher, Tomas Roos,
Stephen McQuay, Erik Allik, Arnaud Cogoluègnes, Rob Gagnon, Dan Williams, Edward
Smith, James Tucker, Kristian Kristensen, Vadim Shalts, Martin Trojer, Tom van Leeu‐
wen, Hiten Pandya, Harm Aarts, Marc Harter, Iskren Ivov Chernev, Jay Han, Sonia
Hamilton, Nathan Stocks, Naveen Palli, and Zed Shaw for their contributions to this
work.

Thanks to Martin Sustrik for his years of incredible work on ZeroMQ.

Thanks to Stathis Sideris for Ditaa.

Preface | xvii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://bit.ly/ZeroMQ-OReilly
http://www.ditaa.org




PART I

Learning to Work with ØMQ

In the first part of this book, you’ll learn how to use ØMQ. We’ll cover the basics, the
API, the different socket types and how they work, reliability, and a host of patterns you
can use in your applications. You’ll get the best results by working through the examples
and text from start to end.





CHAPTER 1

Basics

Fixing the World
How to explain ØMQ? Some of us start by saying all the wonderful things it does. It’s
sockets on steroids. It’s like mailboxes with routing. It’s fast! Others try to share their
moment of enlightenment, that zap-pow-kaboom satori paradigm-shift moment when
it all became obvious. Things just become simpler. Complexity goes away. It opens the
mind. Others try to explain by comparison. It’s smaller, simpler, but still looks famili‐
ar. Personally, I like to remember why we made ØMQ at all, because that’s most likely
where you, the reader, still are today.

Programming is a science dressed up as art, because most of us don’t understand the
physics of software and it’s rarely, if ever, taught. The physics of software is not algo‐
rithms, data structures, languages, and abstractions. These are just tools we make, use,
and throw away. The real physics of software is the physics of people.

Specifically, it’s about our limitations when it comes to complexity and our desire to
work together to solve large problems in pieces. This is the science of programming:
make building blocks that people can understand and use easily, and people will work
together to solve the very largest problems.

We live in a connected world, and modern software has to navigate this world. So, the
building blocks for tomorrow’s very largest solutions are connected and massively par‐
allel. It’s not enough for code to be “strong and silent” any more. Code has to talk to
code. Code has to be chatty, sociable, and well-connected. Code has to run like the
human brain; trillions of individual neurons firing off messages to each other, a mas‐
sively parallel network with no central control, no single point of failure, yet able to
solve immensely difficult problems. And it’s no accident that the future of code looks
like the human brain, because the endpoints of every network are, at some level, human
brains.
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If you’ve done any work with threads, protocols, or networks, you’ll realize this is pretty
much impossible. It’s a dream. Even connecting a few programs across a few sockets is
plain nasty when you start to handle real-life situations. Trillions? The cost would be
unimaginable. Connecting computers is so difficult that creating software and services
to do this is a multi-billion dollar business.

So we live in a world where the wiring is years ahead of our ability to use it. We had a
software crisis in the 1980s, when leading software engineers like Fred Brooks believed
there was no “silver bullet” to “promise even one order of magnitude of improvement
in productivity, reliability, or simplicity.”

Brooks missed free and open source software, which solved that crisis, enabling us to
share knowledge efficiently. Today we face another software crisis, but it’s one we don’t
talk about much. Only the largest, richest firms can afford to create connected appli‐
cations. There is a cloud, but it’s proprietary. Our data and our knowledge are disap‐
pearing from our personal computers into clouds that we cannot access and with which
we cannot compete. Who owns our social networks? It is like the mainframe-PC rev‐
olution in reverse.

We can leave the political philosophy for another book. The point is that while the
Internet offers the potential of massively connected code, the reality is that this is out
of reach for most of us, and so large, interesting problems (in health, education, eco‐
nomics, transport, and so on) remain unsolved because there is no way to connect the
code, and thus no way to connect the brains that could work together to solve these
problems.

There have been many attempts to solve the challenge of connected software. There are
thousands of IETF specifications, each solving part of the puzzle. For application de‐
velopers, HTTP is perhaps the one solution to have been simple enough to work, but it
arguably makes the problem worse by encouraging developers and architects to think
in terms of big servers and thin, stupid clients.

So today people are still connecting applications using raw UDP and TCP, proprietary
protocols, HTTP, and WebSockets. It remains painful, slow, hard to scale, and essentially
centralized. Distributed peer-to-peer architectures are mostly for play, not work. How
many applications use Skype or BitTorrent to exchange data?

Which brings us back to the science of programming. To fix the world, we needed to
do two things. One, to solve the general problem of “how to connect any code to any
code, anywhere.” Two, to wrap that up in the simplest possible building blocks that
people could understand and use easily.

It sounds ridiculously simple. And maybe it is. That’s kind of the whole point.
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Audience for This Book
We assume you are using the latest 3.2 release of ØMQ. We assume you are using a
Linux box or something similar. We assume you can read C code, more or less, as that’s
the default language for the examples. We assume that when we write constants like
PUSH or SUBSCRIBE, you can imagine they are really called ZMQ_PUSH or ZMQ_SUB
SCRIBE if the programming language needs it.

Getting the Examples
This book’s examples live in the book’s Git repository. The simplest way to get all the
examples is to clone this repository:

git clone --depth=1 git://github.com/imatix/zguide.git

Next, browse the examples subdirectory. You’ll find examples by language. If there are
examples missing in a language you use, you’re encouraged to submit a translation. This
is how this book became so useful, thanks to the work of many people. All examples are
licensed under MIT/X11.

Ask and Ye Shall Receive
So let’s start with some code. We’ll begin, of course, with a “Hello World” example. We’ll
make a client and a server. The client sends “Hello” to the server, which replies with
“World” (Figure 1-1). Example 1-1 presents the code for the server in C, which opens
a ØMQ socket on port 5555, reads requests on it, and replies with “World” to each
request.

Example 1-1. Hello World server (hwserver.c)
//
//  Hello World server
//  Binds REP socket to tcp://*:5555
//  Expects "Hello" from client, replies with "World"
//
#include <zmq.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *responder = zmq_socket (context, ZMQ_REP);
    zmq_bind (responder, "tcp://*:5555");
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    while (1) {
        //  Wait for next request from client
        zmq_msg_t request;
        zmq_msg_init (&request);
        zmq_msg_recv (&request, responder, 0);
        printf ("Received Hello\n");
        zmq_msg_close (&request);

        //  Do some 'work'
        sleep (1);

        //  Send reply back to client
        zmq_msg_t reply;
        zmq_msg_init_size (&reply, 5);
        memcpy (zmq_msg_data (&reply), "World", 5);
        zmq_msg_send (&reply, responder, 0);
        zmq_msg_close (&reply);
    }
    //  We never get here but if we did, this would be how we end
    zmq_close (responder);
    zmq_ctx_destroy (context);
    return 0;
}

Figure 1-1. Request-reply

The REQ-REP socket pair is in lockstep. The client issues zmq_msg_send() and then
zmq_msg_recv(), in a loop (or once if that’s all it needs). Any other sequence (e.g.,
sending two messages in a row) will result in a return code of -1 from the send or recv
call. Similarly, the server issues zmq_msg_recv() and then zmq_msg_send(), in that or‐
der, as often as it needs to.

ØMQ uses C as its reference language, and this is the main language we’ll use for ex‐
amples. If you’re reading this online, the link below the example takes you to translations
into other programming languages. For print readers, Example 1-2 shows what the same
server looks like in C++.

6 | Chapter 1: Basics



Example 1-2. Hello World server (hwserver.cpp)
//
//  Hello World server in C++
//  Binds REP socket to tcp://*:5555
//  Expects "Hello" from client, replies with "World"
//
#include <zmq.hpp>
#include <string>
#include <iostream>
#include <unistd.h>

int main () {
    //  Prepare our context and socket
    zmq::context_t context (1);
    zmq::socket_t socket (context, ZMQ_REP);
    socket.bind ("tcp://*:5555");

    while (true) {
        zmq::message_t request;

        //  Wait for next request from client
        socket.recv (&request);
        std::cout << "Received Hello" << std::endl;

        //  Do some 'work'
        sleep (1);

        //  Send reply back to client
        zmq::message_t reply (5);
        memcpy ((void *) reply.data (), "World", 5);
        socket.send (reply);
    }
    return 0;
}

You can see that the ØMQ API is similar in C and C++. In a language like PHP, we can
hide even more and the code becomes even easier to read, as shown in Example 1-3.

Example 1-3. Hello World server (hwserver.php)
<?php
/*
 *  Hello World server
 *  Binds REP socket to tcp://*:5555
 *  Expects "Hello" from client, replies with "World"
 * @author Ian Barber <ian(dot)barber(at)gmail(dot)com>
 */

$context = new ZMQContext(1);

//  Socket to talk to clients
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$responder = new ZMQSocket($context, ZMQ::SOCKET_REP);
$responder->bind("tcp://*:5555");

while (true) {
    //  Wait for next request from client
    $request = $responder->recv();
    printf ("Received request: [%s]\n", $request);

    //  Do some 'work'
    sleep (1);

    //  Send reply back to client
    $responder->send("World");
}

Example 1-4 shows the client code.

Example 1-4. Hello World client (hwclient.c)
//
//  Hello World client
//  Connects REQ socket to tcp://localhost:5555
//  Sends "Hello" to server, expects "World" back
//
#include <zmq.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to server
    printf ("Connecting to hello world server...\n");
    void *requester = zmq_socket (context, ZMQ_REQ);
    zmq_connect (requester, "tcp://localhost:5555");

//     int request_nbr;
//     for (request_nbr = 0; request_nbr != 10; request_nbr++) {
//         zmq_msg_t request;
//         zmq_msg_init_size (&request, 5);
//         memcpy (zmq_msg_data (&request), "Hello", 5);
//         printf ("Sending Hello %d...\n", request_nbr);
//         zmq_msg_send (&request, requester, 0);
//         zmq_msg_close (&request);
// 
//         zmq_msg_t reply;
//         zmq_msg_init (&reply);
//         zmq_msg_recv (&reply, requester, 0);
//         printf ("Received World %d\n", request_nbr);
//         zmq_msg_close (&reply);
//     }

8 | Chapter 1: Basics



    sleep (2);
    zmq_close (requester);
    zmq_ctx_destroy (context);
    return 0;
}

Now this looks too simple to be realistic, but a ØMQ socket is what you get when you
take a normal TCP socket, inject it with a mix of radioactive isotopes stolen from a secret
Soviet atomic research project, bombard it with 1950s-era cosmic rays, and put it into
the hands of a drug-addled comic book author with a badly disguised fetish for bulging
muscles clad in spandex (Figure 1-2). Yes, ØMQ sockets are the world-saving super‐
heroes of the networking world.

Figure 1-2. There was a terrible accident...

You could throw thousands of clients at this server, all at once, and it would continue
to work happily and quickly. For fun, try starting the client and then starting the server,
see how it all still works, and then think for a second what this means.

Let us explain briefly what these two programs are actually doing. They create a ØMQ
context to work with, and a socket. Don’t worry what the words mean. You’ll pick it up.
The server binds its REP (reply) socket to port 5555. It then waits for a request in a loop,
and responds each time with a reply. The client sends a request and reads the reply back
from the server.

If you kill the server (Ctrl-C) and restart it, the client won’t recover properly. Recovering
from crashing processes isn’t quite that easy. Making a reliable request-reply flow is
complex enough that we won’t cover it until “Reliable Request-Reply Patterns” in Chap‐
ter 4.

There is a lot happening behind the scenes, but what matters to us programmers is how
short and sweet the code is and how often it doesn’t crash, even under a heavy load. This
is the request-reply pattern, probably the simplest way to use ØMQ. It maps to RPC
(remote procedure calls) and the classic client/server model.
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A Minor Note on Strings
ØMQ doesn’t know anything about the data you send except its size in bytes. That means
you are responsible for formatting it safely so that applications can read it back. Doing
this for objects and complex data types is a job for specialized libraries like protocol
buffers. But even for strings, you need to take care.

In C and some other languages, strings are terminated with a null byte. We could send
a string like “HELLO” with that extra null byte:

zmq_msg_init_data (&request, "Hello", 6, NULL, NULL);

However, if you send a string from another language, it probably will not include that
null byte. For example, when we send that same string in Python, we do this:

socket.send ("Hello")

Then what goes onto the wire is a length (one byte for shorter strings) and the string
contents as individual characters (Figure 1-3).

Figure 1-3. A ØMQ string

And if you read this from a C program, you will get something that looks like a string,
and might by accident act like a string (if by luck the five bytes find themselves followed
by an innocently lurking null), but isn’t a proper string. When your client and server
don’t agree on the string format, you will get weird results.

When you receive string data from ØMQ in C, you simply cannot trust that it’s safely
terminated. Every single time you read a string, you should allocate a new buffer with
space for an extra byte, copy the string, and terminate it properly with a null.

So let’s establish the rule that ØMQ strings are length-specified and are sent on the wire
without a trailing null. In the simplest case (and we’ll do this in our examples), a ØMQ
string maps neatly to a ØMQ message frame, which looks like the above figure—a length
and some bytes.

Here is what we need to do, in C, to receive a ØMQ string and deliver it to the application
as a valid C string:

//  Receive 0MQ string from socket and convert into C string
static char *
s_recv (void *socket) {
    zmq_msg_t message;
    zmq_msg_init (&message);
    int size = zmq_msg_recv (&message, socket, 0);
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    if (size == -1)
        return NULL;
    char *string = malloc (size + 1);
    memcpy (string, zmq_msg_data (&message), size);
    zmq_msg_close (&message);
    string [size] = 0;
    return (string);
}

This makes a very handy helper function. In the spirit of making things we can reuse
profitably, we can write a similar s_send() function that sends strings in the correct
ØMQ format and package this into a header file we can reuse.

The result is zhelpers.h, which lets us write sweeter and shorter ØMQ applications in
C. It is a fairly long source, and only fun for C developers, so read it at your leisure.

Version Reporting
ØMQ does come in several versions, and quite often if you hit a problem, it’ll be some‐
thing that’s been fixed in a later version. So it’s a useful trick to know exactly what version
of ØMQ you’re actually linking with. Example 1-5 is a tiny program that lets you do just
that.

Example 1-5. ØMQ version reporting (version.c)
//
//  Report 0MQ version
//
#include "zhelpers.h"

int main (void)
{
    int major, minor, patch;
    zmq_version (&major, &minor, &patch);
    printf ("Current 0MQ version is %d.%d.%d\n", major, minor, patch);

    return EXIT_SUCCESS;
}

Getting the Message Out
The second classic pattern is one-way data distribution, in which a server pushes updates
to a set of clients. Let’s look at an example that pushes out weather updates consisting
of a zip code, temperature, and relative humidity. We’ll generate random values, just
like the real weather stations do.
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Example 1-6 shows the code for the server. We’ll use port 5556 for this application.

Example 1-6. Weather update server (wuserver.c)
//
//  Weather update server
//  Binds PUB socket to tcp://*:5556
//  Publishes random weather updates
//
#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and publisher
    void *context = zmq_ctx_new ();
    void *publisher = zmq_socket (context, ZMQ_PUB);
    int rc = zmq_bind (publisher, "tcp://*:5556");
    assert (rc == 0);
    rc = zmq_bind (publisher, "ipc://weather.ipc");
    assert (rc == 0);

    //  Initialize random number generator
    srandom ((unsigned) time (NULL));
    while (1) {
        //  Get values that will fool the boss
        int zipcode, temperature, relhumidity;
        zipcode     = randof (100000);
        temperature = randof (215) - 80;
        relhumidity = randof (50) + 10;

        //  Send message to all subscribers
        char update [20];
        sprintf (update, "%05d %d %d", zipcode, temperature, relhumidity);
        s_send (publisher, update);
    }
    zmq_close (publisher);
    zmq_ctx_destroy (context);
    return 0;
}

There’s no start and no end to this stream of updates; it’s like a never-ending broadcast
(Figure 1-4).
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Figure 1-4. Publish-subscribe

Example 1-7 shows the client application, which listens to the stream of updates and
grabs anything to do with a specified zip code (by default, New York City, because that’s
a great place to start any adventure).

Example 1-7. Weather update client (wuclient.c)
//
//  Weather update client
//  Connects SUB socket to tcp://localhost:5556
//  Collects weather updates and finds avg temp in zipcode
//
#include "zhelpers.h"

int main (int argc, char *argv [])
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to server
    printf ("Collecting updates from weather server...\n");
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    int rc = zmq_connect (subscriber, "tcp://localhost:5556");
    assert (rc == 0);

    //  Subscribe to zipcode, default is NYC, 10001
    char *filter = (argc > 1)? argv [1]: "10001 ";
    rc = zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, filter, strlen (filter));
    assert (rc == 0);

    //  Process 100 updates
    int update_nbr;
    long total_temp = 0;
    for (update_nbr = 0; update_nbr < 100; update_nbr++) {
        char *string = s_recv (subscriber);

        int zipcode, temperature, relhumidity;
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        sscanf (string, "%d %d %d",
            &zipcode, &temperature, &relhumidity);
        total_temp += temperature;
        free (string);
    }
    printf ("Average temperature for zipcode '%s' was %dF\n",
        filter, (int) (total_temp / update_nbr));

    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

Note that when you use a SUB socket you must set a subscription using zmq_setsock
opt() and SUBSCRIBE, as in this code. If you don’t set any subscription, you won’t get
any messages. It’s a common mistake for beginners. The subscriber can set many sub‐
scriptions, which are added together. That is, if an update matches any subscription, the
subscriber receives it. The subscriber can also cancel specific subscriptions. A subscrip‐
tion is often but not necessarily a printable string. See zmq_setsockopt() for how this
works.

The PUB-SUB socket pair is asynchronous. The client does zmq_msg_recv(), in a loop
(or once if that’s all it needs). Trying to send a message to a SUB socket will cause an
error. Similarly, the service does zmq_msg_send() as often as it needs to, but must not
do zmq_msg_recv() on a PUB socket.

In theory, with ØMQ sockets it does not matter which end connects and which end
binds. However, in practice there are undocumented differences that I’ll come to later.
For now, bind the PUB and connect the SUB, unless your network design makes that
impossible.

There is one more important thing to know about PUB-SUB sockets: you do not know
precisely when a subscriber starts to get messages. Even if you start a subscriber, wait a
while, and then start the publisher, the subscriber will always miss the first messages that
the publisher sends. This is because as the subscriber connects to the publisher (some‐
thing that takes a small but nonzero amount of time), the publisher may already be
sending messages out.

This “slow joiner” symptom hits enough people, often enough, that we’re going to ex‐
plain it in detail. Remember that ØMQ does asynchronous I/O (i.e., in the background).
Say you have two nodes doing this, in this order:

• Subscriber connects to an endpoint and receives and counts messages.
• Publisher binds to an endpoint and immediately sends 1,000 messages.

The subscriber will most likely not receive anything. You’ll blink, check that you set a
correct filter, and try again, and the subscriber will still not receive anything.

14 | Chapter 1: Basics



Making a TCP connection involves to and from handshaking that can take several mil‐
liseconds (msec), depending on your network and the number of hops between peers.
In that time, ØMQ can send very many messages. For the sake of argument, assume it
takes 5 msec to establish a connection, and that same link can handle 1M messages per
second. During the 5 msec that the subscriber is connecting to the publisher, it takes
the publisher only 1 msec to send out those 1K messages.

In Chapter 2, we’ll explain how to synchronize a publisher and subscribers so that you
don’t start to publish data until the subscribers really are connected and ready. There is
a simple (and stupid) way to delay the publisher, which is to sleep. Don’t do this in a real
application, though, because it is extremely fragile as well as inelegant and slow. Use
sleeps to prove to yourself what’s happening, and then read Chapter 2 to see how to do
this right.

The alternative to synchronization is to simply assume that the published data stream
is infinite and has no start and no end. One also assumes that the subscriber doesn’t care
what transpired before it started up. This is how we built our weather client example.

So, the client subscribes to its chosen zip code and collects a thousand updates for that
zip code. That means about 10 million updates from the server, if zip codes are randomly
distributed. You can start the client, and then the server, and the client will keep working.
You can stop and restart the server as often as you like, and the client will keep working.
When the client has collected its thousand updates, it calculates the average, prints it,
and exits.

Some points about the publish-subscribe pattern:

• A subscriber can connect to more than one publisher, using one connect call each
time. Data will then arrive and be interleaved (“fair queued”) so that no single pub‐
lisher drowns out the others.

• If a publisher has no connected subscribers, then it will simply drop all messages.
• If you’re using TCP and a subscriber is slow, messages will queue up on the pub‐

lisher. We’ll look at how to protect publishers against this by using the “high-water
mark” in the next chapter.

• From ØMQ v3.x, filtering happens on the publisher’s side when using a connected
protocol (tcp or ipc). Using the epgm protocol, filtering happens on the subscriber’s
side. In ØMQ v2.x, all filtering happened on the subscriber’s side.

This is how long it takes to receive and filter 10M messages on my laptop, which is a
2011-era Intel I7—fast, but nothing special:

ph@nb201103:~/work/git/zguide/examples/c$ time wuclient
Collecting updates from weather server...
Average temperature for zipcode '10001 ' was 28F
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real    0m4.470s
user    0m0.000s
sys     0m0.008s

Divide and Conquer
As a final example (you are surely getting tired of juicy code and want to delve back into
philological discussions about comparative abstractive norms), let’s do a little super‐
computing. Then, coffee. Our supercomputing application is a fairly typical parallel
processing model (Figure 1-5). We have:

• A ventilator that produces tasks that can be done in parallel
• A set of workers that processes tasks
• A sink that collects results back from the worker processes

Figure 1-5. Parallel pipeline

In reality, workers run on superfast boxes, perhaps using GPUs (graphic processing
units) to do the hard math. Example 1-8 shows the code for the ventilator. It
generates 100 tasks, each one a message telling the worker to sleep for some number of
milliseconds.
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Example 1-8. Parallel task ventilator (taskvent.c)
//
//  Task ventilator
//  Binds PUSH socket to tcp://localhost:5557
//  Sends batch of tasks to workers via that socket
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to send messages on
    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_bind (sender, "tcp://*:5557");

    //  Socket to send start of batch message on
    void *sink = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sink, "tcp://localhost:5558");

    printf ("Press Enter when the workers are ready: ");
    getchar ();
    printf ("Sending tasks to workers...\n");

    //  The first message is "0" and signals start of batch
    s_send (sink, "0");

    //  Initialize random number generator
    srandom ((unsigned) time (NULL));

    //  Send 100 tasks
    int task_nbr;
    int total_msec = 0;     //  Total expected cost in msec
    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        int workload;
        //  Random workload from 1 to 100 msec
        workload = randof (100) + 1;
        total_msec += workload;
        char string [10];
        sprintf (string, "%d", workload);
        s_send (sender, string);
    }
    printf ("Total expected cost: %d msec\n", total_msec);
    sleep (1);              //  Give 0MQ time to deliver

    zmq_close (sink);
    zmq_close (sender);
    zmq_ctx_destroy (context);
    return 0;
}
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The code for the worker application is in Example 1-9. It receives a message, sleeps for
that number of seconds, and then signals that it’s finished.

Example 1-9. Parallel task worker (taskwork.c)
//
//  Task worker
//  Connects PULL socket to tcp://localhost:5557
//  Collects workloads from ventilator via that socket
//  Connects PUSH socket to tcp://localhost:5558
//  Sends results to sink via that socket
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to receive messages on
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Socket to send messages to
    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sender, "tcp://localhost:5558");

    //  Process tasks forever
    while (1) {
        char *string = s_recv (receiver);
        //  Simple progress indicator for the viewer
        fflush (stdout);
        printf ("%s.", string);

        //  Do the work
        s_sleep (atoi (string));
        free (string);

        //  Send results to sink
        s_send (sender, "");
    }
     zmq_close (receiver);
    zmq_close (sender);
    zmq_ctx_destroy (context);
    return 0;
}

Finally, Example 1-10 shows the sink application. It collects the 100 messages and then
calculates how long the overall processing took, so we can confirm that the workers
really were running in parallel if there are more than one of them.
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Example 1-10. Parallel task sink (tasksink.c)
//
//  Task sink
//  Binds PULL socket to tcp://localhost:5558
//  Collects results from workers via that socket
//
#include "zhelpers.h"

int main (void) 
{
    //  Prepare our context and socket
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_bind (receiver, "tcp://*:5558");

    //  Wait for start of batch
    char *string = s_recv (receiver);
    free (string);

    //  Start our clock now
    int64_t start_time = s_clock ();

    //  Process 100 confirmations
    int task_nbr;
    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        char *string = s_recv (receiver);
        free (string);
        if ((task_nbr / 10) * 10 == task_nbr)
            printf (":");
        else
            printf (".");
        fflush (stdout);
    }
    //  Calculate and report duration of batch
    printf ("Total elapsed time: %d msec\n", 
        (int) (s_clock () - start_time));

    zmq_close (receiver);
    zmq_ctx_destroy (context);
    return 0;
}

The average cost of a batch is five seconds. When we start one, two, and four workers,
we get results like this from the sink:

#   1 worker
Total elapsed time: 5034 msec
#   2 workers
Total elapsed time: 2421 msec
#   4 workers
Total elapsed time: 1018 msec
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Let’s look at some aspects of this code in more detail:

• The workers connect upstream to the ventilator, and downstream to the sink. This
means you can add workers arbitrarily. If the workers bound to their endpoints,
you would need (a) more endpoints and (b) to modify the ventilator and/or the
sink each time you added a worker. We say that the ventilator and sink are stable
parts of our architecture and the workers are dynamic parts of it.

• We have to synchronize the start of the batch with all workers being up and running.
This is a fairly common gotcha in ØMQ, and there is no easy solution. The con
nect method takes a certain amount of time, so when a set of workers connect to
the ventilator, the first one to successfully connect will get a whole load of messages
in that short time while the others are still connecting. If you don’t synchronize the
start of the batch somehow, the system won’t run in parallel at all. Try removing the
wait in the ventilator, and see what happens.

• The ventilator’s PUSH socket distributes tasks to workers (assuming they are all
connected before the batch starts going out) evenly. This is called load balancing,
and it’s something we’ll look at again in more detail.

• The sink’s PULL socket collects results from workers evenly. This is called fair
queuing (Figure 1-6).

Figure 1-6. Fair queuing

The pipeline pattern also exhibits the “slow joiner” syndrome, leading to accusations
that PUSH sockets don’t load-balance properly. If you are using PUSH and PULL and
one of your workers gets way more messages than the others, it’s because that PULL
socket has joined faster than the others, and grabs a lot of messages before the others
manage to connect.
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Programming with ØMQ
Having seen some examples, you must be eager to start using ØMQ in some apps. Before
you start that, take a deep breath, chillax, and reflect on some basic advice that will save
you much stress and confusion:

• Learn ØMQ step-by-step. It’s just one simple API, but it hides a world of possibil‐
ities. Take the possibilities slowly and master each one.

• Write nice code. Ugly code hides problems and makes it hard for others to help
you. You might get used to meaningless variable names, but people reading your
code won’t. Use names that are real words, that say something other than “I’m too
careless to tell you what this variable is really for.” Use consistent indentation and
clean layout. Write nice code, and your world will be more comfortable.

• Test what you make as you make it. When your program doesn’t work, you should
know which five lines are to blame. This is especially true when you do ØMQ magic,
which just won’t work the first few times you try it.

• When you find that things don’t work as expected, break your code into pieces, test
each one, and see which one is not working. ØMQ lets you make essentially modular
code; use that to your advantage.

• Make abstractions (classes, methods, whatever) as you need them. If you copy/paste
a lot of code, you’re going to copy/paste errors, too.

Getting the Context Right
ØMQ applications always start by creating a context, and then using that for creating
sockets. In C, it’s the zmq_ctx_new() call. You should create and use exactly one context
in your process. Technically, the context is the container for all sockets in a single process,
and it acts as the transport for inproc sockets, which are the fastest way to connect
threads in one process. If at runtime a process has two contexts, these are like separate
ØMQ instances. If that’s explicitly what you want, that’s OK, but otherwise remember:

Do one zmq_ctx_new() at the start of your main code, and one zmq_ctx_destroy() at
the end.

If you’re using the fork() system call, each process needs its own context. If you do
zmq_ctx_new() in the main process before calling fork(), the child processes get their
own contexts. In general, you want to do the interesting stuff in the child processes and
just manage these from the parent process.
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Making a Clean Exit
Classy programmers share the same motto as classy hit men: always clean up when you
finish the job. When you use ØMQ in a language like Python, stuff gets automatically
freed for you. But when using C, you have to carefully free objects when you’re finished
with them, or else you get memory leaks, unstable applications, and generally bad kar‐
ma.

Memory leaks are one thing, but ØMQ is quite finicky about how you exit an application.
The reasons are technical and painful, but the upshot is that if you leave any sockets
open, the zmq_ctx_destroy() function will hang forever. And even if you close all
sockets, zmq_ctx_destroy() will by default wait forever if there are pending connects
or sends, unless you set the LINGER to zero on those sockets before closing them.

The ØMQ objects we need to worry about are messages, sockets, and contexts. Luckily,
it’s quite simple, at least in simple programs:

• Always close a message the moment you are done with it, using zmq_msg_close().
• If you are opening and closing a lot of sockets, that’s probably a sign that you need

to redesign your application.
• When you exit the program, close your sockets and then call zmq_ctx_destroy().

This destroys the context.

This is at least the case for C development. In a language with automatic object de‐
struction, sockets and contexts will be destroyed as you leave the scope. If you use
exceptions you’ll have to do the cleanup in something like a “final” block, the same as
for any resource.

If you’re doing multithreaded work, it gets rather more complex than this. We’ll get to
multithreading in the next chapter, but because some of you will, despite warnings, try
to run before you can safely walk, here is a quick and dirty guide to making a clean exit
in a multithreaded ØMQ application.

First, do not try to use the same socket from multiple threads. Please don’t explain why
you think this would be excellent fun; just don’t do it. Next, you need to shut down each
socket that has ongoing requests. The proper way is to set a low LINGER value (one
second), and then close the socket. If your language binding doesn’t do this for you
automatically when you destroy a context, I’d suggest sending a patch.

Finally, destroy the context. This will cause any blocking receives or polls or sends in
attached threads (i.e., which share the same context) to return with an error. Catch that
error, and then set LINGER on and close sockets in that thread, and exit. Do not destroy
the same context twice. The zmq_ctx_destroy() call in the main thread will block until
all sockets it knows about are safely closed.
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Voilà! It’s complex and painful enough that any language binding author worth his or
her salt will do this automatically and make the socket closing dance unnecessary.

Why We Needed ØMQ
Now that you’ve seen ØMQ in action, let’s go back to the “why.”

Many applications these days consist of components that stretch across some kind of
network, either a LAN or the Internet. So, many application developers end up doing
some kind of messaging. Some developers use message queuing products, but most of
the time they do it themselves, using TCP or UDP. These protocols are not hard to use,
but there is a great difference between sending a few bytes from A to B and doing
messaging in any kind of reliable way.

Let’s look at the typical questions we face when we start to connect pieces using raw
TCP. Any reusable messaging layer would need to address all or most of these:

• How do we handle I/O? Does our application block, or do we handle I/O in the
background? This is a key design decision. Blocking I/O creates architectures that
do not scale well, but background I/O can be very hard to do right.

• How do we handle dynamic components (i.e., pieces that go away temporarily)?
Do we formally split components into “clients” and “servers” and mandate that
servers cannot disappear? What, then, if we want to connect servers to servers? Do
we try to reconnect every few seconds?

• How do we represent a message on the wire? How do we frame data so it’s easy to
write and read, safe from buffer overflows, and efficient for small messages, yet
adequate for the very largest videos of dancing cats wearing party hats?

• How do we handle messages that we can’t deliver immediately? Particularly if we’re
waiting for a component to come back online? Do we discard messages, put them
into a database, or put them into a memory queue?

• Where do we store message queues? What happens if the component reading from
a queue is very slow and causes our queues to build up? What’s our strategy then?

• How do we handle lost messages? Do we wait for fresh data, request a resend, or
do we build some kind of reliability layer that ensures messages cannot be lost?
What if that layer itself crashes?

• What if we need to use a different network transport? Say, multicast instead of TCP
unicast? Or IPv6? Do we need to rewrite the applications, or is the transport ab‐
stracted in some layer?

• How do we route messages? Can we send the same message to multiple peers? Can
we send replies back to an original requester?
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• How do we write an API for another language? Do we reimplement a wire-level
protocol, or do we repackage a library? If the former, how can we guarantee efficient
and stable stacks? If the latter, how can we guarantee interoperability?

• How do we represent data so that it can be read between different architectures?
Do we enforce a particular encoding for data types? To what extent is this the job
of the messaging system rather than a higher layer?

• How do we handle network errors? Do we wait and retry, ignore them silently, or
abort?

Take a typical open source project like Apache ZooKeeper. Read the C API code in src/
c/src/zookeeper.c. When I read this code in 2010, it was 3,200 lines of mystery, and in
there is an undocumented client/server network communication protocol. I see it’s ef‐
ficient because it uses poll() instead of select(). But really, ZooKeeper should be using
a generic messaging layer and an explicitly documented wire-level protocol. It is in‐
credibly wasteful for teams to be building this particular wheel over and over.

But how do we make a reusable messaging layer? Why, when so many projects need this
technology, are people still doing it the hard way by driving TCP sockets in their code,
and solving the problems in that long list over and over (Figure 1-7)?

Figure 1-7. Messaging as it starts

It turns out that building reusable messaging systems is really difficult, which is why
few free and open source (FOSS) projects ever tried, and why commercial messaging
products are complex, expensive, inflexible, and brittle. In 2006, iMatix designed the
Advanced Message Queuing Protocol, or AMQP, which started to give FOSS developers
perhaps the first reusable recipe for a messaging system. AMQP works better than many
other designs, but remains relatively complex, expensive, and brittle. It takes weeks to
learn to use it, and months to create stable architectures that don’t crash when things
get hairy.

Most messaging projects (like AMQP) that try to solve this long list of problems in a
reusable way do so by inventing a new concept, the “broker,” that does addressing,
routing, and queuing. This results in a client/server protocol or a set of APIs on top of
some undocumented protocol that allows applications to speak to this broker. Brokers
are an excellent thing in reducing the complexity of large networks. But adding broker-
based messaging to a product like ZooKeeper would make it worse, not better. It would
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mean adding an additional big box, and a new single point of failure. A broker rapidly
becomes a bottleneck and a new risk to manage. If the software supports it, we can add
a second, third, and fourth broker and make some failover scheme. People do this.
However, it creates more moving pieces, more complexity, more things to break.

Also, a broker-centric setup needs its own operations team. You literally need to watch
the brokers day and night, and beat them with a stick when they start misbehaving. You
need boxes, and you need backup boxes, and you need people to manage those boxes.
It is only worth doing for large applications with many moving pieces, built by several
teams of people over several years.

So, small to medium application developers are trapped. Either they avoid network
programming and make monolithic applications that do not scale, or they jump into
network programming and make brittle, complex applications that are hard to maintain.
Or they bet on a messaging product, and end up with scalable applications that depend
on expensive, easily broken technology. There has been no really good choice, which
may be why messaging is largely stuck in the last century and stirs strong
emotions—negative ones for users, gleeful joy for those selling support and licenses
(Figure 1-8).

Figure 1-8. Messaging as it becomes

What we need is something that does the job of messaging, but does it in such a simple
and cheap way that it can work in any application, with close to zero cost. It should be
a library with which you link without any other dependencies. No additional moving
pieces, so no additional risk. It should run on any OS and work with any programming
language.
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And this is ØMQ: an efficient, embeddable library that solves most of the problems an
application needs to become nicely elastic across a network, without much cost.

Specifically:

• It handles I/O asynchronously, in background threads. These communicate with
application threads using lock-free data structures, so concurrent ØMQ applica‐
tions need no locks, semaphores, or other wait states.

• Components can come and go dynamically, and ØMQ will automatically reconnect.
This means you can start components in any order. You can create “service-oriented
architectures” (SOAs) where services can join and leave the network at any time.

• It queues messages automatically when needed. It does this intelligently, pushing
messages as close as possible to the receiver before queuing them.

• It has ways of dealing with over-full queues (called the “high-water mark”). When
a queue is full, ØMQ automatically blocks senders, or throws away messages, de‐
pending on the kind of messaging you are doing (the so-called “pattern”).

• It lets your applications talk to each other over arbitrary transports: TCP, multicast,
in-process, inter-process. You don’t need to change your code to use a different
transport.

• It handles slow/blocked readers safely, using different strategies that depend on the
messaging pattern.

• It lets you route messages using a variety of patterns, such as request-reply and
publish-subscribe. These patterns are how you create the topology, the structure of
your network.

• It lets you create proxies to queue, forward, or capture messages with a single call.
Proxies can reduce the interconnection complexity of a network.

• It delivers whole messages exactly as they were sent, using a simple framing on the
wire. If you write a 10KB message, you will receive a 10KB message.

• It does not impose any format on messages. They are blobs of zero bytes to gigabytes
large. When you want to represent data you choose some other product on top,
such as Google’s protocol buffers, XDR, and others.

• It handles network errors intelligently. Sometimes it retries, sometimes it tells you
an operation failed.

• It reduces your carbon footprint. Doing more with less CPU means your boxes use
less power, and you can keep your old boxes in use for longer. Al Gore would love
ØMQ.

Actually, ØMQ does rather more than this. It has a subversive effect on how you develop
network-capable applications. Superficially, it’s a socket-inspired API on which you do
zmq_msg_recv() and zmq_msg_send(). But the message processing loop rapidly be‐
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comes the central loop, and your application soon breaks down into a set of message
processing tasks. It is elegant and natural. And it scales: each of these tasks maps to a
node, and the nodes talk to each other across arbitrary transports. Two nodes in one
process (node is a thread), two nodes on one box (node is a process), or two boxes on
one network (node is a box)—it’s all the same, with no application code changes.

Socket Scalability
Let’s see ØMQ’s scalability in action. Here is a shell script that starts the weather server
and then a bunch of clients in parallel:

wuserver &
wuclient 12345 &
wuclient 23456 &
wuclient 34567 &
wuclient 45678 &
wuclient 56789 &

As the clients run, we take a look at the active processes using top, and we see something
like (on a four-core box):

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
 7136 ph        20   0 1040m 959m 1156 R  157 12.0  16:25.47 wuserver
 7966 ph        20   0 98608 1804 1372 S   33  0.0   0:03.94 wuclient
 7963 ph        20   0 33116 1748 1372 S   14  0.0   0:00.76 wuclient
 7965 ph        20   0 33116 1784 1372 S    6  0.0   0:00.47 wuclient
 7964 ph        20   0 33116 1788 1372 S    5  0.0   0:00.25 wuclient
 7967 ph        20   0 33072 1740 1372 S    5  0.0   0:00.35 wuclient

Let’s think for a second about what is happening here. The weather server has a single
socket, and yet here we have it sending data to five clients in parallel. We could have
thousands of concurrent clients. The server application doesn’t see them and doesn’t
talk to them directly. So the ØMQ socket is acting like a little server, silently accepting
client requests and shoving data out to them as fast as the network can handle it. And
it’s a multithreaded server, squeezing more juice out of your CPU.

Upgrading from ØMQ v2.2 to ØMQ v3.2
In early 2012, ØMQ v3.2 became stable enough for live use, and by the time you’re
reading this, it’s what you really should be using. If you are still using v2.2, here’s a quick
summary of the changes and instructions on how to migrate your code.

Pub-sub filtering is now done on the publisher side instead of the subscriber side. This
improves performance significantly in many pub-sub use cases. You can mix version
3.2 and 2.1/2.2 publishers and subscribers safely.

Most of the API is backward compatible, except a few changes that went into v3.0 with
little regard to the cost of breaking existing code. The syntax of zmq_send() and
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zmq_recv() changed, and ZMQ_NOBLOCK got rebaptized ZMQ_DONTWAIT. So although I’d
love to say, “You just recompile your code with the latest libzmq and everything will
work,” that’s not how it is. For what it’s worth, we banned such API breakage afterwards.

So, the minimal change for C/C++ apps that use the low-level libzmq API is to replace
all calls to zmq_send() with zmq_msg_send(), and zmq_recv() with zmq_msg_recv().
In other languages, your binding author may have done the work already. Note that
these two functions now return -1 in case of error, and zero or more according to how
many bytes were sent or received.

Other parts of the libzmq API became more consistent. We deprecated zmq_init() and
zmq_term(), replacing them with zmq_ctx_new() and zmq_ctx_destroy(). We added
zmq_ctx_set() to let you configure a context before starting to work with it.

Finally, we added context monitoring via the zmq_ctx_set_monitor() call, which lets
you track connections and disconnections, and other events on sockets.

Warning: Unstable Paradigms!
Traditional network programming is built on the general assumption that one socket
talks to one connection, one peer. There are multicast protocols, but these are exotic.
When we assume “one socket = one connection,” we scale our architectures in certain
ways. We create threads of logic where each thread works with one socket, one peer. We
place intelligence and state in these threads.

In the ØMQ universe, sockets are doorways to fast little background communications
engines that manage a whole set of connections automagically for you. You can’t see,
work with, open, close, or attach state to these connections. Whether you use blocking
send or receive or poll, all you can talk to is the socket, not the connections it manages
for you. The connections are private and invisible, and this is the key to ØMQ’s scala‐
bility.

This is because your code, talking to a socket, can then handle any number of connec‐
tions across whatever network protocols are around, without change. A messaging pat‐
tern sitting in ØMQ can scale more cheaply than a messaging pattern sitting in your
application code.

So, the general assumption no longer applies. As you read the code examples, your brain
will try to map them to what you know. You will read “socket” and think “Ah, that
represents a connection to another node.” That is wrong. You will read “thread” and
your brain will again think, “Ah, a thread represents a connection to another node,” and
again your brain will be wrong.

If you’re reading this book for the first time, realize that until you actually spend a day
or two writing ØMQ code (or maybe three or four days), you may feel confused, espe‐
cially by how simple ØMQ makes things for you; you may try to impose that general
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assumption on ØMQ, and it won’t work. And then you will experience your moment
of enlightenment and trust, that zap-pow-kaboom satori paradigm-shift moment when
it all becomes clear.
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CHAPTER 2

Sockets and Patterns

In Chapter 1 we took ØMQ for a drive, with some basic examples of the main ØMQ
patterns: request-reply, publish-subscribe, and pipeline. In this chapter, we’re going to
get our hands dirty and start to learn how to use these tools in real programs.

We’ll cover:

• How to create and work with ØMQ sockets
• How to send and receive messages on sockets
• How to build your apps around ØMQ’s asynchronous I/O model
• How to handle multiple sockets in one thread
• How to handle fatal and nonfatal errors properly
• How to handle interrupt signals like Ctrl-C
• How to shut down a ØMQ application cleanly
• How to check a ØMQ application for memory leaks
• How to send and receive multipart messages
• How to forward messages across networks
• How to build a simple message queuing broker
• How to write multithreaded applications with ØMQ
• How to use ØMQ to signal between threads
• How to use ØMQ to coordinate a network of nodes
• How to create and use message envelopes for publish-subscribe
• How to use the high-water mark (HWM) to protect against memory overflows
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The Socket API
To be perfectly honest, ØMQ does a kind of switch-and-bait on you, for which we don’t
apologize. It’s for your own good, and it hurts us more than it hurts you. It presents a
familiar socket-based API, which requires great effort for us to hide a bunch of message-
processing engines. However, the result will slowly fix your world view about how to
design and write distributed software.

Sockets are the de facto standard API for network programming, as well as being useful
for stopping your eyes from falling onto your cheeks. One thing that makes ØMQ
especially tasty to developers is that it uses sockets and messages instead of some other
arbitrary set of concepts. Kudos to Martin Sustrik for pulling this off. It turns “Message
Oriented Middleware,” a phrase guaranteed to send the whole room off to Catatonia,
into “Extra Spicy Sockets!,” which leaves us with a strange craving for pizza and a desire
to know more.

Like a favorite dish, ØMQ sockets are easy to digest. These sockets have a life in four
parts, just like BSD sockets:

• We can create and destroy them, which go together to form a karmic circle of socket
life (see zmq_socket(), zmq_close()).

• We can configure them by setting options on them and checking them if necessary
(see zmq_setsockopt(), zmq_getsockopt()).

• We can plug them into the network topology by creating ØMQ connections to and
from them (see zmq_bind(), zmq_connect()).

• We can use them to carry data by writing and receiving messages on them (see
zmq_msg_send(), zmq_msg_recv()).

Note that sockets are always void pointers, and messages (which we’ll come to very
soon) are structures. So in C you pass sockets as such, but you pass addresses of messages
in all functions that work with messages, like zmq_msg_send() and zmq_msg_recv().
As a mnemonic, realize that “in ØMQ, all your sockets are belong to us,” but messages
are things you actually own in your code.

Creating, destroying, and configuring sockets works as you’d expect for any object. But
remember that ØMQ is an asynchronous, elastic fabric. This has some impact on how
we plug sockets into the network topology and how we use the sockets after that.

Plugging Sockets into the Topology
To create a connection between two nodes, you use zmq_bind() in one node and
zmq_connect() in the other. As a general rule of thumb, the node that does zmq_bind()
is a “server,” sitting on a well-known network address, and the node that does zmq_con
nect() is a “client,” with unknown or arbitrary network addresses. Thus, we say that we
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“bind a socket to an endpoint” and “connect a socket to an endpoint,” the endpoint being
that well-known network address.

ØMQ connections are somewhat different from old-fashioned TCP connections. The
main notable differences are:

• They go across an arbitrary transport (inproc, ipc, tcp, pgm, or epgm). See zmq_in
proc(), zmq_ipc(), zmq_tcp(), zmq_pgm(), and zmq_epgm().

• One socket may have many outgoing and many incoming connections.
• There is no zmq_accept() method. When a socket is bound to an endpoint, it

automatically starts accepting connections.
• The network connection itself happens in the background, and ØMQ will auto‐

matically reconnect if the network connection is broken (e.g., if the peer disappears
and then comes back).

• Your application code cannot work with these connections directly; they are en‐
capsulated under the socket.

Many architectures follow some kind of client/server model, where the server is the
component that is most static, and the clients are the components that are most
dynamic—i.e., they come and go the most. There are sometimes issues of addressing:
servers will be visible to clients, but not necessarily vice versa. So mostly it’s obvious
which node should be doing zmq_bind() (the server) and which should be doing
zmq_connect() (the client). It also depends on the kind of sockets you’re using, with
some exceptions for unusual network architectures. We’ll look at socket types later.

Now, imagine we start the client before we start the server. In traditional networking,
we’d get a big red Fail flag. But ØMQ lets us start and stop pieces arbitrarily. As soon as
the client node does zmq_connect(), the connection exists and that node can start to
write messages to the socket. At some stage (hopefully before messages queue up so
much that they start to get discarded, or the client blocks), the server comes alive, does
a zmq_bind(), and ØMQ starts to deliver messages.

A server node can bind to many endpoints (that is, a combination of protocol and
address), and it can do this using a single socket. This means it will accept connections
across different transports:

zmq_bind (socket, "tcp://*:5555");
zmq_bind (socket, "tcp://*:9999");
zmq_bind (socket, "inproc://somename");

With most transports, you cannot bind to the same endpoint twice (unlike, for example,
in UDP). The ipc transport does, however, let one process bind to an endpoint already
used by another process. It’s meant to allow a process to recover after a crash.
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Although ØMQ tries to be neutral about which side binds and which side connects,
there are differences. We’ll see these in more detail later. The upshot is that you should
usually think in terms of “servers” as static parts of your topology that bind to more or
less fixed endpoints, and “clients” as dynamic parts that come and go and connect to
these endpoints. Then, design your application around this model. The chances that it
will “just work” are much better like that.

Sockets have types. The socket type defines the semantics of the socket: its policies for
routing messages inwards and outwards, queuing, etc. You can connect certain types of
socket together, such as a publisher socket and a subscriber socket. Sockets work to‐
gether in “messaging patterns.” We’ll look at this in more detail later.

It’s the ability to connect sockets in these different ways that gives ØMQ its basic power
as a message queuing system. There are layers on top of this, such as proxies, which
we’ll get to later. But essentially, with ØMQ you define your network architecture by
plugging pieces together like a child’s construction toy.

Using Sockets to Carry Data
To send and receive messages, you use the zmq_msg_send() and zmq_msg_recv()
methods. The names are conventional, but ØMQ’s I/O model is different enough from
the TCP model (Figure 2-1) that you will need time to get your head around it.

Figure 2-1. TCP sockets are 1-to-1

Let’s look at the main differences between TCP sockets and ØMQ sockets when it comes
to working with data:

• ØMQ sockets carry messages, like UDP, rather than a stream of bytes as TCP does.
A ØMQ message is length-specified binary data. We’ll come to messages shortly;
their design is optimized for performance and so a little tricky.
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• ØMQ sockets do their I/O in a background thread. This means that messages arrive
in local input queues and are sent from local output queues, no matter what your
application is busy doing.

• ØMQ sockets have 1-to-N routing behavior built in, according to the socket type.

The zmq_msg_send() method does not actually send the message to the socket connec‐
tion(s). It queues the message so that the I/O thread can send it asynchronously. It does
not block except in some exception cases. So, the message is not necessarily sent when
zmq_msg_send() returns to your application.

Unicast Transports
ØMQ provides a set of unicast transports (inproc, ipc, and tcp) and multicast trans‐
ports (epgm, pgm). Multicast is an advanced technique that we’ll come to later. Don’t even
start using it unless you know that your fan-out ratios will make 1-to-N unicast im‐
possible.

For most common cases, use tcp, which is a disconnected TCP transport. It is elastic,
portable, and fast enough for most cases. We call this “disconnected” because ØMQ’s
tcp transport doesn’t require the endpoint to exist before you connect to it. Clients and
servers can connect and bind at any time, can go and come back, and it remains trans‐
parent to applications.

The inter-process ipc transport is also disconnected. It has one limitation: it does not
yet work on Windows. By convention we use endpoint names with an “.ipc” extension
to avoid potential conflict with other filenames. On Unix systems, if you use ipc end‐
points you need to create these with appropriate permissions; otherwise, they may not
be shareable between processes running under different user IDs. You must also make
sure all processes can access the files, e.g., by running in the same working directory.

The inter-thread transport, inproc, is a connected signaling transport. It is much faster
than tcp or ipc. This transport has a specific limitation compared to tcp and ipc,
however the server must issue a bind request before any client issues a connect. This is
something future versions of ØMQ may fix, but at present this defines how you use
inproc sockets. We create and bind one socket and start the child threads, which create
and connect the other sockets.

ØMQ Is Not a Neutral Carrier
A common question that newcomers to ØMQ ask (it’s one I’ve asked myself) is, “How
do I write an XYZ server in ØMQ?” For example, “How do I write an HTTP server in
ØMQ?” The implication is that if we use normal sockets to carry HTTP requests and
responses, we should be able to use ØMQ sockets to do the same, only much faster and
better.
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The answer used to be, “This is not how it works.” ØMQ is not a neutral carrier; it
imposes a framing on the transport protocols it uses. This framing is not compatible
with existing protocols, which tend to use their own framing. For example, compare an
HTTP request (Figure 2-2) and a ØMQ request (Figure 2-3), both over TCP/IP. The
HTTP request uses CRLF (carriage return line feed) as its simplest framing delimiter,
whereas ØMQ uses a length-specified frame.

Figure 2-2. HTTP on the wire

Figure 2-3. ØMQ on the wire

So, you could write an HTTP-like protocol using ØMQ, using for example the request-
reply socket pattern. But it would not be HTTP.

Since ØMQ v3.3, however, ØMQ has a socket option called ZMQ_ROUTER_RAW that lets
you read and write data without the ØMQ framing. You could use this to read and write
proper HTTP requests and responses. Hardeep Singh contributed this change so that
he could connect to Telnet servers from his ØMQ application. This is still, at the time
of writing, somewhat experimental, but it shows how ØMQ keeps evolving to solve new
problems. Maybe the next patch will be yours.

I/O Threads
We said that ØMQ does I/O in a background thread. One I/O thread (for all sockets)
is sufficient for all but the most extreme applications. When you create a new context,
it starts with one I/O thread. The general rule of thumb is to allow one I/O thread per
gigabyte of data in or out per second. To raise the number of I/O threads, use the
zmq_ctx_set() call before creating any sockets:

int io-threads = 4;
void *context = zmq_ctx_new ();
zmq_ctx_set (context, ZMQ_IO_THREADS, io_threads);
assert (zmq_ctx_get (context, ZMQ_IO_THREADS) == io_threads);

We’ve seen that one socket can handle dozens, even thousands of connections at once.
This has a fundamental impact on how you write applications. A traditional networked
application has one process or one thread per remote connection, and that process or
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thread handles one socket. ØMQ lets you collapse this entire structure into a single
process and then break it up as necessary for scaling.

If you are using ØMQ for inter-thread communications only (i.e., a multithreaded ap‐
plication that does no external socket I/O) you can set the I/O threads to zero. It’s not
a significant optimization though, more of a curiosity.

Messaging Patterns
Underneath the brown paper wrapping of ØMQ’s socket API lies the world of messaging
patterns. If you have a background in enterprise messaging, or know UDP well, these
will be vaguely familiar. But to most ØMQ newcomers, they are a surprise because we’re
so used to the TCP paradigm where a socket maps one-to-one to another node.

Let’s recap briefly what ØMQ does for you. It delivers blobs of data (messages) to nodes,
quickly and efficiently. You can map nodes to threads, processes, or nodes. ØMQ gives
your applications a single socket API to work with, no matter what the actual transport
is (e.g., in-process, inter-process, TCP, or multicast). It automatically reconnects to peers
as they come and go. It queues messages at both sender and receiver, as needed. It 
manages these queues carefully to ensure processes don’t run out of memory, over‐
flowing to disk when appropriate. It handles socket errors. It does all I/O in background
threads. It uses lock-free techniques for talking between nodes, so there are never locks,
waits, semaphores, or deadlocks.

But cutting through that, it routes and queues messages according to precise recipes
called patterns. It is these patterns that provide ØMQ’s intelligence. They encapsulate
our hard-earned experience of the best ways to distribute data and work. ØMQ’s patterns
are hard-coded, but future versions may allow user-definable patterns.

ØMQ patterns are implemented by pairs of sockets with matching types. In other words,
to understand ØMQ patterns you need to understand socket types and how they work
together. Mostly, this just takes some studying; there is little that is obvious at this level.

The built-in core ØMQ patterns are:

• Request-reply, which connects a set of clients to a set of services. This is a remote
procedure call and task distribution pattern.

• Publish-subscribe, which connects a set of publishers to a set of subscribers. This is
a data distribution pattern.

• Pipeline, which connects nodes in a fan-out/fan-in pattern that can have multiple
steps and loops. This is a parallel task distribution and collection pattern.

We looked at each of these in the first chapter. There’s one more pattern that people tend
to try to use when they still think of ØMQ in terms of traditional TCP sockets: exclusive
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pair, which connects two sockets exclusively. This is a pattern you should use only to
connect two threads in a process. We’ll see an example at the end of this chapter.

The zmq_socket() man page is fairly clear about the patterns; it’s worth reading it several
times until it starts to make sense. These are the socket combinations that are valid for
a connect-bind pair (either side can bind):

• PUB and SUB
• REQ and REP
• REQ and ROUTER
• DEALER and REP
• DEALER and ROUTER
• DEALER and DEALER
• ROUTER and ROUTER
• PUSH and PULL
• PAIR and PAIR

You’ll also see references to XPUB and XSUB sockets, which we’ll come to later (they’re
like raw versions of PUB and SUB). Any other combination will produce undocumented
and unreliable results, and future versions of ØMQ will probably return errors if you
try them. You can and will, of course, bridge other socket types via code (i.e., read from
one socket type and write to another).

High-Level Messaging Patterns
These four core patterns are cooked into ØMQ. They are part of the ØMQ API, imple‐
mented in the core C++ library, and are guaranteed to be available in all fine retail stores.

On top of those, we add high-level patterns. We build these high-level patterns on top
of ØMQ and implement them in whatever language we’re using for our application.
They are not part of the core library, do not come with the ØMQ package, and exist in
their own space as part of the ØMQ community. For example, the Majordomo pattern,
which we explore in Chapter 4 sits in the GitHub Majordomo project in the ØMQ
organization.

One of the things we aim to provide you with in this book is a set of such high-level
patterns, both small (how to handle messages sanely) and large (how to make a reliable
publish-subscribe architecture).
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Working with Messages
On the wire, ØMQ messages are blobs of any size, from zero upwards, that fit in memory.
You do your own serialization using protobufs, msgpack, JSON, or whatever else your
applications need to speak. It’s wise to choose a data representation that is portable and
fast, but you can make your own decisions about trade-offs.

In memory, ØMQ messages are zmq_msg_t structures (or classes, depending on your
language). Here are the basic ground rules for using ØMQ messages in C:

• You create and pass around zmq_msg_t objects, not blocks of data.
• To read a message, you use zmq_msg_init() to create an empty message, and then

you pass that to zmq_msg_recv().
• To write a message from new data, you use zmq_msg_init_size() to create a mes‐

sage and at the same time allocate a block of data of some size. You then fill that
data using memcpy(), and pass the message to zmq_msg_send().

• To release (not destroy) a message, you call zmq_msg_close(). This drops a refer‐
ence, and eventually ØMQ will destroy the message.

• To access the message content, you use zmq_msg_data(). To know how much data
the message contains, use zmq_msg_size().

• Do not use zmq_msg_move(), zmq_msg_copy(), or zmq_msg_init_data() unless
you’ve read the manual pages and know precisely why you need these.

Here is a typical chunk of code working with messages that should be familiar if you
have been paying attention. This is from the zhelpers.h file we use in all the examples:

//  Receive 0MQ string from socket and convert into C string
static char *
s_recv (void *socket) {
    zmq_msg_t message;
    zmq_msg_init (&message);
    int size = zmq_msg_recv (&message, socket, 0);
    if (size == -1)
        return NULL;
    char *string = malloc (size + 1);
    memcpy (string, zmq_msg_data (&message), size);
    zmq_msg_close (&message);
    string [size] = 0;
    return (string);
}

//  Convert C string to 0MQ string and send to socket
static int
s_send (void *socket, char *string) {
    zmq_msg_t message;
    zmq_msg_init_size (&message, strlen (string));
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    memcpy (zmq_msg_data (&message), string, strlen (string));
    int size = zmq_msg_send (&message, socket, 0);
    zmq_msg_close (&message);
    return (size);
}

You can easily extend this code to send and receive blobs of arbitrary length.

After you pass a message to zmq_msg_send(), ØMQ will clear the mes‐
sage (i.e., set the size to zero). You cannot send the same message twice,
and you cannot access the message data after sending it.
If you want to send the same message more than once, create a second
message, initialize it using zmq_msg_init(), and then use
zmq_msg_copy() to create a copy of the first message. This does not
copy the data, but rather the reference. You can then send the message
twice (or more, if you create more copies), and the message will only
be finally destroyed when the last copy is sent or closed.

ØMQ also supports multipart messages, which let you send or receive a list of frames
as a single on-the-wire message. This is widely used in real applications, as we’ll see later
in this chapter and in Chapter 3.

Frames (also called “message parts” in the ØMQ reference manual pages) are the basic
wire format for ØMQ messages. A frame is a length-specified block of data. The length
can be from zero upwards. If you’ve done any TCP programming you’ll appreciate why
frames are a useful answer to the question, “How much data am I supposed to read off
this network socket now?”

There is a wire-level protocol called ZMTP that defines how ØMQ reads
and writes frames on a TCP connection. If you’re interested in how this
works, the spec is quite short.

Originally, a ØMQ message was one frame, like UDP. We later extended this with mul‐
tipart messages, which are quite simply series of frames with a “more” bit set to one,
followed by one with that bit set to zero. The ØMQ API then lets you write messages
with a “more” flag, and when you read messages, it lets you check if there’s “more.”

In the low-level ØMQ API and the reference manual, therefore, there’s some fuzziness
about messages versus parts. So here’s a useful lexicon:

• A message can be one or more parts.
• These parts are also called frames.
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• Each part is a zmq_msg_t object.
• You send and receive each part separately, in the low-level API.
• Higher-level APIs provide wrappers to send entire multipart messages.

Some other things that are worth knowing about messages:

• You may send zero-length messages, e.g., for sending a signal from one thread to
another.

• ØMQ guarantees to deliver all the parts (one or more) of a message, or none of
them.

• ØMQ does not send the message (single or multipart) right away, but at some in‐
determinate later time. A multipart message must therefore fit in memory.

• A single-part message must also fit in memory. If you want to send files of arbitrary
sizes, you should break them into pieces and send each piece as separate single-part
messages.

• You must call zmq_msg_close() when finished with a message, in languages that
don’t automatically destroy objects when a scope closes.

And to be necessarily repetitive, do not use zmq_msg_init_data() yet. This is a zero-
copy method and is guaranteed to create trouble for you. There are far more important
things to learn about ØMQ before you start to worry about shaving off microseconds.

Handling Multiple Sockets
The main loop of most examples so far has been:

1. Wait for message on socket.
2. Process message.
3. Repeat.

What if we want to read from multiple endpoints at the same time? The simplest way
is to connect one socket to all the endpoints and get ØMQ to do the fan-in for us. This
is legal if the remote endpoints are in the same pattern, but it would be wrong to connect
a PULL socket to a PUB endpoint, for example.

To actually read from multiple sockets all at once, use zmq_poll(). An even better way
might be to wrap zmq_poll() in a framework that turns it into a nice event-driven
reactor, but that involves significantly more work than we want to cover here.

Let’s start with a dirty hack, partly for the fun of not doing it right, but mainly because
it lets me show you how to do non-blocking socket reads. Example 2-1 is a simple
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example of reading from two sockets using non-blocking reads. This rather confused
program acts both as a subscriber to weather updates, and a worker for parallel tasks.

Example 2-1. Multiple socket reader (msreader.c)
//
//  Reading from multiple sockets
//  This version uses a simple recv loop
//
#include "zhelpers.h"

int main (void) 
{
    //  Prepare our context and sockets
    void *context = zmq_ctx_new ();

    //  Connect to task ventilator
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Connect to weather server
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5556");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "10001 ", 6);

    //  Process messages from both sockets
    //  We prioritize traffic from the task ventilator
    while (1) {
        //  Process any waiting tasks
        int rc;
        for (rc = 0; !rc; ) {
            zmq_msg_t task;
            zmq_msg_init (&task);
            if ((rc = zmq_msg_recv (&task, receiver, ZMQ_DONTWAIT)) != -1) {
                //  Process task
            }
            zmq_msg_close (&task);
        }
        //  Process any waiting weather updates
        for (rc = 0; !rc; ) {
            zmq_msg_t update;
            zmq_msg_init (&update);
            if ((rc = zmq_msg_recv (&update, subscriber, ZMQ_DONTWAIT)) != -1) {
                //  Process weather update
            }
            zmq_msg_close (&update);
        }
        //  No activity, so sleep for 1 msec
        s_sleep (1);
    }
    //  We never get here, but clean up anyhow
    zmq_close (receiver);
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    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

The cost of this approach is some additional latency on the first message (the sleep at
the end of the loop, when there are no waiting messages to process). This would be a
problem in applications where submillisecond latency was vital. Also, you need to check
the documentation for nanosleep() (or whatever function you use) to make sure it does
not busy-loop.

You can treat the sockets fairly by reading first from one, then the second, rather than
prioritizing them as we did in this example.

Example 2-2 shows the same little senseless application done right, using zmq_poll().

Example 2-2. Multiple socket poller (mspoller.c)
//
//  Reading from multiple sockets
//  This version uses zmq_poll()
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Connect to task ventilator
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

     //  Connect to weather server
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5556");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "10001 ", 6);

    //  Initialize poll set
    zmq_pollitem_t items [] = {
        { receiver, 0, ZMQ_POLLIN, 0 },
        { subscriber, 0, ZMQ_POLLIN, 0 }
    };
    //  Process messages from both sockets
    while (1) {
        zmq_msg_t message;
        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            zmq_msg_init (&message);
            zmq_msg_recv (&message, receiver, 0);
            //  Process task
            zmq_msg_close (&message);
        }

Messaging Patterns | 43



        if (items [1].revents & ZMQ_POLLIN) {
            zmq_msg_init (&message);
            zmq_msg_recv (&message, subscriber, 0);
            //  Process weather update
            zmq_msg_close (&message);
        }
    }
    //  We never get here
    zmq_close (receiver);
    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

The items structure has these four members:
typedef struct {
    void *socket;       //  0MQ socket to poll on
    int fd;             //  OR, native file handle to poll on
    short events;       //  Events to poll on
    short revents;      //  Events returned after poll
} zmq_pollitem_t;

Multipart Messages
ØMQ lets us compose a message out of several frames, giving us a “multipart message.”
Realistic applications use multipart messages heavily, both for wrapping messages with
address information and for simple serialization. We’ll look at reply envelopes later.
What we’ll learn now is simply how to safely (but blindly) read and write multipart
messages in any application (like a proxy) that needs to forward messages without in‐
specting them.

When you work with multipart messages, each part is a zmq_msg item. For example, if
you are sending a message with five parts, you must construct, send, and destroy five
zmq_msg items. You can do this in advance (and store the zmq_msg items in an array or
structure), or as you send them, one by one.

Here is how we send the frames in a multipart message (we receive each frame into a
message object):

zmq_msg_send (socket, &message, ZMQ_SNDMORE);
...
zmq_msg_send (socket, &message, ZMQ_SNDMORE);
...
zmq_msg_send (socket, &message, 0);

Here is how we receive and process all the parts in a message, be it single part or mul‐
tipart:

while (1) {
    zmq_msg_t message;

44 | Chapter 2: Sockets and Patterns



    zmq_msg_init (&message);
    zmq_msg_recv (socket, &message, 0);
    //  Process the message frame
    zmq_msg_close (&message);
    int more;
    size_t more_size = sizeof (more);
    zmq_getsockopt (socket, ZMQ_RCVMORE, &more, &more_size);
    if (!more)
        break;      //  Last message frame
}

Some things to know about multipart messages:

• When you send a multipart message, the first part and all following parts are only
actually sent on the wire when you send the final part.

• If you are using zmq_poll(), when you receive the first part of a message, all the
rest has also arrived.

• You will receive all parts of a message, or none at all.
• Each part of a message is a separate zmq_msg item.
• You will receive all parts of a message whether or not you set the RCVMORE option.
• On sending, ØMQ queues message frames in memory until the last is received, and

then sends them all.
• There is no way to cancel a partially sent message, except by closing the socket.

Intermediaries and Proxies
ØMQ aims for decentralized intelligence, but that doesn’t mean your network is empty
space in the middle. It’s filled with message-aware infrastructure, and quite often, you
build that infrastructure with ØMQ. The ØMQ plumbing can range from tiny pipes to
full-blown service-oriented brokers. The messaging industry calls this intermediation,
meaning that the stuff in the middle deals with either side. In ØMQ, we call these proxies,
queues, forwarders, devices, or brokers, depending on the context.

This pattern is extremely common in the real world and is why our societies and econo‐
mies are filled with intermediaries who have no other real function than to reduce the
complexity and scaling costs of larger networks. Real-world intermediaries are typically
called wholesalers, distributors, managers, and so on.

The Dynamic Discovery Problem
One of the problems you will hit as you design larger distributed architectures is dis‐
covery. That is, how do pieces know about each other? It’s especially difficult if pieces
come and go; thus, we can call this the “dynamic discovery problem.”
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There are several solutions to dynamic discovery. The simplest is to entirely avoid it by
hard-coding (or configuring) the network architecture so discovery is done by hand.
That is, when you add a new piece, you reconfigure the network to know about it.

In practice, this leads to increasingly fragile and unwieldy architectures. Let’s say you
have one publisher and a hundred subscribers. You connect each subscriber to the pub‐
lisher by configuring a publisher endpoint in each subscriber. That’s easy (Figure 2-4).
Subscribers are dynamic; the publisher is static. Now say you add more publishers.
Suddenly, it’s not so easy any more. If you continue to connect each subscriber to each
publisher, the cost of avoiding dynamic discovery gets higher and higher.

Figure 2-4. Small-scale pub-sub network

There are quite a few solutions to this problem, but the very simplest is to add an
intermediary; that is, a static point in the network to which all other nodes connect. In
classic messaging, this is the job of the message broker. ØMQ doesn’t come with a
message broker as such, but it lets us build intermediaries quite easily.

You might wonder, if all networks eventually get large enough to need intermediaries,
why don’t we simply have a message broker in place for all applications? For beginners,
it’s a fair compromise. Just always use a star topology, forget about performance, and
things will usually work. However, message brokers are greedy things; in their role as
central intermediaries, they become too complex, too stateful, and eventually
a problem.

It’s better to think of intermediaries as simple stateless message switches. The best anal‐
ogy is an HTTP proxy; it’s there, but doesn’t have any special role. Adding a pub-sub
proxy solves the dynamic discovery problem in our example. We set the proxy in the
“middle” of the network (Figure 2-5). The proxy opens an XSUB socket and an XPUB
socket, and binds each to well-known IP addresses and ports. Then, all other processes
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connect to the proxy, instead of to each other. It becomes trivial to add more subscribers
or publishers.

Figure 2-5. Pub-sub network with a proxy

We need XPUB and XSUB sockets because ØMQ does subscription forwarding: SUB
sockets actually send subscriptions to PUB sockets as special messages. The proxy has
to forward these as well, by reading them from the XPUB socket and writing them to
the XSUB socket. This is the main use case for XSUB and XPUB (Figure 2-6).

Figure 2-6. Extended publish-subscribe
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Shared Queue (DEALER and ROUTER Sockets)
In the “Hello World” client/server application, we have one client that talks to one ser‐
vice. However, in real cases we usually need to allow multiple services as well as multiple
clients. This lets us scale up the power of the service (many threads or processes or nodes
rather than just one). The only constraint is that services must be stateless, with all state
being in the request or in some shared storage, such as a database.

There are two ways to connect multiple clients to multiple servers. The brute-force way
is to connect each client socket to multiple service endpoints. One client socket can
connect to multiple service sockets, and the REQ socket will then distribute requests
among these services. Let’s say you connect a client socket to three service endpoints:
A, B, and C. The client makes requests R1, R2, R3, R4. R1 and R4 go to service A, R2
goes to B, and R3 goes to service C (Figure 2-7).

Figure 2-7. Request distribution

This design lets you add more clients cheaply. You can also add more services. Each
client will distribute its requests to the services. But each client has to know the service
topology. If you have 100 clients and then you decide to add three more services, you
need to reconfigure and restart all 100 clients in order for the clients to know about the
three new services.

That’s clearly not the kind of thing we want to be doing at 3 a.m. when our supercom‐
puting cluster has run out of resources and we desperately need to add a couple of
hundred of new service nodes. Too many static pieces are like liquid concrete: knowledge
is distributed, and the more static pieces you have, the more effort it is to change the
topology. What we want is something sitting in between clients and services that cen‐
tralizes all knowledge of the topology. Ideally, we should be able to add and remove
services or clients at any time without touching any other part of the topology.
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So, we’ll write a little message queuing broker that gives us this flexibility. The broker
binds to two endpoints, a frontend for clients and a backend for services. It then uses
zmq_poll() to monitor these two sockets for activity, and when it has some, it shuttles
messages between its two sockets. It doesn’t actually manage any queues explicitly—
ØMQ does that automatically on each socket.

When you use REQ to talk to REP, you get a strictly synchronous request-reply dialog.
The client sends a request. The service reads the request and sends a reply. The client
then reads the reply. If either the client or the service tries to do anything else (e.g.,
sending two requests in a row without waiting for a response), it will get an error.

But our broker has to be non-blocking. Obviously, we can use zmq_poll() to wait for
activity on either socket, but we can’t use REP and REQ.

Luckily, there are two sockets called DEALER and ROUTER that let you do non-
blocking request-response. You’ll see in Chapter 3 how DEALER and ROUTER sockets
let you build all kinds of asynchronous request-reply flows. For now, we’re just going
to see how DEALER and ROUTER let us extend REQ-REP across an intermediary—
that is, our little broker.

In this simple extended request-reply pattern, REQ talks to ROUTER and DEALER
talks to REP. In between the DEALER and ROUTER, we have to have code (like our
broker) that pulls messages off one socket and shoves them onto the other
(Figure 2-8).

Figure 2-8. Extended request-reply
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The request-reply broker binds to two endpoints, one for clients to connect to (the
frontend socket) and one for workers to connect to (the backend). To test this broker,
you will want to change your workers so they connect to the backend socket.
Example 2-3 is a client that shows what I mean.

Example 2-3. Request-reply client (rrclient.c)
//
//  Hello World client
//  Connects REQ socket to tcp://localhost:5559
//  Sends "Hello" to server, expects "World" back
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to server
    void *requester = zmq_socket (context, ZMQ_REQ);
    zmq_connect (requester, "tcp://localhost:5559");

    int request_nbr;
    for (request_nbr = 0; request_nbr != 10; request_nbr++) {
        s_send (requester, "Hello");
        char *string = s_recv (requester);
        printf ("Received reply %d [%s]\n", request_nbr, string);
        free (string);
    }
    zmq_close (requester);
    zmq_ctx_destroy (context);
    return 0;
}

The code for the worker is in Example 2-4.

Example 2-4. Request-reply worker (rrworker.c)
//
//  Hello World worker
//  Connects REP socket to tcp://*:5560
//  Expects "Hello" from client, replies with "World"
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *responder = zmq_socket (context, ZMQ_REP);
    zmq_connect (responder, "tcp://localhost:5560");
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    while (1) {
        //  Wait for next request from client
        char *string = s_recv (responder);
        printf ("Received request: [%s]\n", string);
        free (string);

        //  Do some 'work'
        sleep (1);

        //  Send reply back to client
        s_send (responder, "World");
    }
    //  We never get here, but clean up anyhow
    zmq_close (responder);
    zmq_ctx_destroy (context);
    return 0;
}

And finally, the code for the broker, which properly handles multipart messages, is in
Example 2-5.

Example 2-5. Request-reply broker (rrbroker.c)
//
//  Simple request-reply broker
//
#include "zhelpers.h"

int main (void) 
{
    //  Prepare our context and sockets
    void *context = zmq_ctx_new ();
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    void *backend  = zmq_socket (context, ZMQ_DEALER);
    zmq_bind (frontend, "tcp://*:5559");
    zmq_bind (backend,  "tcp://*:5560");

    //  Initialize poll set
    zmq_pollitem_t items [] = {
        { frontend, 0, ZMQ_POLLIN, 0 },
        { backend,  0, ZMQ_POLLIN, 0 }
    };
    //  Switch messages between sockets
    while (1) {
        zmq_msg_t message;
        int more;           //  Multipart detection

        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            while (1) {
                //  Process all parts of the message

Messaging Patterns | 51



                zmq_msg_init (&message);
                zmq_msg_recv (&message, frontend, 0);
                size_t more_size = sizeof (more);
                zmq_getsockopt (frontend, ZMQ_RCVMORE, &more, &more_size);
                zmq_msg_send (&message, backend, more? ZMQ_SNDMORE: 0);
                zmq_msg_close (&message);
                if (!more)
                    break;      //  Last message part
            }
        }
        if (items [1].revents & ZMQ_POLLIN) {
            while (1) {
                //  Process all parts of the message
                zmq_msg_init (&message);
                zmq_msg_recv (&message, backend, 0);
                size_t more_size = sizeof (more);
                zmq_getsockopt (backend, ZMQ_RCVMORE, &more, &more_size);
                zmq_msg_send (&message, frontend, more? ZMQ_SNDMORE: 0);
                zmq_msg_close (&message);
                if (!more)
                    break;      //  Last message part
            }
        }
    }
    //  We never get here, but clean up anyhow
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

Using a request-reply broker makes your client/server architectures easier to scale, be‐
cause clients don’t see workers and workers don’t see clients. The only static node is the
broker in the middle (Figure 2-9).
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Figure 2-9. Request-reply broker

ØMQ’s Built-in Proxy Function
It turns out that the core loop in the previous section’s rrbroker is very useful, and
reusable. It lets us build pub-sub forwarders and shared queues and other little inter‐
mediaries with very little effort. ØMQ wraps this up in a single method, zmq_proxy():

zmq_proxy (frontend, backend, capture);

The two sockets (or three if we want to capture data) must be properly connected, bound,
and configured. When we call the zmq_proxy() method, it’s exactly like starting the
main loop of rrbroker. Let’s rewrite the request-reply broker to call zmq_proxy(), and
re-badge this as an expensive-sounding “message queue” (people have charged houses
for code that did less). Example 2-6 shows the result.

Example 2-6. Message queue broker (msgqueue.c)
//
//  Simple message queuing broker
//  Same as request-reply broker but using QUEUE device
//
#include "zhelpers.h"

int main (void) 
{
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    void *context = zmq_ctx_new ();

    //  Socket facing clients
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    int rc = zmq_bind (frontend, "tcp://*:5559");
    assert (rc == 0);

    //  Socket facing services
    void *backend = zmq_socket (context, ZMQ_DEALER);
    rc = zmq_bind (backend, "tcp://*:5560");
    assert (rc == 0);

    //  Start the proxy
    zmq_proxy (frontend, backend, NULL);

    //  We never get here...
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

If you’re like most ØMQ users, at this stage you’re starting to think, “What kind of evil
stuff can I do if I plug random socket types into the proxy?” The short answer is: try it
and work out what is happening. In practice, you would usually stick to ROUTER/
DEALER, XSUB/XPUB, or PULL/PUSH.

Transport Bridging
A frequent request from ØMQ users is, “How do I connect my ØMQ network with
technology X?” where X is some other networking or messaging technology. The simple
answer is to build a “bridge.” A bridge is a small application that speaks one protocol at
one socket, and converts to/from a second protocol at another socket. A protocol in‐
terpreter, if you like. A common bridging problem in ØMQ is to bridge two transports
or networks.

As an example, we’re going to write a little proxy (Example 2-7) that sits in between a
publisher and a set of subscribers, bridging two networks. The frontend socket (SUB)
faces the internal network where the weather server is sitting, and the backend (PUB)
faces subscribers on the external network. It subscribes to the weather service on the
frontend socket, and republishes its data on the backend socket (Figure 2-10).

Example 2-7. Weather update proxy (wuproxy.c)
//
//  Weather proxy device
//
#include "zhelpers.h"

int main (void)
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{
    void *context = zmq_ctx_new ();

    //  This is where the weather server sits
    void *frontend = zmq_socket (context, ZMQ_XSUB);
    zmq_connect (frontend, "tcp://192.168.55.210:5556");

    //  This is our public endpoint for subscribers
    void *backend = zmq_socket (context, ZMQ_XPUB);
    zmq_bind (backend, "tcp://10.1.1.0:8100");

    //  Run the proxy until the user interrupts us
    zmq_proxy (frontend, backend, NULL);
    
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

Figure 2-10. Pub-sub forwarder proxy
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It looks very similar to the earlier proxy example, but the key part is that the frontend
and backend sockets are on two different networks. We can use this model, for example,
to connect a multicast network (pgm transport) to a TCP publisher.

Handling Errors and ETERM
ØMQ’s error handling philosophy is a mix of fail fast and resilience. Processes, we be‐
lieve, should be as vulnerable as possible to internal errors, and as robust as possible
against external attacks and errors. To give an analogy, a living cell will self-destruct if
it detects a single internal error, yet it will resist attack from the outside by all means
possible.

Assertions, which pepper the ØMQ code, are absolutely vital to robust code; they just
have to be on the right side of the cellular wall. And there should be such a wall. If it is
unclear whether a fault is internal or external, that is a design flaw to be fixed. In C/C+
+, assertions stop the application immediately with an error. In other languages, you
may get exceptions or halts.

When ØMQ detects an external fault, it returns an error to the calling code. In some
rare cases, it drops messages silently if there is no obvious strategy for recovering from
the error.

In most of the C examples we’ve seen so far, there’s been no error handling. Real code
should do error handling on every single ØMQ call. If you’re using a language binding
other than C, the binding may handle errors for you. In C, you do need to do this
yourself. There are some simple rules, starting with POSIX conventions:

• Methods that create objects return NULL if they fail.
• Methods that process data may return the number of bytes processed, or -1 on an

error or failure.
• Other methods return 0 on success and -1 on an error or failure.
• The error code is provided in errno or zmq_errno().
• Descriptive error text for logging is provided by zmq_strerror().

For example:
void *context = zmq_ctx_new ();
assert (context);
void *socket = zmq_socket (context, ZMQ_REP);
assert (socket);
int rc = zmq_bind (socket, "tcp://*:5555");
if (rc != 0) {
    printf ("E: bind failed: %s\n", strerror (errno));
    return -1;
}
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There are two main exceptional conditions that you may want to handle as nonfatal:

• When a thread calls zmq_msg_recv() with the ZMQ_DONTWAIT option and there is
no waiting data, ØMQ will return -1 and set errno to EAGAIN.

• When a thread calls zmq_ctx_destroy() and other threads are doing blocking
work, the zmq_ctx_destroy() call closes the context and all blocking calls exit with
-1 and errno set to ETERM.

In C/C++, asserts can be removed entirely in optimized code, so don’t make the mistake
of wrapping the whole ØMQ call in an assert(). It looks neat; then the optimizer
removes all the asserts and the calls you want to make, and your application breaks in
impressive ways.

Let’s see how to shut down a process cleanly. We’ll take the parallel pipeline example
from the previous section. If we’ve started a whole lot of workers in the background, we
now want to kill them when the batch is finished. Let’s do this by sending a kill message
to the workers. The best place to do this is the sink, because it really knows when the
batch is done.

How do we connect the sink to the workers? The PUSH/PULL sockets are one-way only.
The standard ØMQ answer is: create a new socket flow for each type of problem you
need to solve. We’ll use a publish-subscribe model to send kill messages to the workers:

• The sink creates a PUB socket on a new endpoint.
• Workers bind their input sockets to this endpoint.
• When the sink detects the end of the batch, it sends a kill to its PUB socket.
• When a worker detects this kill message, it exits.

It doesn’t take much new code in the sink:
void *control = zmq_socket (context, ZMQ_PUB);
zmq_bind (control, "tcp://*:5559");
...
//  Send kill signal to workers
zmq_msg_init_data (&message, "KILL", 5);
zmq_msg_send (control, &message, 0);
zmq_msg_close (&message);

Figure 2-11 illustrates the resulting configuration.
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Figure 2-11. Parallel pipeline with kill signaling

Example 2-8 contains the code for the worker process, which manages two sockets (a
PULL socket getting tasks, and a SUB socket getting control commands) using the
zmq_poll() technique we saw earlier.

Example 2-8. Parallel task worker with kill signaling (taskwork2.c)
//
//  Task worker - design 2
//  Adds pub-sub flow to receive and respond to kill signal
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to receive messages on
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Socket to send messages to
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    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sender, "tcp://localhost:5558");

    //  Socket for control input
    void *controller = zmq_socket (context, ZMQ_SUB);
    zmq_connect (controller, "tcp://localhost:5559");
    zmq_setsockopt (controller, ZMQ_SUBSCRIBE, "", 0);

    //  Process messages from receiver and controller
    zmq_pollitem_t items [] = {
        { receiver, 0, ZMQ_POLLIN, 0 },
        { controller, 0, ZMQ_POLLIN, 0 }
    };
    //  Process messages from both sockets
    while (1) {
        zmq_msg_t message;
        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            zmq_msg_init (&message);
            zmq_msg_recv (&message, receiver, 0);

            //  Do the work
            s_sleep (atoi ((char *) zmq_msg_data (&message)));

            //  Send results to sink
            zmq_msg_init (&message);
            zmq_msg_send (&message, sender, 0);

            //  Simple progress indicator for the viewer
            printf (".");
            fflush (stdout);

            zmq_msg_close (&message);
        }
        //  Any waiting controller command acts as 'KILL'
        if (items [1].revents & ZMQ_POLLIN)
            break;                      //  Exit loop
    }
    //  Finished
    zmq_close (receiver);
    zmq_close (sender);
    zmq_close (controller);
    zmq_ctx_destroy (context);
    return 0;
}

Example 2-9 shows the modified sink application. When it’s finished collecting results,
it broadcasts a kill message to all workers.
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Example 2-9. Parallel task sink with kill signaling (tasksink2.c)
//
//  Task sink - design 2
//  Adds pub-sub flow to send kill signal to workers
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to receive messages on
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_bind (receiver, "tcp://*:5558");

    //  Socket for worker control
    void *controller = zmq_socket (context, ZMQ_PUB);
    zmq_bind (controller, "tcp://*:5559");

    //  Wait for start of batch
    char *string = s_recv (receiver);
    free (string);

    //  Start our clock now
    int64_t start_time = s_clock ();

    //  Process 100 confirmations
    int task_nbr;
    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        char *string = s_recv (receiver);
        free (string);
        if ((task_nbr / 10) * 10 == task_nbr)
            printf (":");
        else
            printf (".");
        fflush (stdout);
    }
    printf ("Total elapsed time: %d msec\n", 
        (int) (s_clock () - start_time));

    //  Send kill signal to workers
    s_send (controller, "KILL");

    //  Finished
    sleep (1);              //  Give 0MQ time to deliver

    zmq_close (receiver);
    zmq_close (controller);
    zmq_ctx_destroy (context);
    return 0;
}
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Handling Interrupt Signals
Realistic applications need to shut down cleanly when interrupted with Ctrl-C or an‐
other signal, such as SIGTERM. By default, these simply kill the process, meaning mes‐
sages won’t be flushed, files won’t be closed cleanly, and so on.

Example 2-10 shows how we handle signals in various languages.

Example 2-10. Handling Ctrl-C cleanly (interrupt.c)
//
//  Shows how to handle Ctrl-C
//
#include <zmq.h>
#include <stdio.h>
#include <signal.h>

//  ---------------------------------------------------------------------
//  Signal handling
//
//  Call s_catch_signals() in your application at startup, and then exit
//  your main loop if s_interrupted is ever 1. Works especially well with 
//  zmq_poll.

static int s_interrupted = 0;
static void s_signal_handler (int signal_value)
{
    s_interrupted = 1;
}

static void s_catch_signals (void)
{
    struct sigaction action;
    action.sa_handler = s_signal_handler;
    action.sa_flags = 0;
    sigemptyset (&action.sa_mask);
    sigaction (SIGINT, &action, NULL);
    sigaction (SIGTERM, &action, NULL);
}

int main (void)
{
    void *context = zmq_ctx_new ();
    void *socket = zmq_socket (context, ZMQ_REP);
    zmq_bind (socket, "tcp://*:5555");

    s_catch_signals ();
    while (1) {
        //  Blocking read will exit on a signal
        zmq_msg_t message;
        zmq_msg_init (&message);
        zmq_msg_recv (&message, socket, 0);
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        if (s_interrupted) {
            printf ("W: interrupt received, killing server...\n");
            break;
        }
    }
    zmq_close (socket);
    zmq_ctx_destroy (context);
    return 0;
}

The program provides s_catch_signals(), which traps Ctrl-C (SIGINT) and SIG
TERM. When either of these signals arrive, the s_catch_signals() handler sets the global
variable s_interrupted. Thanks to your signal handler, your application will not die
automatically. Instead, you have a chance to clean up and exit gracefully. You have to
now explicitly check for an interrupt and handle it properly. Do this by calling
s_catch_signals() (copy this from interrupt.c) at the start of your main code. This
sets up the signal handling. The interrupt will affect ØMQ calls as follows:

• If your code is blocking in zmq_msg_recv(), zmq_poll(), or zmq_msg_send(), when
a signal arrives, the call will return with EINTR.

• Wrappers like s_recv() return NULL if they are interrupted.

So, check for an EINTR return code, a NULL return, and/or s_interrupted.

Here is a typical code fragment:
s_catch_signals ();
client = zmq_socket (...);
while (!s_interrupted) {
    char *message = s_recv (client);
    if (!message)
        break;          //  Ctrl-C used
}
zmq_close (client);

If you call s_catch_signals() and don’t test for interrupts, your application will be‐
come immune to Ctrl-C and SIGTERM, which may be useful but is usually not.

Detecting Memory Leaks
Any long-running application has to manage memory correctly, or eventually it’ll use
up all available memory and crash. If you use a language that handles this automatically
for you, congratulations. If you program in C or C++ or any other language where you’re
responsible for memory management, here’s a short tutorial on using valgrind, which,
among other things, will report on any leaks your programs have:
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• To install valgrind, such as on Ubuntu or Debian, issue:

sudo apt-get install valgrind

• By default, ØMQ will cause valgrind to complain a lot. To remove these warnings,
create a file called valgrind.supp that contains this:

{
   <socketcall_sendto>
   Memcheck:Param
   socketcall.sendto(msg)
   fun:send
   ...
}
{
   <socketcall_sendto>
   Memcheck:Param
   socketcall.send(msg)
   fun:send
   ...
}

• Fix your applications to exit cleanly after Ctrl-C. For any application that exits by
itself, that’s not needed, but for long-running applications, this is essential. Other‐
wise, valgrind will complain about all currently allocated memory.

• Build your application with -DDEBUG, if it’s not your default setting. That ensures
valgrind can tell you exactly where memory is being leaked.

• Finally, run valgrind as follows (all on one line)

valgrind --tool=memcheck --leak-check=full --suppressions=valgrind.supp 
                                  someprog

After fixing any errors it reports, you should get the pleasant message:
==30536== ERROR SUMMARY: 0 errors from 0 contexts...

Multithreading with ØMQ
ØMQ is perhaps the nicest way ever to write multithreaded (MT) applications. Whereas
ØMQ sockets require some readjustment if you are used to traditional sockets, ØMQ
multithreading will take everything you know about writing MT applications, throw it
into a heap in the garden, pour gasoline over it, and set it alight. It’s a rare book that
deserves burning, but most books on concurrent programming do.

To make utterly perfect MT programs (and I mean that literally), we don’t need mutexes,
locks, or any other form of inter-thread communication except messages sent across ØMQ
sockets.
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By “perfect” MT programs, I mean code that’s easy to write and understand, that works
with the same design approach in any programming language and on any operating
system, and that scales across any number of CPUs with zero wait states and no point
of diminishing returns.

If you’ve spent years learning tricks to make your MT code work at all, let alone rapidly,
with locks and semaphores and critical sections, you will be disgusted when you realize
it was all for nothing. If there’s one lesson we’ve learned from 30+ years of concurrent
programming, it is: just don’t share state. It’s like two drunkards trying to share a beer.
It doesn’t matter if they’re good buddies. Sooner or later, they’re going to get into a fight.
And the more drunkards you add to the table, the more they fight each other over the
beer. The tragic majority of MT applications look like drunken bar fights.

The list of weird problems that you need to fight as you write classic shared-state MT
code would be hilarious if it didn’t translate directly into stress and risk, as code that
seems to work suddenly fails under pressure. A few years ago, a large firm with world-
beating experience in buggy code released its list of “11 Likely Problems in Your Mul‐
tithreaded Code,” which covers forgotten synchronization, incorrect granularity, read
and write tearing, lock-free reordering, lock convoys, the two-step dance, and priority
inversion.

Yeah, we counted seven problems, not eleven. That’s not the point, though. The point
is, do you really want code running the power grid or stock market to start getting two-
step lock convoys at 3 p.m. on a busy Thursday? Who cares what the terms actually
mean? This is not what turned us on to programming, fighting ever more complex side
effects with ever more complex hacks.

Some widely used models, despite being the basis for entire industries, are fundamen‐
tally broken, and shared state concurrency is one of them. Code that wants to scale
without limit does it like the Internet does, by sending messages and sharing nothing
except a common contempt for broken programming models.

You should follow some rules to write happy multithreaded code with ØMQ:

• You must not access the same data from multiple threads. Using classic MT tech‐
niques like mutexes is an anti-pattern in ØMQ applications. The only exception to
this is a ØMQ context object, which is threadsafe.

• You must create a ØMQ context for your process, and pass that to all threads that
you want to connect via inproc sockets.

• You may treat threads as separate tasks with their own context, but these threads
cannot communicate over inproc. However, they will be easier to break into stand‐
alone processes afterwards.

• You must not share ØMQ sockets between threads. ØMQ sockets are not thread‐
safe. Technically it’s possible to do this, but it demands semaphores, locks, or mu‐
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texes. This will make your application slow and fragile. The only place where it’s
remotely sane to share sockets between threads is in language bindings that need
to do magic like garbage collection on sockets.

If you need to start more than one proxy in an application, for example, you will want
to run each in its own thread. It is easy to make the error of creating the proxy frontend
and backend sockets in one thread, and then passing the sockets to the proxy in another
thread. This may appear to work but will fail randomly. Remember: do not use or close
sockets except in the thread that created them.

If you follow these rules, you can quite easily split threads into separate processes when
you need to. Application logic can sit in threads, processes or nodes: whatever your scale
needs.

ØMQ uses native OS threads rather than virtual “green” threads. The advantages are
that you don’t need to learn any new threading API, and that ØMQ threads map cleanly
to your operating system. You can use standard tools like Intel’s ThreadChecker to see
what your application is doing. The disadvantages are that your code, when it for in‐
stance starts new threads, won’t be portable, and that if you have a huge number of
threads (in the thousands), some operating systems will get stressed.

Let’s see how this works in practice. We’ll turn our old Hello World server into something
more capable. The original server ran in a single thread. If the work per request is low,
that’s fine: one ØMQ thread can run at full speed on a CPU core, with no waits, doing
an awful lot of work. But realistic servers have to do nontrivial work per request. A single
core may not be enough when 10,000 clients hit the server all at once. So a realistic server
must start multiple worker threads. It then accepts requests as fast as it can and dis‐
tributes these to its worker threads. The worker threads grind through the work and
eventually send their replies back.

You can, of course, do all this using a proxy broker and external worker processes, but
often it’s easier to start one process that gobbles up 16 cores than 16 processes, each
gobbling up one core. Further, running workers as threads will cut out a network hop,
latency, and network traffic.

The MT version of the Hello World service in Example 2-11 basically collapses the
broker and workers into a single process. We use pthreads because it’s the most wide‐
spread standard for multithreading.

Example 2-11. Multithreaded service (mtserver.c)
//
//  Multithreaded Hello World server
//
#include "zhelpers.h"
#include <pthread.h>

Multithreading with ØMQ | 65



static void *
worker_routine (void *context) {
    //  Socket to talk to dispatcher
    void *receiver = zmq_socket (context, ZMQ_REP);
    zmq_connect (receiver, "inproc://workers");

    while (1) {
        char *string = s_recv (receiver);
        printf ("Received request: [%s]\n", string);
        free (string);
        //  Do some 'work'
        sleep (1);
        //  Send reply back to client
        s_send (receiver, "World");
    }
    zmq_close (receiver);
    return NULL;
}

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *clients = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (clients, "tcp://*:5555");

    //  Socket to talk to workers
    void *workers = zmq_socket (context, ZMQ_DEALER);
    zmq_bind (workers, "inproc://workers");

    //  Launch pool of worker threads
    int thread_nbr;
    for (thread_nbr = 0; thread_nbr < 5; thread_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_routine, context);
    }
    //  Connect work threads to client threads via a queue proxy
    zmq_proxy (clients, workers, NULL);

    //  We never get here, but clean up anyhow
    zmq_close (clients);
    zmq_close (workers);
    zmq_ctx_destroy (context);
    return 0;
}

All the code should be recognizable to you by now. Here’s how it works:

• The server starts a set of worker threads. Each worker thread creates a REP socket
and then processes requests on this socket. Worker threads are just like single-
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threaded servers. The only differences are the transport (inproc instead of tcp)
and the bind-connect direction.

• The server creates a ROUTER socket to talk to clients and binds this to its external
interface (over tcp).

• The server creates a DEALER socket to talk to the workers and binds this to its
internal interface (over inproc).

• The server starts a proxy that connects the two sockets. The proxy pulls incoming
requests fairly from all clients and distributes those out to workers. It also routes
replies back to their origin.

Note that creating threads is not portable in most programming languages. The POSIX
library is pthreads, but on Windows you have to use a different API. In our example,
the pthread_create() call starts up a new thread running the worker_routine()
function we defined. We’ll see in Chapter 3 how to wrap this in a portable API.

Here, the “work” is just a one-second pause. We could do anything in the workers,
though, including talking to other nodes. Figure 2-12 shows what the MT server looks
like in terms of ØMQ sockets and nodes. Note how the request-reply chain is REQ-
ROUTER-queue-DEALER-REP.

Figure 2-12. Multithreaded server
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Signaling Between Threads (PAIR Sockets)
When you start making multithreaded applications with ØMQ, you’ll encounter the
question of how to coordinate your threads. Though you might be tempted to insert
“sleep” statements, or use multithreading techniques such as semaphores or mutexes,
the only mechanism that you should use is ØMQ messages. Remember the story of the
drunkards and the beer.

Let’s make three threads that signal each other when they are ready (Figure 2-13). In
Example 2-12, we use PAIR sockets over the inproc transport.

Example 2-12. Multithreaded relay (mtrelay.c)
//
//  Multithreaded relay
//
#include "zhelpers.h"
#include <pthread.h>

static void *
step1 (void *context) {
    //  Connect to step2 and tell it we're ready
    void *xmitter = zmq_socket (context, ZMQ_PAIR);
    zmq_connect (xmitter, "inproc://step2");
    printf ("Step 1 ready, signaling step 2\n");
    s_send (xmitter, "READY");
    zmq_close (xmitter);

    return NULL;
}

static void *
step2 (void *context) {
    //  Bind inproc socket before starting step1
    void *receiver = zmq_socket (context, ZMQ_PAIR);
    zmq_bind (receiver, "inproc://step2");
    pthread_t thread;
    pthread_create (&thread, NULL, step1, context);

    //  Wait for signal and pass it on
    char *string = s_recv (receiver);
    free (string);
    zmq_close (receiver);

    //  Connect to step3 and tell it we're ready
    void *xmitter = zmq_socket (context, ZMQ_PAIR);
    zmq_connect (xmitter, "inproc://step3");
    printf ("Step 2 ready, signaling step 3\n");
    s_send (xmitter, "READY");
    zmq_close (xmitter);
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    return NULL;
}

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Bind inproc socket before starting step2
    void *receiver = zmq_socket (context, ZMQ_PAIR);
    zmq_bind (receiver, "inproc://step3");
    pthread_t thread;
    pthread_create (&thread, NULL, step2, context);

    //  Wait for signal
    char *string = s_recv (receiver);
    free (string);
    zmq_close (receiver);

    printf ("Test successful!\n");
    zmq_ctx_destroy (context);
    return 0;
}

Figure 2-13. The relay race

This is a classic pattern for multithreading with ØMQ:

1. Two threads communicate over inproc, using a shared context.
2. The parent thread creates one socket, binds it to an inproc endpoint, and then starts

the child thread, passing the context to it.
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3. The child thread creates the second socket, connects it to that inproc endpoint, and
then signals to the parent thread that it’s ready.

Note that multithreading code using this pattern is not scalable out to processes. If you
use inproc and socket pairs, you are building a tightly bound application; i.e., one where
your threads are structurally interdependent. Do this when low latency is really vital.
The other design pattern is a loosely bound application, where threads have their own
context and communicate over ipc or tcp. You can easily break loosely bound threads
into separate processes.

This is the first time we’ve shown an example using PAIR sockets. Why use PAIR? Other
socket combinations might seem to work, but they all have side effects that could in‐
terfere with signaling:

• You can use PUSH for the sender and PULL for the receiver. This looks simple and
will work, but remember that PUSH will distribute messages to all available re‐
ceivers. If you by accident start two receivers (e.g., you already have one running
and you start a second), you’ll “lose” half of your signals. PAIR has the advantage
of refusing more than one connection; the pair is exclusive.

• You can use DEALER for the sender and ROUTER for the receiver. ROUTER,
however, wraps your message in an “envelope,” meaning your zero-size signal turns
into a multipart message. If you don’t care about the data and treat anything as a
valid signal, and if you don’t read more than once from the socket, that won’t matter.
If, however, you decide to send real data, you will suddenly find ROUTER providing
you with “wrong” messages. DEALER also distributes outgoing messages, giving
the same risk as PUSH.

• You can use PUB for the sender and SUB for the receiver. This will correctly deliver
your messages exactly as you sent them, and PUB does not distribute as PUSH or
DEALER do. However, you need to configure the subscriber with an empty sub‐
scription, which is annoying. Worse, the reliability of the PUB-SUB link is timing-
dependent, and messages can get lost if the SUB socket is connecting while the PUB
socket is sending its messages.

For these reasons, PAIR makes the best choice for coordination between pairs of threads.

Node Coordination
When you want to coordinate nodes, PAIR sockets won’t work well any more. This is
one of the few areas where the strategies for threads and nodes are different. Principally,
nodes come and go whereas threads are static. PAIR sockets do not automatically re‐
connect if the remote node goes away and comes back.
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The second significant difference between threads and nodes is that you typically have
a fixed number of threads but a more variable number of nodes. Let’s take one of our
earlier scenarios (the weather server and clients) and use node coordination to ensure
that subscribers don’t lose data when starting up.

This is how the application will work:

• The publisher knows in advance how many subscribers it expects. This is just a
magic number it gets from somewhere.

• The publisher starts up and waits for all subscribers to connect. This is the node
coordination part. Each subscriber subscribes and then tells the publisher it’s ready
via another socket.

• When the publisher has all subscribers connected, it starts to publish data.

In this case, we’ll use a REQ-REP socket flow to synchronize the subscribers and the
publisher (Figure 2-14). The code for the publisher is in Example 2-13.

Example 2-13. Synchronized publisher (syncpub.c)
//
//  Synchronized publisher
//
#include "zhelpers.h"

//  We wait for 10 subscribers
#define SUBSCRIBERS_EXPECTED  10

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *publisher = zmq_socket (context, ZMQ_PUB);
    zmq_bind (publisher, "tcp://*:5561");

    //  Socket to receive signals
    void *syncservice = zmq_socket (context, ZMQ_REP);
    zmq_bind (syncservice, "tcp://*:5562");

    //  Get synchronization from subscribers
    printf ("Waiting for subscribers\n");
    int subscribers = 0;
    while (subscribers < SUBSCRIBERS_EXPECTED) {
        //  - wait for synchronization request
        char *string = s_recv (syncservice);
        free (string);
        //  - send synchronization reply
        s_send (syncservice, "");
        subscribers++;
    }
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    //  Now broadcast exactly 1M updates followed by END
    printf ("Broadcasting messages\n");
    int update_nbr;
    for (update_nbr = 0; update_nbr < 1000000; update_nbr++)
        s_send (publisher, "Rhubarb");

    s_send (publisher, "END");

    zmq_close (publisher);
    zmq_close (syncservice);
    zmq_ctx_destroy (context);
    return 0;
}

Figure 2-14. Pub-sub synchronization

The code for the subscriber is in Example 2-14.

Example 2-14. Synchronized subscriber (syncsub.c)
//
//  Synchronized subscriber
//
#include "zhelpers.h"

int main (void)
{
    void *context = zmq_ctx_new ();

    //  First, connect our subscriber socket
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5561");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "", 0);

    //  0MQ is so fast, we need to wait a while...
    sleep (1);

    //  Second, synchronize with publisher
    void *syncclient = zmq_socket (context, ZMQ_REQ);
    zmq_connect (syncclient, "tcp://localhost:5562");
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    //  - send a synchronization request
    s_send (syncclient, "");

    //  - wait for synchronization reply
    char *string = s_recv (syncclient);
    free (string);

    //  Third, get our updates and report how many we got
    int update_nbr = 0;
    while (1) {
        char *string = s_recv (subscriber);
        if (strcmp (string, "END") == 0) {
            free (string);
            break;
        }
        free (string);
        update_nbr++;
    }
    printf ("Received %d updates\n", update_nbr);

    zmq_close (subscriber);
    zmq_close (syncclient);
    zmq_ctx_destroy (context);
    return 0;
}

This Bash shell script will start 10 subscribers and then the publisher:
echo "Starting subscribers..."
for ((a=0; a<10; a++)); do
    syncsub &
done
echo "Starting publisher..."
syncpub

Which gives us this satisfying output:
Starting subscribers...
Starting publisher...
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates
Received 1000000 updates

We can’t assume that the SUB connect will be finished by the time the REQ/REP dialog
is complete. There are no guarantees that outbound connects will finish in any order
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whatsoever, if you’re using any transport except inproc. So, the example does a brute-
force sleep of one second between subscribing and sending the REQ/REP synchroni‐
zation.

A more robust model could be:

• Publisher opens PUB socket and starts sending “Hello” messages (not data).
• Subscribers connect to SUB socket, and when they receive a “Hello” message, they

tell the publisher via a REQ/REP socket pair.
• When the publisher has had all the necessary confirmations, it starts to send real 

data.

Zero-Copy
ØMQ’s message API lets you send and receive messages directly to and from application
buffers without copying data. We call it zero-copy, and it can improve performance in
some applications. Like all optimizations, use this when you know it helps, and measure
before and after. Zero-copy makes your code more complex.

To do zero-copy, you use zmq_msg_init_data() to create a message that refers to a block
of data already allocated on the heap with malloc(), and then you pass that to
zmq_msg_send(). When you create the message, you also pass a function that ØMQ will
call to free the block of data, when it has finished sending the message. This is the
simplest example, assuming “buffer” is a block of 1,000 bytes allocated on the heap:

void my_free (void *data, void *hint) {
    free (data);
}
//  Send message from buffer, which we allocate and 0MQ will free for us
zmq_msg_t message;
zmq_msg_init_data (&message, buffer, 1000, my_free, NULL);
zmq_msg_send (socket, &message, 0);

There is no way to do zero-copy on receive: ØMQ delivers you a buffer that you can
store as long as you wish, but it will not write data directly into application buffers.

On writing, ØMQ’s multipart messages work nicely together with zero-copy. In tradi‐
tional messaging, you need to marshal different buffers together into one buffer that
you can send. That means copying data. With ØMQ, you can send multiple buffers
coming from different sources as individual message frames. Send each field as a length-
delimited frame. To the application it looks like a series of send and receive calls, but
internally the multiple parts get written to the network and read back with single system
calls, so it’s very efficient.
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Pub-Sub Message Envelopes
In the pub-sub pattern, we can split the key into a separate message frame that we call
an envelope. If you want to use pub-sub envelopes, make them yourself. It’s optional,
and in previous pub-sub examples, we didn’t do this. Using a pub-sub envelope is a little
more work for simple cases, but it’s cleaner, especially for real cases, where the key and
the data are naturally separate things.

Figure 2-15 shows is what a publish-subscribe message with an envelope looks like.

Figure 2-15. Pub-sub envelope with separate key

Recall that subscriptions do a prefix match. That is, they look for “all messages starting
with XYZ.” The obvious question is: how to delimit keys from data so that the prefix
match doesn’t accidentally match data. The best answer is to use an envelope, because
the match won’t cross a frame boundary.

Here is a minimalist example of how pub-sub envelopes look in code. This publisher
(Example 2-15) sends messages of two types, A and B. The envelope holds the message
type.

Example 2-15. Pub-sub envelope publisher (psenvpub.c)
//
//  Pub-sub envelope publisher
//  Note that the zhelpers.h file also provides s_sendmore
//
#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and publisher
    void *context = zmq_ctx_new ();
    void *publisher = zmq_socket (context, ZMQ_PUB);
    zmq_bind (publisher, "tcp://*:5563");

    while (1) {
        //  Write two messages, each with an envelope and content
        s_sendmore (publisher, "A");
        s_send (publisher, "We don't want to see this");
        s_sendmore (publisher, "B");
        s_send (publisher, "We would like to see this");
        sleep (1);
    }
    //  We never get here, but clean up anyhow
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    zmq_close (publisher);
    zmq_ctx_destroy (context);
    return 0;
}

The subscriber, shown in Example 2-16, wants only messages of type B.

Example 2-16. Pub-sub envelope subscriber (psenvsub.c)
//
//  Pub-sub envelope subscriber
//
#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and subscriber
    void *context = zmq_ctx_new ();
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5563");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "B", 1);

    while (1) {
        //  Read envelope with address
        char *address = s_recv (subscriber);
        //  Read message contents
        char *contents = s_recv (subscriber);
        printf ("[%s] %s\n", address, contents);
        free (address);
        free (contents);
    }
    //  We never get here, but clean up anyhow
    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

When you run the two programs, the subscriber should show you this:
[B] We would like to see this
[B] We would like to see this
[B] We would like to see this
[B] We would like to see this
...

This example shows that the subscription filter rejects or accepts the entire multipart
message (key plus data). You won’t get part of a multipart message, ever.

If you subscribe to multiple publishers and you want to know their addresses so that
you can send them data via another socket (and this is a typical use case), create a three-
part message, as illustrated in Figure 2-16.
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Figure 2-16. Pub-sub envelope with sender address

High-Water Marks
When you can send messages rapidly from process to process, you soon discover that
memory is a precious resource, and one that can be trivially filled up. A few seconds of
delay somewhere in a process can turn into a backlog that blows up a server unless you
understand the problem and take precautions.

The problem is this: if you have process A sending messages to process B, which sud‐
denly gets very busy (garbage collection, CPU overload, whatever), then what happens
to the messages that process A wants to send? Some will sit in B’s network buffers. Some
will sit on the Ethernet wire itself. Some will sit in A’s network buffers. And the rest will
accumulate in A’s memory. If you don’t take some precaution, A can easily run out of
memory and crash. It is a consistent, classic problem with message brokers.

What are the answers? One is to pass the problem upstream. A is getting the messages
from somewhere else, so tell that process to stop, and so on up the line. This is called
flow control. It sounds great, but what if you’re sending out a Twitter feed? Do you tell
the whole world to stop tweeting while B gets its act together?

Flow control works in some cases, but not in others. The transport layer can’t tell the
application layer to “stop” any more than a subway system can tell a large business,
“Please keep your staff at work for another half an hour. I’m too busy.”

The answer for messaging is to set limits on the size of buffers, and then, when we reach
those limits, to take some sensible action. In some cases (not for a subway system,
though), the answer is to throw away messages. In a others, the best strategy is to wait.

ØMQ uses the concept of high-water mark (HWM) to define the capacity of its internal
pipes. Each connection out of a socket or into a socket has its own pipe, and HWM, for
sending and/or receiving, depending on the socket type. Some sockets (PUB, PUSH)
only have send buffers. Some (SUB, PULL, REQ, REP) only have receive buffers. Some
(DEALER, ROUTER, PAIR) have both send and receive buffers.

In ØMQ v2.x, the HWM was infinite by default. In ØMQ v3.x, it’s set to 1,000 by default,
which is more sensible. If you’re still using ØMQ v2.x, you should always set an HWM
on your sockets, be it 1,000 to match ØMQ v3.x, or another figure that takes into account
your message sizes.
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When your socket reaches its HWM, it will either block or drop data, depending on the
socket type. PUB and ROUTER sockets will drop data if they reach their HWM, while
other socket types will block.

Over the inproc transport, the sender and receiver share the same buffers, so the real
HWM is the sum of the HWMs set by both sides.

Lastly, the high-water marks are counted in message parts, not whole messages. If you
are sending two-part messages, the default HWM is 500. When you use the ROUTER
socket type (discussed in detail in the next chapter), every message is at least two parts.

Missing Message Problem Solver
As you build applications with ØMQ, you will come across this problem more than
once: losing messages that you expect to receive. We have put together a diagram
(Figure 2-17) that walks through the most common causes for this.

If you’re using ØMQ in a context where failures are expensive, you’ll want to plan
properly. First, build prototypes that let you learn and test the different aspects of your
design. Stress them until they break, so that you know exactly how strong your designs
are. Second, invest in testing. This means building test frameworks, ensuring you have
access to realistic setups with sufficient computer power, and taking the time or getting
help to actually test seriously. Ideally, one team writes the code and a second team tries
to break it. Lastly, do get your organization to contact iMatix to discuss how we can help
to make sure things work properly, and can be fixed rapidly if they break.

In short, if you have not proven that an architecture works in realistic conditions, it will
most likely break at the worst possible moment.
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Figure 2-17. Missing message problem solver
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CHAPTER 3

Advanced Request-Reply Patterns

In Chapter 2, we worked through the basics of using ØMQ by developing a series of
small applications, each time exploring new aspects of ØMQ. We’ll continue this ap‐
proach in this chapter as we explore advanced patterns built on top of ØMQ’s core
request-reply pattern.

We’ll cover:

• How the request-reply mechanisms work
• How to combine REQ, REP, DEALER, and ROUTER sockets
• How ROUTER sockets work, in detail
• The load-balancing pattern
• Building a simple load-balancing message broker
• Designing a high-level API for ØMQ
• Building an asynchronous request-reply server
• A detailed inter-broker routing example

The Request-Reply Mechanisms
We already looked briefly at multipart messages. Let’s now look at a major use case,
which is reply message envelopes. An envelope is a way of safely packaging up data with
an address, without touching the data itself. By separating reply addresses into an en‐
velope, we make it possible to write general-purpose intermediaries such as APIs and
proxies that create, read, and remove addresses no matter what the message payload or
structure is.
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In the request-reply pattern, the envelope holds the return address for replies. It is how
a ØMQ network with no state can create round-trip request-reply dialogs.

When you use REQ and REP sockets, you don’t even see envelopes; these sockets deal
with them automatically. But for most of the interesting request-reply patterns, you’ll
want to understand envelopes and ROUTER sockets. We’ll work through this step-by-
step.

The Simple Reply Envelope
A request-reply exchange consists of a request message, and an eventual reply message.
In the simple request-reply pattern there’s one reply for each request. In more advanced
patterns, requests and replies can flow asynchronously. However, the reply envelope
always works the same way.

The ØMQ reply envelope formally consists of zero or more reply addresses, followed
by an empty frame (the envelope delimiter), followed by the message body (zero or
more frames). The envelope is created by multiple sockets working together in a chain.
We’ll break this down.

We’ll start by sending “Hello” through a REQ socket. The REQ socket creates the sim‐
plest possible reply envelope, which has no addresses, just an empty delimiter frame
and the message frame containing the “Hello” string. This is a two-frame message
(Figure 3-1).

Figure 3-1. Request with minimal envelope

The REP socket does the matching work: it strips off the envelope, up to and including
the delimiter frame, saves the whole envelope, and passes the “Hello” string up the
application. Thus, our original “Hello World” example used request-reply envelopes
internally, but the application never saw them.

If you spy on the network data flowing between hwclient and hwserver, this is what you’ll
see: every request and every reply is in fact two frames, an empty frame and then the
body. This may not seem to make much sense for a simple REQ-REP dialog, but you’ll
see the reason when we explore how ROUTER and DEALER handle envelopes.

The Extended Reply Envelope
Now let’s extend the REQ-REP pair with a ROUTER-DEALER proxy in the middle and
see how this affects the reply envelope. This is the extended request-reply pattern we
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already saw in Chapter 2. We can, in fact, insert any number of proxy steps (Figure 3-2).
The mechanics are the same.

Figure 3-2. Extended request-reply pattern

The proxy does this, in pseudo-code:
prepare context, frontend and backend sockets
while true:
    poll on both sockets
    if frontend had input:
        read all frames from frontend
        send to backend
    if backend had input:
        read all frames from backend
        send to frontend

The ROUTER socket, unlike other sockets, tracks every connection it has, and tells the
caller about these. The way it tells the caller is by sticking the connection identity in
front of each message received. An identity, sometimes called an address, is just a binary
string with no meaning except “this is a unique handle to the connection.” Then, when
you send a message via a ROUTER socket, you first send an identity frame.

The zmq_socket() man page describes it thusly:

When receiving messages, a ZMQ_ROUTER socket shall prepend a message part con‐
taining the identity of the originating peer to the message before passing it to the appli‐
cation. Messages received are fair-queued from among all connected peers. When send‐
ing messages a ZMQ_ROUTER socket shall remove the first part of the message and use
it to determine the identity of the peer the message shall be routed to.

As a historical note, ØMQ v2.2 and earlier use universally unique identifiers (UUIDs)
as identities, and ØMQ v3.0 and later use short integers. There’s some impact on network
performance, but only when you use multiple proxy hops, which is rare.

It’s a difficult concept to understand, but it’s essential if you want to become a ØMQ
expert. The ROUTER socket invents a random identity for each connection with which
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it works. If there are three REQ sockets connected to a ROUTER socket, it will invent
three random identities, one for each REQ socket.

So, if we continue our worked example, let’s say the REQ socket has identity 02. Inter‐
nally, this means the ROUTER socket keeps a hash table where it can search for 02 and
find the TCP connection for the REQ socket.

When we receive the message off the ROUTER socket, we get three frames (Figure 3-3).

Figure 3-3. Request with one address

The core of the proxy loop is “read from one socket, write to the other,” so we literally
send these three frames out on the DEALER socket. If you now sniffed the network
traffic, you would see these three frames flying from the DEALER socket to the REP
socket. The REP socket does as before: strips off the whole envelope, including the new
reply address, and once again delivers the “Hello” to the caller.

Incidentally, the REP socket can only deal with one request-reply exchange at a time,
which is why if you try to read multiple requests or send multiple replies without sticking
to a strict recv-send cycle, it gives an error.

You should now be able to visualize the return path. When hwserver sends “World”
back, the REP socket wraps that with the envelope it saved and sends a three-frame reply
message across the wire to the DEALER socket (Figure 3-4).

Figure 3-4. Reply with one address

Now the DEALER reads these three frames and sends all three out via the ROUTER
socket. The ROUTER takes the first frame of the message, which is the 02 identity, and
looks up the connection for this. If it finds that, it then pumps the next two frames out
onto the wire (Figure 3-5).
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Figure 3-5. Reply with minimal envelope

The REQ socket picks up this message and checks that the first frame is the empty
delimiter, which it is. It then discards that frame and passes “World” to the calling
application, which prints it out, to the amazement of those of us looking at ØMQ for
the first time.

What’s This Good For?
To be honest, the use cases for strict request-reply or extended request-reply are some‐
what limited. For one thing, there’s no easy way to recover from common failures like
the server crashing due to buggy application code (we’ll see more about this in Chap‐
ter 4). However, once you grasp the way these four sockets deal with envelopes, and how
they talk to each other, you can do very useful things. We saw how ROUTER uses the
reply envelope to decide which client REQ socket to route a reply back to. Now let’s
express this another way:

• Each time ROUTER gives you a message, it tells you what peer that message came
from, as an identity.

• You can use this with a hash table (with the identity as the key) to track new peers
as they arrive.

• ROUTER will route messages asynchronously to any peer connected to it, if you
prefix the identity as the first frame of the message.

ROUTER sockets don’t care about the whole envelope. They don’t know anything about
the empty delimiter. All they care about is that one identity frame that lets them figure
out which connection to send a message to.

Recap of Request-Reply Sockets
Let’s recap this:

• The REQ socket sends to the network an empty delimiter frame in front of the
message data. REQ sockets are synchronous: they always send one request and then
wait for one reply. REQ sockets talk to one peer at a time. If you connect a REQ
socket to multiple peers, requests are distributed to and replies expected from each
peer in turn, one at a time.

• The REP socket reads and saves all identity frames up to and including the empty
delimiter, then passes the following frame or frames to the caller. REP sockets are
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synchronous and talk to one peer at a time. If you connect a REP socket to multiple
peers, requests are read from peers in fair fashion, and replies are always sent to the
same peer that made the last request.

• The DEALER socket is oblivious to the reply envelope and handles this like any
multipart message. DEALER sockets are asynchronous, like PUSH and PULL com‐
bined. They distribute sent messages among all connections, and fair-queue re‐
ceived messages from all connections.

• The ROUTER socket is oblivious to the reply envelope, like DEALER. It creates
identities for its connections and passes these identities to the caller as a first frame
in any received message. Conversely, when the caller sends a message, it uses the
first message frame as an identity to look up the connection to send to. ROUTERs
are asynchronous.

Request-Reply Combinations
We have four request-reply sockets, each with a certain behavior. We’ve seen how they
connect in simple and extended request-reply patterns. But these sockets are building
blocks that you can use to solve many problems.

These are the legal combinations:

• REQ to REP
• DEALER to REP
• REQ to ROUTER
• DEALER to ROUTER
• DEALER to DEALER
• ROUTER to ROUTER

And these combinations are invalid (I’ll explain why):

• REQ to REQ
• REQ to DEALER
• REP to REP
• REP to ROUTER

Here are some tips for remembering the semantics. DEALER is like an asynchronous
REQ socket, and ROUTER is like an asynchronous REP socket. Where we use a REQ
socket, we can use a DEALER; we just have to read and write the envelope ourselves.
Where we use a REP socket, we can stick a ROUTER; we just need to manage the
identities ourselves.
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Think of REQ and DEALER sockets as “clients” and REP and ROUTER sockets as
“servers.” Mostly, you’ll want to bind REP and ROUTER sockets, and connect REQ and
DEALER sockets to them. It’s not always going to be this simple, but it is a clean and
memorable place to start.

The REQ to REP Combination
We’ve already covered a REQ client talking to a REP server, but there’s one important
aspect to mention here: the REQ client must initiate the message flow. A REP server
cannot talk to a REQ client that hasn’t first sent it a request. Technically, it’s not even
possible, and the API also returns an EFSM error if you try it.

The DEALER to REP Combination
Now, let’s replace the REQ client with a DEALER. This gives us an asynchronous client
that can talk to multiple REP servers. If we rewrote our “Hello World” client using
DEALER, we’d be able to send off any number of “Hello” requests without waiting for
replies.

When we use a DEALER to talk to a REP socket, we must accurately emulate the envelope
that the REQ socket would have sent, or the REP socket will discard the message as
invalid. So, to send a message, we:

1. Send an empty message frame with the MORE flag set.
2. Send the message body.

And when we receive a message, we:

1. Receive the first frame and, if it’s not empty, discard the whole message.
2. Receive the next frame and pass that to the application.

The REQ to ROUTER Combination
In the same way as we can replace REQ with DEALER, we can replace REP with ROUT‐
ER. This gives us an asynchronous server that can talk to multiple REQ clients at the
same time. If we rewrote our “Hello World” server using ROUTER, we’d be able to
process any number of “Hello” requests in parallel. We saw this in the mtserver example
in Chapter 2.

We can use ROUTER in two distinct ways:

• As a proxy that switches messages between frontend and backend sockets
• As an application that reads the message and acts on it
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In the first case, the ROUTER simply reads all frames, including the artificial identity
frame, and passes them on blindly. In the second case, the ROUTER must know the
format of the reply envelope it’s being sent. As the other peer is a REQ socket, the
ROUTER gets the identity frame, an empty frame, and then the data frame.

The DEALER to ROUTER Combination
Now we can switch out both REQ and REP with DEALER and ROUTER to get the most
powerful socket combination, which is DEALER talking to ROUTER. It gives us asyn‐
chronous clients talking to asynchronous servers, where both sides have full control
over the message formats.

Because both DEALER and ROUTER can work with arbitrary message formats, if you
hope to use these safely, you have to become a little bit of a protocol designer. At the
very least, you must decide whether you wish to emulate the REQ/REP reply envelope.
(It depends on whether you actually need to send replies or not.)

The DEALER to DEALER Combination
You can swap a REP with a ROUTER, but you can also swap a REP with a DEALER, if
the DEALER is talking to one and only one peer.

When you replace a REP with a DEALER, your worker can suddenly go fully asyn‐
chronous, sending any number of replies back. The cost is that you have to manage the
reply envelopes yourself, and get them right, or nothing at all will work. We’ll see a
worked example later. Let’s just say for now that DEALER to DEALER is one of the
trickier patterns to get right, and happily it’s rare that we need it.

The ROUTER to ROUTER Combination
This sounds perfect for N-to-N connections, but it’s the most difficult combination to
use. You should avoid it until you are well advanced with ØMQ. We’ll see one example
of it in the Freelance pattern in Chapter 4, and an alternative DEALER to ROUTER
design for peer-to-peer work in Chapter 8.

Invalid Combinations
Mostly, trying to connect clients to clients, or servers to servers, is a bad idea and won’t
work. Rather than give general vague warnings, I’ll explain in detail what’s wrong with
each of the following combinations:
REQ to REQ

Both sides want to start by sending messages to each other, and this could only work
if you timed things so that both peers exchanged messages at exactly the same time.
It hurts my brain to even think about it.
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REQ to DEALER
You could in theory do this, but it would break if you added a second REQ because
DEALER has no way of sending a reply to the original peer. Thus, the REQ socket
would get confused, and/or return messages meant for another client.

REP to REP
Both sides would wait for the other to send the first message.

REP to ROUTER
The ROUTER socket can in theory initiate the dialog and send a properly formatted
request, if it knows the REP socket has connected and it knows the identity of that
connection. It’s messy, though, and adds nothing over DEALER to ROUTER.

The common thread in this valid versus invalid breakdown is that a ØMQ socket con‐
nection is always biased toward one peer that binds to an endpoint, and another that
connects to that. Further, which side binds and which side connects is not arbitrary, but
follows natural patterns. The side we expect to “be there” binds: it’ll be a server, a broker,
a publisher, a collector. The side that “comes and goes” connects: it’ll be clients or work‐
ers. Remembering this will help you design better ØMQ architectures.

Exploring ROUTER Sockets
Let’s look at ROUTER sockets a little closer. We’ve already seen how they work by routing
individual messages to specific connections. I’ll explain in more detail how we identify
those connections, and what a ROUTER socket does when it can’t send a message.

Identities and Addresses
The identity concept in ØMQ refers specifically to ROUTER sockets and how they
identify the connections they have to other sockets. More broadly, identities are used as
addresses in the reply envelope. In most cases, the identity is arbitrary and local to the
ROUTER socket: it’s a lookup key in a hash table. Independently, a peer can have an
address that is physical (a network endpoint like “tcp://192.168.55.117:5670”) or logical
(a UUID or email address or other unique key).

An application that uses a ROUTER socket to talk to specific peers can convert a logical
address to an identity if it has built the necessary hash table. Because ROUTER sockets
only announce the identity of a connection (to a specific peer) when that peer sends a
message, you can only really reply to a message, not spontaneously talk to a peer.

This is true even if you flip the rules and make the ROUTER connect to the peer rather
than wait for the peer to connect to the ROUTER.

However, you can force the ROUTER socket to use a logical address in place of its
identity. The zmq_setsockopt() reference page calls this setting the socket identity. It
works as follows:
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• The peer application sets the ZMQ_IDENTITY option of its peer socket (DEALER or
REQ) before binding or connecting.

• Usually the peer then connects to the already bound ROUTER socket, but the
ROUTER can also connect to the peer.

• At connection time, the peer socket tells the router socket, “Please use this identity
for this connection.”

• If the peer socket doesn’t say that, the router generates its usual arbitrary random
identity for the connection.

• The ROUTER socket now provides this logical address to the application as a prefix
identity frame for any messages coming in from that peer.

• The ROUTER also expects the logical address as the prefix identity frame for any
outgoing messages to that peer.

Example 3-1 is a simple example of two peers that connect to a ROUTER socket, one
of which imposes the logical address “PEER2.”

Example 3-1. Identity check (identity.c)
//
//  Demonstrate identities as used by the request-reply pattern.  Run this
//  program by itself.  Note that the utility functions s_ are provided by
//  zhelpers.h.  It gets boring for everyone to keep repeating this code.
//
#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    void *sink = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (sink, "inproc://example");

    //  First allow 0MQ to set the identity
    void *anonymous = zmq_socket (context, ZMQ_REQ);
    zmq_connect (anonymous, "inproc://example");
    s_send (anonymous, "ROUTER uses a generated UUID");
    s_dump (sink);

    //  Then set the identity ourselves
    void *identified = zmq_socket (context, ZMQ_REQ);
    zmq_setsockopt (identified, ZMQ_IDENTITY, "PEER2", 5);
    zmq_connect (identified, "inproc://example");
    s_send (identified, "ROUTER socket uses REQ's socket identity");
    s_dump (sink);

    zmq_close (sink);
    zmq_close (anonymous);
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    zmq_close (identified);
    zmq_ctx_destroy (context);
    return 0;
}

Here is what the program prints:
----------------------------------------
[005] 006B8B4567
[000]
[026] ROUTER uses a generated UUID
----------------------------------------
[005] PEER2
[000]
[038] ROUTER uses REQ's socket identity

ROUTER Error Handling
ROUTER sockets do have a somewhat brutal way of dealing with messages they can’t
send anywhere: they drop them silently. It’s an attitude that makes sense in working
code, but it makes debugging hard. The “send identity as first frame” approach is tricky
enough that we often get this wrong when we’re learning, and the ROUTER’s stony
silence when we mess up isn’t very constructive.

Since ØMQ v3.2, there’s a socket option you can set to catch this error: ZMQ_ROUT
ER_MANDATORY. Set that on the ROUTER socket, and when you provide an unroutable
identity on a send call, the socket will signal an EHOSTUNREACH error.

The Load-Balancing Pattern
Let’s now look at some code. We’ll see how to connect a ROUTER socket to a REQ
socket, and then to a DEALER socket. These two examples follow the same logic, which
is a load-balancing pattern. This pattern is our first exposure to using the ROUTER
socket for deliberate routing, rather than it simply acting as a reply channel.

The load-balancing pattern is very common and we’ll see it several times in this book.
It solves the main problem with simple round-robin routing (as PUSH and DEALER
offer), which is that round robin becomes inefficient if tasks do not all take roughly the
same time.

It’s the post office analogy: if you have one queue per counter, and you have some people
buying stamps (a fast, simple transaction), and some people opening new accounts (a
very slow transaction), you will find stamp buyers getting unfairly stuck in queues. And
just as in a post office, if your messaging architecture is unfair, people will get annoyed.

The solution in the post office is to create a single queue so that even if one or two
counters get stuck with slow work, other counters will continue to serve clients on a
first-come, first-serve basis.
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One reason PUSH and DEALER use this simplistic approach is sheer performance. If
you arrive in any major US airport, you’ll find long queues of people waiting at immi‐
gration. The border patrol officials will send people in advance to queue up at each
counter, rather than using a single queue. Having people walk 50 yards in advance saves
a minute or two per passenger. And since every passport check takes roughly the same
time, it’s more or less fair. This is the strategy for PUSH and DEALER: send workloads
ahead of time so that there is less travel distance.

This is a recurring theme with ØMQ: the world’s problems are diverse and you can
really benefit from solving different problems each in the right way. The airport isn’t the
post office, and “one size” fits no one really well.

Let’s return to the scenario of a worker (DEALER or REQ) connected to a broker
(ROUTER). The broker has to know when the worker is ready, and keep a list of workers
so that it can take the least recently used worker each time.

The solution is really simple, in fact: workers send a “ready” message when they start,
and after they finish each task. The broker reads these messages one by one. Each time
it reads a message, it is from the last-used worker. And since we’re using a ROUTER
socket, we get an identity that we can then use to send a task back to the worker.

It’s a twist on request-reply because the task is sent with the reply, and any response for
the task is sent as a new request. The following code examples should make it clearer.

ROUTER Broker and REQ Workers
Example 3-2 is an example of the load-balancing pattern using a ROUTER broker talk‐
ing to a set of REQ workers.

Example 3-2. ROUTER-to-REQ (rtreq.c)
//
//  ROUTER-to-REQ example
//
#include "zhelpers.h"
#include <pthread.h>

#define NBR_WORKERS 10

static void *
worker_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_REQ);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "tcp://localhost:5671");

    int total = 0;
    while (1) {
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        //  Tell the broker we're ready for work
        s_send (worker, "Hi Boss");

        //  Get workload from broker, until finished
        char *workload = s_recv (worker);
        int finished = (strcmp (workload, "Fired!") == 0);
        free (workload);
        if (finished) {
            printf ("Completed: %d tasks\n", total);
            break;
        }
        total++;

        //  Do some random work
        s_sleep (randof (500) + 1);
    }
    zmq_close (worker);
    zmq_ctx_destroy (context);
    return NULL;
}

While this example runs in a single process, that is only to make it easier to start and
stop. Each thread has its own context and conceptually acts as a separate process.
Example 3-3 shows the main task.

Example 3-3. ROUTER-to-REQ (rtreq.c): main task
int main (void)
{
    void *context = zmq_ctx_new ();
    void *broker = zmq_socket (context, ZMQ_ROUTER);

    zmq_bind (broker, "tcp://*:5671");
    srandom ((unsigned) time (NULL));

    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_task, NULL);
    }
    //  Run for five seconds and then tell workers to end
    int64_t end_time = s_clock () + 5000;
    int workers_fired = 0;
    while (1) {
        //  Next message gives us least recently used worker
        char *identity = s_recv (broker);
        s_sendmore (broker, identity);
        free (identity);
        free (s_recv (broker));     //  Envelope delimiter
        free (s_recv (broker));     //  Response from worker
        s_sendmore (broker, "");
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        //  Encourage workers until it's time to fire them
        if (s_clock () < end_time)
            s_send (broker, "Work harder");
        else {
            s_send (broker, "Fired!");
            if (++workers_fired == NBR_WORKERS)
                break;
        }
    }
    zmq_close (broker);
    zmq_ctx_destroy (context);
    return 0;
}

The example runs for five seconds, and then each worker prints how many tasks it
handled. If the routing worked, we’d expect a fair distribution of work:

Completed: 20 tasks
Completed: 18 tasks
Completed: 21 tasks
Completed: 23 tasks
Completed: 19 tasks
Completed: 21 tasks
Completed: 17 tasks
Completed: 17 tasks
Completed: 25 tasks
Completed: 19 tasks

To talk to the workers in this example, we have to create a REQ-friendly envelope con‐
sisting of an identity plus an empty envelope delimiter frame (Figure 3-6).

Figure 3-6. Routing envelope for REQ

ROUTER Broker and DEALER Workers
Anywhere you can use REQ, you can use DEALER. There are two specific differences:

• The REQ socket always sends an empty delimiter frame before any data frames; the
DEALER does not.

• The REQ socket will send only one message before it receives a reply; the DEALER
is fully asynchronous.
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The synchronous versus asynchronous behavior has no effect on our example since
we’re doing strict request-reply. It is more relevant when we come to recovering from
failures, which we’ll address in Chapter 4.

Now let’s look at exactly the same example, but with the REQ socket replaced by a
DEALER socket (Example 3-4).

Example 3-4. ROUTER-to-DEALER (rtdealer.c)
//
//  ROUTER-to-DEALER example
//
#include "zhelpers.h"
#include <pthread.h>

#define NBR_WORKERS 10

static void *
worker_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_DEALER);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "tcp://localhost:5671");

    int total = 0;
    while (1) {
        //  Tell the broker we're ready for work
        s_sendmore (worker, "");
        s_send (worker, "Hi Boss");

        //  Get workload from broker, until finished
        free (s_recv (worker));     //  Envelope delimiter
        char *workload = s_recv (worker);
...

The code is almost identical, except that the worker uses a DEALER socket and reads
and writes that empty frame before the data frame. This is the approach I use when I
want to maintain compatibility with REQ workers.

However, remember the reason for that empty delimiter frame: it’s to allow multihop
extended requests that terminate in a REP socket, which uses that delimiter to split off
the reply envelope so it can hand the data frames to its application.

If we never need to pass the message along to a REP socket, we can simply drop the
empty delimiter frame at both sides, which makes things simpler. This is usually the
design I use for pure DEALER to ROUTER protocols.
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A Load-Balancing Message Broker
The previous example is half-complete. It can manage a set of workers with dummy
requests and replies, but it has no way to talk to clients.

If we add a second frontend ROUTER socket that accepts client requests, and turn our
example into a proxy that can switch messages from frontend to backend, we get a useful
and reusable tiny load-balancing message broker (Figure 3-7).

Figure 3-7. Load-balancing broker

This broker does the following:

• Accepts connections from a set of clients
• Accepts connections from a set of workers
• Accepts requests from clients and holds these in a single queue
• Sends these requests to workers using the load-balancing pattern
• Receives replies back from workers
• Sends these replies back to the original requesting client

The broker code (listed in Example 3-5) is fairly long, but worth understanding.

Example 3-5. Load-balancing broker (lbbroker.c)
//
//  Load-balancing broker
//  Clients and workers are shown here in-process
//
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#include "zhelpers.h"
#include <pthread.h>

#define NBR_CLIENTS 10
#define NBR_WORKERS 3

//  Dequeue operation for queue implemented as array of anything
#define DEQUEUE(q) memmove (&(q)[0], &(q)[1], sizeof (q) - sizeof (q [0]))

//  Basic request-reply client using REQ socket.
//  Since s_send and s_recv can't handle 0MQ binary identities we
//  set a printable text identity to allow routing.
//
static void *
client_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *client = zmq_socket (context, ZMQ_REQ);
    s_set_id (client);          //  Set a printable identity
    zmq_connect (client, "ipc://frontend.ipc");

    //  Send request, get reply
    s_send (client, "HELLO");
    char *reply = s_recv (client);
    printf ("Client: %s\n", reply);
    free (reply);
    zmq_close (client);
    zmq_ctx_destroy (context);
    return NULL;
}

While this example runs in a single process, that is just to make it easier to start and
stop. Each thread has its own context and conceptually acts as a separate process.
Example 3-6 shows the worker task, using a REQ socket to do load balancing. Since
s_send() and s_recv() can’t handle ØMQ binary identities, we set a printable text
identity to allow routing.

Example 3-6. Load-balancing broker (lbbroker.c): worker task
static void *
worker_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_REQ);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "ipc://backend.ipc");

    //  Tell broker we're ready for work
    s_send (worker, "READY");

    while (1) {
        //  Read and save all frames until we get an empty frame
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        //  In this example there is only 1 but there could be more
        char *identity = s_recv (worker);
        char *empty = s_recv (worker);
        assert (*empty == 0);
        free (empty);

        //  Get request, send reply
        char *request = s_recv (worker);
        printf ("Worker: %s\n", request);
        free (request);

        s_sendmore (worker, identity);
        s_sendmore (worker, "");
        s_send     (worker, "OK");
        free (identity);
    }
    zmq_close (worker);
    zmq_ctx_destroy (context);
    return NULL;
}

The main task starts the clients and workers, and then routes requests between the two
layers (Example 3-7). Workers signal “ready” when they start; after that, we treat them
as ready when they reply with a response back to a client. The load-balancing data
structure is just a queue of next available workers.

Example 3-7. Load-balancing broker (lbbroker.c): main task
int main (void)
{
    //  Prepare our context and sockets
    void *context = zmq_ctx_new ();
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    void *backend  = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (frontend, "ipc://frontend.ipc");
    zmq_bind (backend,  "ipc://backend.ipc");

    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++) {
        pthread_t client;
        pthread_create (&client, NULL, client_task, NULL);
    }
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_task, NULL);
    }

Example 3-8 shows the main loop for the least-recently-used queue. It has two sockets:
a frontend for clients and a backend for workers. It polls the backend in all cases, and
polls the frontend only when there are one or more workers ready. This is a neat way
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to use ØMQ’s own queues to hold messages we’re not ready to process yet. When we
get a client reply, we pop the next available worker and send the request to it, including
the originating client’s identity. When a worker replies, we requeue that worker and
forward the reply to the original client using the reply envelope.

Example 3-8. Load-balancing broker (lbbroker.c): main task body
    //  Queue of available workers
    int available_workers = 0;
    char *worker_queue [10];

    while (1) {
        zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, available_workers ? 2 : 1, -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Queue worker identity for load-balancing
            char *worker_id = s_recv (backend);
            assert (available_workers < NBR_WORKERS);
            worker_queue [available_workers++] = worker_id;

            //  Second frame is empty
            char *empty = s_recv (backend);
            assert (empty [0] == 0);
            free (empty);

            //  Third frame is READY or else a client reply identity
            char *client_id = s_recv (backend);

            //  If client reply, send rest back to frontend
            if (strcmp (client_id, "READY") != 0) {
                empty = s_recv (backend);
                assert (empty [0] == 0);
                free (empty);
                char *reply = s_recv (backend);
                s_sendmore (frontend, client_id);
                s_sendmore (frontend, "");
                s_send     (frontend, reply);
                free (reply);
                if (--client_nbr == 0)
                    break;      //  Exit after N messages
            }
            free (client_id);
        }
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Example 3-9 shows how we handle a client request.

Example 3-9. Load-balancing broker (lbbroker.c): handling a client request
        if (items [1].revents & ZMQ_POLLIN) {
            //  Now get next client request, route to last-used worker
            //  Client request is [identity][empty][request]
            char *client_id = s_recv (frontend);
            char *empty = s_recv (frontend);
            assert (empty [0] == 0);
            free (empty);
            char *request = s_recv (frontend);

            s_sendmore (backend, worker_queue [0]);
            s_sendmore (backend, "");
            s_sendmore (backend, client_id);
            s_sendmore (backend, "");
            s_send     (backend, request);

            free (client_id);
            free (request);

            //  Dequeue and drop the next worker identity
            free (worker_queue [0]);
            DEQUEUE (worker_queue);
            available_workers--;
        }
    }
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

The difficult parts of this program are the envelopes that each socket reads and writes,
and the load-balancing algorithm. We’ll take these in turn, starting with the message
envelope formats.

Let’s walk through a full request-reply chain from client to worker and back. In this code
we set the identity of the client and worker sockets to make it easier to trace the message
frames. In reality we’d allow the ROUTER sockets to invent identities for connections.
Let’s assume the client’s identity is “CLIENT” and the worker’s identity is “WORKER.”
The client application sends a single frame containing “HELLO” (Figure 3-8).

Figure 3-8. Message that client sends
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Since the REQ socket adds its empty delimiter frame and the ROUTER socket adds its
connection identity, the proxy reads three frames off the frontend ROUTER socket: the
client address, the empty delimiter frame, and the data part (Figure 3-9).

Figure 3-9. Message coming in on frontend

The broker sends this to the worker, prefixed by the address of the chosen worker, plus
an additional empty part to keep the REQ at the other end happy (Figure 3-10).

Figure 3-10. Message sent to backend

This complex envelope stack gets chewed up first by the backend ROUTER socket,
which removes the first frame. Then the REQ socket in the worker removes the empty
part, and provides the rest to the worker application (Figure 3-11).

Figure 3-11. Message delivered to worker

The worker has to save the envelope (which is all the parts up to and including the empty
message frame), and then it can do what’s needed with the data part. Note that a REP
socket would do this automatically, but we’re using the REQ-ROUTER pattern so that
we can get proper load balancing.
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On the return path, the messages are the same as when they come in; i.e., the backend
socket gives the broker a message in five parts, the broker sends the frontend socket a
message in three parts, and the client gets a message in one part.

Now let’s look at the load-balancing algorithm. It requires that both clients and workers
use REQ sockets, and that workers correctly store and replay the envelopes on messages
they get. The algorithm is:

• Create a poll set that always polls the backend, and polls the frontend only if there
are one or more workers available.

• Poll for activity with infinite timeout.
• If there is activity on the backend, we either have a “ready” message or a reply for

a client. In either case, we store the worker address (the first part) on our worker
queue, and if the rest is a client reply, we send it back to that client via the frontend.

• If there is activity on the frontend, we take the client request, pop the next worker
(which is the last used), and send the request to the backend. This means sending
the worker address, the empty part, and then the three parts of the client request.

You should now see that you can reuse and extend the load-balancing algorithm with
variations based on the information the worker provides in its initial “ready” message.
For example, workers might start up and do a performance self-test, then tell the broker
how fast they are. The broker can then choose the fastest available worker rather than
the oldest.

A High-Level API for ØMQ
We’re going to push request-reply onto the stack now and open a different area, which
is the ØMQ API itself. There’s a reason for this detour: as we write more complex
examples, the low-level ØMQ API starts to look increasingly clumsy. Look at the core
of the worker thread from our load-balancing broker:

while (true) {
    //  Read and save all frames until we get an empty frame
    //  In this example there is only 1 but there could be more
    char *address = s_recv (worker);
    char *empty = s_recv (worker);
    assert (*empty == 0);
    free (empty);

    //  Get request, send reply
    char *request = s_recv (worker);
    printf ("Worker: %s\n", request);
    free (request);

    s_sendmore (worker, address);
    s_sendmore (worker, "");
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    s_send     (worker, "OK");
    free (address);
}

That code isn’t even reusable because it can only handle one reply address in the enve‐
lope, and it already does some wrapping around the ØMQ API. If we used the libzmq
API directly, this is what we’d have to write:

while (true) {
    //  Read and save all frames until we get an empty frame
    //  In this example there is only 1 but there could be more
    zmq_msg_t address;
    zmq_msg_init (&address);
    zmq_msg_recv (worker, &address, 0);

    zmq_msg_t empty;
    zmq_msg_init (&empty);
    zmq_msg_recv (worker, &empty, 0);

    //  Get request, send reply
    zmq_msg_t payload;
    zmq_msg_init (&payload);
    zmq_msg_recv (worker, &payload, 0);

    int char_nbr;
    printf ("Worker: ");
    for (char_nbr = 0; char_nbr < zmq_msg_size (&payload); char_nbr++)
        printf ("%c", *(char *) (zmq_msg_data (&payload) + char_nbr));
    printf ("\n");

    zmq_msg_init_size (&payload, 2);
    memcpy (zmq_msg_data (&payload), "OK", 2);

    zmq_msg_send (worker, &address, ZMQ_SNDMORE);
    zmq_close (&address);
    zmq_msg_send (worker, &empty, ZMQ_SNDMORE);
    zmq_close (&empty);
    zmq_msg_send (worker, &payload, 0);
    zmq_close (&payload);
}

And when code is too long to write quickly, it’s also too long to understand. Up to now,
I’ve stuck to the native API because, as ØMQ users, we need to know that intimately.
But when it gets in our way, we have to treat it as a problem to solve.

I’m not proposing changing the ØMQ API, which is a documented public contract on
which thousands of people agree and depend. What I’m proposing is to construct a
higher-level API on top that is based on our experience so far—more specifically, our
experience from writing more complex request-reply patterns.
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What we want is an API that lets us receive and send an entire message in one shot,
including the reply envelope with any number of reply addresses—one that lets us do
what we want with the absolute fewest lines of code.

Making a good message API is fairly difficult. We have a problem of terminology: ØMQ
uses “message” to describe both multipart messages and individual message frames. We
have a problem of expectations: sometimes it’s natural to see message content as print‐
able string data, sometimes as binary blobs. And we have technical challenges, especially
if we want to avoid copying data around too much.

The challenge of making a good API affects all languages, though my specific use case
is C. Whatever language you use, think about how you could contribute to your language
binding to make it as good as (or better than) the C binding I’m going to describe.

Features of a Higher-Level API
My solution is to use three fairly natural and obvious concepts: string helpers (already
the basis for our s_send() and s_recv()), frames (a message frame), and messages (a
list of one or more frames). Here is the worker code, rewritten onto an API using these
concepts:

while (true) {
    zmsg_t *msg = zmsg_recv (worker);
    zframe_reset (zmsg_last (msg), "OK", 2);
    zmsg_send (&msg, worker);
}

Cutting the amount of code we need to read and write complex messages is great: the
results are easy to read and understand. Let’s continue this process for other aspects of
working with ØMQ. Here’s a wish list of things I’d like in a higher-level API, based on
my experience with ØMQ so far:

• Automatic handling of sockets. I find it cumbersome to have to close sockets man‐
ually, and to have to explicitly define the linger timeout in some (but not all) cases.
It’d be great to have a way to close sockets automatically when I close the context.

• Portable thread management. Every nontrivial ØMQ application uses threads, but
POSIX threads aren’t portable. A decent high-level API should hide this under a
portable layer.

• Portable clocks. Even getting the time to a millisecond resolution, or sleeping for
some milliseconds, is not portable. Realistic ØMQ applications need portable
clocks, so our API should provide them.

• A reactor to replace zmq_poll(). The poll loop is simple, but clumsy. Writing a lot
of these, we end up doing the same work over and over: calculating timers, and
calling code when sockets are ready. A simple reactor with socket readers and timers
would save a lot of repeated work.
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• Proper handling of Ctrl-C. We already saw how to catch an interrupt. It would be
useful if this happened in all applications.

The CZMQ High-Level API
Turning this wish list into reality for the C language gives us CZMQ, a ØMQ language
binding for C. This high-level binding, in fact, was developed out of earlier versions of
this book. It combines nicer semantics for working with ØMQ with some portability
layers, and (importantly for C, but less for other languages) containers like hashes and
lists. CZMQ also uses an elegant object model that leads to frankly lovely code.

Example 3-10 shows the load-balancing broker rewritten to use a higher-level API
(CZMQ for the C case).

Example 3-10. Load-balancing broker using high-level API (lbbroker2.c)
//
//  Load-balancing broker
//  Demonstrates use of the CZMQ API
//
#include "czmq.h"

#define NBR_CLIENTS 10
#define NBR_WORKERS 3
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Basic request-reply client using REQ socket
//
static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://frontend.ipc");

    //  Send request, get reply
    while (true) {
        zstr_send (client, "HELLO");
        char *reply = zstr_recv (client);
        if (!reply)
            break;
        printf ("Client: %s\n", reply);
        free (reply);
        sleep (1);
    }
    zctx_destroy (&ctx);
    return NULL;
}

//  Worker using REQ socket to do load balancing
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//
static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://backend.ipc");

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted
        zframe_reset (zmsg_last (msg), "OK", 2);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

Now we come to the main task (Example 3-11). This has identical functionality to the
previous lbbroker example, but it uses CZMQ to start child threads, to hold the list of
workers, and to read and send messages.

Example 3-11. Load-balancing broker using high-level API (lbbroker2.c): main task
int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "ipc://frontend.ipc");
    zsocket_bind (backend, "ipc://backend.ipc");

    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Queue of available workers
    zlist_t *workers = zlist_new ();

The main loop for the load balancer is shown in Example 3-12. It works the same way
as the previous example, but is a lot shorter because CZMQ gives us an API that does
more with fewer calls.
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Example 3-12. Load-balancing broker using high-level API (lbbroker2.c): main load-
balancer loop
        zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, zlist_size (workers)? 2: 1, -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Use worker identity for load balancing
            zmsg_t *msg = zmsg_recv (backend);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);

            //  Forward message to client if it's not a READY
            zframe_t *frame = zmsg_first (msg);
            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
            else
                zmsg_send (&msg, frontend);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Get client request, route to first available worker
            zmsg_t *msg = zmsg_recv (frontend);
            if (msg) {
                zmsg_wrap (msg, (zframe_t *) zlist_pop (workers));
                zmsg_send (&msg, backend);
            }
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return 0;
}

One thing CZMQ provides is clean interrupt handling. This means that Ctrl-C will
cause any blocking ØMQ call to exit with a return code of -1 and errno set to EINTR.
The high-level recv methods will return NULL in such cases. So, you can cleanly exit a
loop like this:
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while (true) {
    zstr_send (client, "HELLO");
    char *reply = zstr_recv (client);
    if (!reply)
        break;              //  Interrupted
    printf ("Client: %s\n", reply);
    free (reply);
    sleep (1);
}

Or, if you’re calling zmq_poll(), test on the return code:
if (zmq_poll (items, 2, 1000 * 1000) == -1)
    break;              //  Interrupted

The previous example still uses zmq_poll(). So how about reactors? The CZMQ zloop
reactor is simple but functional. It lets you:

• Set a reader on any socket (i.e., code that is called whenever the socket has input).
• Cancel a reader on a socket.
• Set a timer that goes off once or multiple times at specific intervals.
• Cancel a timer.

zloop, of course, uses zmq_poll() internally. It rebuilds its poll set each time you add
or remove readers, and it calculates the poll timeout to match the next timer. Then it
calls the reader and timer handlers for each socket and timer that need attention.

When we use a reactor pattern, our code turns inside out. The main logic looks like this:
zloop_t *reactor = zloop_new ();
zloop_reader (reactor, self->backend, s_handle_backend, self);
zloop_start (reactor);
zloop_destroy (&reactor);

The actual handling of messages sits inside dedicated functions or methods. You may
not like the style—it’s a matter of taste. What it does help with is mixing timers and
socket activity. In the rest of this text, we’ll use zmq_poll() in simpler cases, and zloop
in more complex examples.

Example 3-13 shows the load-balancing broker rewritten once again, this time to use
zloop.

Example 3-13. Load-balancing broker using zloop (lbbroker3.c)
//
//  Load-balancing broker
//  Demonstrates use of the CZMQ API and reactor style
//
//  The client and worker tasks are identical to the previous example
...
//  Our load-balancer structure, passed to reactor handlers
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typedef struct {
    void *frontend;             //  Listen to clients
    void *backend;              //  Listen to workers
    zlist_t *workers;           //  List of ready workers
} lbbroker_t;

In the reactor design, each time a message arrives on a socket, the reactor passes it to a
handler function. We have two handlers, one for the frontend and one for the backend,
and as seen in Example 3-14.

Example 3-14. Load-balancing broker using zloop (lbbroker3.c): reactor design
//  Handle input from client, on frontend
int s_handle_frontend (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    lbbroker_t *self = (lbbroker_t *) arg;
    zmsg_t *msg = zmsg_recv (self->frontend);
    if (msg) {
        zmsg_wrap (msg, (zframe_t *) zlist_pop (self->workers));
        zmsg_send (&msg, self->backend);

        //  Cancel reader on frontend if we went from 1 to 0 workers
        if (zlist_size (self->workers) == 0) {
            zmq_pollitem_t poller = { self->frontend, 0, ZMQ_POLLIN };
            zloop_poller_end (loop, &poller);
        }
    }
    return 0;
}

//  Handle input from worker, on backend
int s_handle_backend (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    //  Use worker identity for load balancing
    lbbroker_t *self = (lbbroker_t *) arg;
    zmsg_t *msg = zmsg_recv (self->backend);
    if (msg) {
        zframe_t *identity = zmsg_unwrap (msg);
        zlist_append (self->workers, identity);

        //  Enable reader on frontend if we went from 0 to 1 workers
        if (zlist_size (self->workers) == 1) {
            zmq_pollitem_t poller = { self->frontend, 0, ZMQ_POLLIN };
            zloop_poller (loop, &poller, s_handle_frontend, self);
        }
        //  Forward message to client if it's not a READY
        zframe_t *frame = zmsg_first (msg);
        if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
            zmsg_destroy (&msg);
        else
            zmsg_send (&msg, self->frontend);
    }
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    return 0;
}

The main task (Example 3-15) now sets up child tasks and then starts its reactor. If you
press Ctrl-C, the reactor exits and the main task shuts down. Because the reactor is a
CZMQ class, this example may not translate into all languages equally well.

Example 3-15. Load-balancing broker using zloop (lbbroker3.c): main task
int main (void)
{
    zctx_t *ctx = zctx_new ();
    lbbroker_t *self = (lbbroker_t *) zmalloc (sizeof (lbbroker_t));
    self->frontend = zsocket_new (ctx, ZMQ_ROUTER);
    self->backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (self->frontend, "ipc://frontend.ipc");
    zsocket_bind (self->backend, "ipc://backend.ipc");

    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Queue of available workers
    self->workers = zlist_new ();

    //  Prepare reactor and fire it up
    zloop_t *reactor = zloop_new ();
    zmq_pollitem_t poller = { self->backend, 0, ZMQ_POLLIN };
    zloop_poller (reactor, &poller, s_handle_backend, self);
    zloop_start  (reactor);
    zloop_destroy (&reactor);

    //  When we're done, clean up properly
    while (zlist_size (self->workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (self->workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&self->workers);
    zctx_destroy (&ctx);
    free (self);
    return 0;
}

Getting applications to shut down properly when you send them Ctrl-C can be tricky.
If you use the zctx class it’ll automatically set up signal handling, but your code still has
to cooperate. You must break any loop if zmq_poll() returns -1 or if any of the
zstr_recv(), zframe_recv(), or zmsg_recv() methods returns NULL. If you have nes‐
ted loops, it can be useful to make the outer ones conditional on !zctx_interrupted.
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The Asynchronous Client/Server Pattern
In the ROUTER to DEALER example, we saw a 1-to-N use case where one server talks
asynchronously to multiple workers. We can turn this upside down to get a very useful
N-to-1 architecture where various clients talk to a single server, and do this asynchro‐
nously (Figure 3-12).

Figure 3-12. Asynchronous client/server

Here’s how it works:

• Clients connect to the server and send requests.
• For each request, the server sends 0 or more replies.
• Clients can send multiple requests without waiting for a reply.
• Servers can send multiple replies without waiting for new requests.

Example 3-16 shows how this works.

Example 3-16. Asynchronous client/server (asyncsrv.c)

//
//  Asynchronous client-to-server (DEALER to ROUTER)
//
//  While this example runs in a single process, that is only to make
//  it easier to start and stop the example. Each task has its own
//  context and conceptually acts as a separate process.

#include "czmq.h"
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//  ---------------------------------------------------------------------
//  This is our client task.
//  It connects to the server, and then sends a request once per second.
//  It collects responses as they arrive, and it prints them out. We will
//  run several client tasks in parallel, each with a different random ID.

static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_DEALER);

    //  Set random identity to make tracing easier
    char identity [10];
    sprintf (identity, "%04X-%04X", randof (0x10000), randof (0x10000));
    zsockopt_set_identity (client, identity);
    zsocket_connect (client, "tcp://localhost:5570");

    zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
    int request_nbr = 0;
    while (true) {
        //  Tick once per second, pulling in arriving messages
        int centitick;
        for (centitick = 0; centitick < 100; centitick++) {
            zmq_poll (items, 1, 10 * ZMQ_POLL_MSEC);
            if (items [0].revents & ZMQ_POLLIN) {
                zmsg_t *msg = zmsg_recv (client);
                zframe_print (zmsg_last (msg), identity);
                zmsg_destroy (&msg);
            }
        }
        zstr_sendf (client, "request #%d", ++request_nbr);
    }
    zctx_destroy (&ctx);
    return NULL;
}

Our server task is presented in Example 3-17. It uses the multithreaded server model
to deal requests out to a pool of workers and route replies back to clients. One worker
can handle one request at a time, but one client can talk to multiple workers at once.

Example 3-17. Asynchronous client/server (asyncsrv.c): server task
static void server_worker (void *args, zctx_t *ctx, void *pipe);

void *server_task (void *args)
{
    zctx_t *ctx = zctx_new ();

    
    //  Frontend socket talks to clients over TCP
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    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5570");

    
    //  Backend socket talks to workers over inproc
    void *backend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (backend, "inproc://backend");

    //  Launch pool of worker threads, precise number is not critical
    int thread_nbr;
    for (thread_nbr = 0; thread_nbr < 5; thread_nbr++)
        zthread_fork (ctx, server_worker, NULL);

    //  Connect backend to frontend via a proxy
    zmq_proxy (frontend, backend, NULL);

    zctx_destroy (&ctx);
    return NULL;
}

Each worker task works on one request at a time and sends back a random number of
replies, with random delays between replies, as illustrated in Example 3-18.

Example 3-18. Asynchronous client/server (asyncsrv.c): worker task
static void
server_worker (void *args, zctx_t *ctx, void *pipe)
{
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "inproc://backend");

    while (true) {
        //  The DEALER socket gives us the reply envelope and message
        zmsg_t *msg = zmsg_recv (worker);
        zframe_t *identity = zmsg_pop (msg);
        zframe_t *content = zmsg_pop (msg);
        assert (content);
        zmsg_destroy (&msg);

        //  Send 0..4 replies back
        int reply, replies = randof (5);
        for (reply = 0; reply < replies; reply++) {
            //  Sleep for some fraction of a second
            zclock_sleep (randof (1000) + 1);
            zframe_send (&identity, worker, ZFRAME_REUSE + ZFRAME_MORE);
            zframe_send (&content, worker, ZFRAME_REUSE);
        }
        zframe_destroy (&identity);
        zframe_destroy (&content);
    }
}

The Asynchronous Client/Server Pattern | 113



//  The main thread simply starts several clients and a server, and then
//  waits for the server to finish.

int main (void)
{
    zthread_new (client_task, NULL);
    zthread_new (client_task, NULL);
    zthread_new (client_task, NULL);
    zthread_new (server_task, NULL);

    //  Run for 5 seconds then quit
    zclock_sleep (5 * 1000);
    return 0;
}

The example runs in one process, with multiple threads simulating a real multiprocess
architecture. When you run the example, you’ll see three clients (each with a random
ID), printing out the replies they get from the server. Look carefully and you’ll see each
client task gets zero or more replies per request.

Some comments on this code:

• The clients send a request once per second, and get zero or more replies back. To
make this work using zmq_poll(), we can’t simply poll with a 1-second timeout, or
we’d end up sending a new request only one second after we received the last re‐
ply. So we poll at a high frequency (100 times at 1/100th of a second per poll), which
is approximately accurate.

• The server uses a pool of worker threads, each processing one request synchro‐
nously. It connects these to its frontend socket using an internal queue. It connects
the frontend and backend sockets using a zmq_proxy() call.

Figure 3-13 shows a detailed view of the architecture of this example. Note that we’re
doing DEALER to ROUTER dialog between the clients and the server, but internally
between the server’s main thread and workers, we’re doing DEALER to DEALER. If the
workers were strictly synchronous, we’d use REP, but since we want to send multiple
replies we need an async socket. We do not want to route replies; they always go to the
single server thread that sent us the request.
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Figure 3-13. Detail of asynchronous server

Let’s think about the routing envelope. The client sends a simple message. The server
thread receives a two-part message (real message prefixed by client identity). We send
this on to the worker, which treats it as a normal reply envelope and returns that to us.
We can then use it to route the reply back to the right client:

     client          server       frontend       worker
   [ DEALER ]<---->[ ROUTER <----> DEALER <----> DEALER ]
             1 part         2 parts       2 parts

Now for the sockets: we could use the load-balancing ROUTER to DEALER pattern to
talk to workers, but it’s extra work. In this case, a DEALER to DEALER pattern is prob‐
ably fine: the trade-off is lower latency for each request, but higher risk of unbalanced
work distribution. Simplicity wins in this case.

When you build servers that maintain stateful conversations with clients, you will run
into a classic problem. If the server keeps some state per client, and clients keep coming
and going, eventually the server will run out of resources. Even if the same clients keep
connecting, if you’re using default identities, each connection will look like a new one.

We cheat in this example by keeping state only for a very short time (the time it takes a
worker to process a request) and then throwing away the state. But that’s not practical
for many cases. To properly manage client state in a stateful asynchronous server, you
have to:
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• Do heartbeating from client to server. In our example, we send a request once per
second, which can reliably be used as a heartbeat.

• Store state using the client identity (whether generated or explicit) as the key.
• Detect a stopped heartbeat. If there’s no request from a client within, say, two sec‐

onds, the server can detect this and destroy any state it’s holding for that client.

Worked Example: Inter-Broker Routing
Let’s take everything we’ve seen so far and scale things up to a real application. We’ll
build this step-by-step over several iterations.

Suppose our best client calls us urgently and asks for a design of a large cloud computing
facility. He has this vision of a cloud that spans many data centers, each a cluster of
clients and workers, and that works together as a whole.

Because we’re smart enough to know that practice always beats theory, we propose to
make a working simulation using ØMQ. Our client, eager to lock down the budget
before his own boss changes his mind, and having read great things about ØMQ on
Twitter, agrees.

Establishing the Details
Several espressos later, we want to jump into writing code, but a little voice tells us to
get more details before making a sensational solution to entirely the wrong problem.
“What kind of work is the cloud doing?” we ask. The client explains:

• Workers run on various kinds of hardware, but they are all able to handle any task.
There are several hundred workers per cluster, and as many as a dozen clusters in
total.

• Clients create tasks for workers. Each task is an independent unit of work, and all
the client wants is to find an available worker and send it the task as soon as possible.
There will be a lot of clients and they’ll come and go arbitrarily.

• The real difficulty is to be able to add and remove clusters at any time. A cluster
can leave or join the cloud instantly, bringing all its workers and clients with it.

• If there are no workers in its own cluster, a client’s tasks will go off to other available
workers in the cloud.

• Clients send out one task at a time, waiting for a reply. If they don’t get an answer
within X seconds, they’ll just send out the task again. This isn’t our concern; the
client API does it already.
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• Workers process one task at a time; they are very simple beasts. If they crash, they
get restarted by whatever script started them.

So we double-check to make sure that we understood this correctly:

• “There will be some kind of super-duper network interconnect between clusters,
right?” we ask. The client says, “Yes, of course, we’re not idiots.”

• “What kind of volumes are we talking about?” we ask. The client replies, “Up to a
thousand clients per cluster, each doing at most 10 requests per second. Requests
are small, and replies are also small, no more than 1K bytes each.”

So we do a little calculation and see that this will work nicely over plain TCP. 2,500
clients * 10/second * 1,000 bytes * 2 directions = 50 MB/sec or 400 Mb/sec, not a problem
for a 1 Gb network.

It’s a straightforward problem that requires no exotic hardware or protocols, just some
clever routing algorithms and careful design. We start by designing one cluster (one
data center) and then we figure out how to connect clusters together.

Architecture of a Single Cluster
Workers and clients are synchronous. We want to use the load-balancing pattern to
route tasks to workers. Workers are all identical; our facility has no notion of different
services. Workers are anonymous; clients never address them directly. We make no
attempt here to provide guaranteed delivery, retries, and so on.

For reasons we already examined, clients and workers won’t speak to each other directly.
This makes it impossible to add or remove nodes dynamically. So, our basic model
consists of the request-reply message broker we saw earlier (Figure 3-14).
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Figure 3-14. Cluster architecture

Scaling to Multiple Clusters
Now we scale this out to more than one cluster. Each cluster has a set of clients and
workers, and a broker that joins these together, as illustrated in Figure 3-15.

Figure 3-15. Multiple clusters

The question is, how do we get the clients of each cluster talking to the workers of the
other cluster? There are a few possibilities, each with pros and cons:

• Clients could connect directly to both brokers. The advantage here is that we don’t
need to modify the brokers or workers. However, the clients get more complex and
become aware of the overall topology. If we want to add a third or fourth cluster,
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for example, the clients are affected. In effect, we have to move routing and failover
logic into the clients, and that’s not nice.

• Workers might connect directly to both brokers. But REQ workers can’t do that;
they can only reply to one broker. We might use REPs, but REPs don’t give us
customizable broker-to-worker routing like load balancing does, only the built-in
load balancing. That’s a fail; if we want to distribute work to idle workers, we pre‐
cisely need load balancing. One solution would be to use ROUTER sockets for the
worker nodes. Let’s label this “Idea #1.”

• Brokers could connect to each other. This looks the neatest because it creates the
fewest additional connections. We can’t add clusters on the fly, but that is probably
out of our scope anyway. With this solution, clients and workers remain ignorant
of the real network topology, and brokers tell each other when they have spare
capacity. Let’s label this “Idea #2.”

Let’s explore Idea #1. In this model, we have workers connecting to both brokers and
accepting jobs from either one (Figure 3-16).

Figure 3-16. Idea 1: cross-connected workers

It looks feasible. However, it doesn’t provide what we wanted, which was that clients get
local workers if possible and remote workers only if it’s better than waiting. Also, workers
will signal “ready” to both brokers and so can get two jobs at once, while other workers
remain idle. It seems this design fails because again we’re putting routing logic at the
edges.

So, Idea #2 then. We interconnect the brokers and don’t touch the clients or workers,
which are REQs like we’re used to (Figure 3-17).
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Figure 3-17. Idea 2: brokers talking to each other

This design is appealing because the problem is solved in one place, invisible to the rest
of the world. Basically, brokers open secret channels to each other and whisper, like
camel traders, “Hey, I’ve got some spare capacity. If you have too many clients give me
a shout and we’ll deal.”

In effect, it is just a more sophisticated routing algorithm: brokers become subcontrac‐
tors for each other. There are other things to like about this design, even before we play
with real code:

• It treats the common case (clients and workers on the same cluster) as the default
and does extra work for the exceptional case (shuffling jobs between clusters).

• It lets us use different message flows for the different types of work. That means we
can handle them differently, for example using different types of network connec‐
tion.

• It feels like it would scale smoothly. Interconnecting three or more brokers doesn’t
get overly complex. If we find this to be a problem, it’s easy to solve by adding a
super-broker.

We’ll now make a worked example. We’ll pack an entire cluster into one process. That
is obviously not realistic, but it makes it simple to simulate, and the simulation can
accurately scale to real processes. This is the beauty of ØMQ—you can design at the
micro level and scale that up to the macro level. Threads become processes, and then
become boxes, and the patterns and logic remain the same. Each of our “cluster” pro‐
cesses contains client threads, worker threads, and a broker thread.

We know the basic model well by now:

• The REQ client (REQ) threads create workloads and pass them to the broker
(ROUTER).

• The REQ worker (REQ) threads process workloads and return the results to the
broker (ROUTER).
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• The broker queues and distributes workloads using the load-balancing pattern.

Federation Versus Peering
There are several possible ways to interconnect brokers. What we want is to be able to
tell other brokers, “We have capacity,” and then receive multiple tasks. We also need to
be able to tell other brokers, “Stop, we’re full.” It doesn’t need to be perfect; sometimes
we may accept jobs we can’t process immediately, but we’ll do them as soon as possible.

The simplest interconnect is federation, in which brokers simulate clients and workers
for each other. We would do this by connecting our frontend to the other broker’s
backend socket (Figure 3-18). Note that it is legal to both bind a socket to an endpoint
and connect it to other endpoints.

Figure 3-18. Cross-connected brokers in federation model

This would give us simple logic in both brokers and a reasonably good mechanism:
when there are no clients, tell the other broker “ready,” and accept one job from it. The
problem is that it is too simple for this problem. A federated broker would be able to
handle only one task at a time. If the broker emulates a lock-step client and worker, it
will by definition also be lock-step, and if it has lots of available workers, they won’t be
used. Our brokers need to be connected in a fully asynchronous fashion.

The federation model is perfect for other kinds of routing, especially service-oriented
architectures (SOAs), which route by service name and proximity rather than load bal‐
ancing or round robin. So don’t dismiss it as useless; it’s just not right for all use cases.

Instead of federation, let’s look at a peering approach in which brokers are explicitly
aware of each other and talk over privileged channels. Let’s break this down, assuming
we want to interconnect N brokers. Each broker has (N – 1) peers, and all brokers are
using exactly the same code and logic. There are two distinct flows of information
between brokers:
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• Each broker needs to tell its peers how many workers it has available at any time.
This can be fairly simple information—just a quantity that is updated regularly. The
obvious (and correct) socket pattern for this is publish-subscribe: every broker
opens a PUB socket and publishes state information on that, and every broker also
opens a SUB socket and connects that to the PUB socket of every other broker, to
get state information from its peers.

• Each broker needs a way to delegate tasks to a peer and get replies back, asynchro‐
nously. We’ll do this using ROUTER sockets; no other combination works. Each
broker has two such sockets: one for tasks it receives and one for tasks it delegates.
If we didn’t use two sockets, it would be more work to know whether we were
reading a request or a reply each time. That would mean adding more information
to the message envelope.

And there is also the flow of information between a broker and its local clients and 
workers.

The Naming Ceremony
Three flows * two sockets for each flow = six sockets that we have to manage in the
broker. Choosing good names is vital to keeping a multisocket juggling act reasonably
coherent in our minds. Sockets do something, and what they do should form the basis
for their names. It’s about being able to read the code several weeks later on a cold
Monday morning before coffee, and not feel any pain.

Let’s do a shamanistic naming ceremony for the sockets. The three flows are:

• A local request-reply flow between the broker and its clients and workers
• A cloud request-reply flow between the broker and its peer brokers
• A state flow between the broker and its peer brokers

Finding meaningful names that are all the same length means our code will align nicely.
It’s not a big thing, but attention to detail helps. For each flow, the broker has two sockets
that we can orthogonally call the frontend and backend. We’ve used these names quite
often. A frontend receives information or tasks. A backend sends those out to other
peers. The conceptual flow is from front to back (with replies going in the opposite
direction, from back to front).

So, in all the code we write for this tutorial, we will use these socket names:

• localfe and localbe for the local flow
• cloudfe and cloudbe for the cloud flow
• statefe and statebe for the state flow
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For our transport, because we’re simulating the whole thing on one box, we’ll use ipc
for everything. This has the advantage of working like tcp in terms of connectivity (i.e.,
it’s a disconnected transport, unlike inproc), yet we don’t need IP addresses or DNS
names, which would be a pain here. Instead, we will use ipc endpoints called something-
local, something-cloud, and something-state, where something is the name of our
simulated cluster.

You might be thinking that this is a lot of work for some names. Why not call them s1,
s2, s3, s4, etc.? The answer is that if your brain is not a perfect machine, you need a
lot of help when reading code, and we’ll see that these names do help. It’s easier to
remember “three flows, two directions” than “six different sockets” (Figure 3-19).

Figure 3-19. Broker socket arrangement

Note that we connect the cloudbe in each broker to the cloudfe in every other broker,
and likewise we connect the statebe in each broker to the statefe in every other broker.

Prototyping the State Flow
Because each socket flow has its own little traps for the unwary, we will test them in real
code one by one, rather than trying to throw the whole lot into code in one go. When
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we’re happy with each flow, we can put them together into a full program. We’ll start
with the state flow (Figure 3-20).

Figure 3-20. The state flow

Example 3-19 shows how this works in code.

Example 3-19. Prototype state flow (peering1.c)
//
//  Broker peering simulation (part 1)
//  Prototypes the state flow
//
#include "czmq.h"

int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    //
    if (argc < 2) {
        printf ("syntax: peering1 me {you}...\n");
        exit (EXIT_FAILURE);
    }
    char *self = argv [1];
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    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    zctx_t *ctx = zctx_new ();
    
    //  Bind state backend to endpoint
    void *statebe = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (statebe, "ipc://%s-state.ipc", self);
    
    //  Connect statefe to all peers
    void *statefe = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statefe, "");
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to state backend at '%s'\n", peer);
        zsocket_connect (statefe, "ipc://%s-state.ipc", peer);
    }

The main loop (Example 3-20) sends out status messages to peers and collects status
messages back from peers. The zmq_poll() timeout defines our own heartbeat.

Example 3-20. Prototype state flow (peering1.c): main loop
    while (true) {
        //  Poll for activity, or 1-second timeout
        zmq_pollitem_t items [] = { { statefe, 0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, 1000 * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle incoming status messages
        if (items [0].revents & ZMQ_POLLIN) {
            char *peer_name = zstr_recv (statefe);
            char *available = zstr_recv (statefe);
            printf ("%s - %s workers free\n", peer_name, available);
            free (peer_name);
            free (available);
        }
        else {
            //  Send random values for worker availability
            zstr_sendm (statebe, self);
            zstr_sendf (statebe, "%d", randof (10));
        }
    }
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}

Notes about this code:
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• Each broker has an identity that we use to construct ipc endpoint names. A real
broker would need to work with TCP and a more sophisticated configuration
scheme. We’ll look at such schemes later in this book, but for now, using generated
ipc names lets us ignore the problem of where to get TCP/IP addresses or names.

• We use a zmq_poll() loop as the core of the program. This processes incoming
messages and sends out state messages. We send a state message only if we did not
get any incoming messages and we waited for a second. If we send out a state
message each time we get one in, we’ll get message storms.

• We use a two-part pub-sub message consisting of sender address and data. Note
that we will need to know the address of the publisher in order to send it tasks, and
the only way to send this explicitly is as a part of the message.

• We don’t set identities on subscribers, because if we did we’d get outdated state
information when connecting to running brokers.

• We don’t set an HWM on the publisher, yet if we were using ØMQ v2.x, that would
be a wise idea.

We can build this little program and run it three times to simulate three clusters. Let’s
call them DC1, DC2, and DC3 (the names are arbitrary). Run these three commands,
each in a separate window:

peering1 DC1 DC2 DC3  #  Start DC1 and connect to DC2 and DC3
peering1 DC2 DC1 DC3  #  Start DC2 and connect to DC1 and DC3
peering1 DC3 DC1 DC2  #  Start DC3 and connect to DC1 and DC2

You’ll see each cluster report the state of its peers, and after a few seconds they will all
happily be printing random numbers once per second. Try this and satisfy yourself that
the three brokers all match up and synchronize to per-second state updates.

In real life, we would not send out state messages at regular intervals, but rather when‐
ever we had a state change—i.e., whenever a worker became available or unavailable.
That may seem like a lot of traffic, but state messages are small and we’ve established
that the inter-cluster connections are superfast.

If we wanted to send state messages at precise intervals, we’d create a child thread and
open the statebe socket in that thread. We’d then send irregular state updates to that
child thread from our main thread and allow the child thread to conflate them into
regular outgoing messages. This is more work than we need here, though.

Prototyping the Local and Cloud Flows
Let’s now prototype the flow of tasks via the local and cloud sockets (Figure 3-21). This
code pulls requests from clients and then distributes them to local workers and cloud
peers on a random basis.
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Figure 3-21. The flow of tasks

Before we jump into the code, which is getting a little complex, let’s sketch the core
routing logic and break it down into a simple but robust design.

We need two queues, one for requests from local clients and one for requests from cloud
clients. One option would be to pull messages off the local and cloud frontends and
pump these onto their respective queues. But this is kind of pointless, because ØMQ
sockets are queues already. So let’s use the ØMQ socket buffers as queues.

This was the technique we used in the load-balancing broker earlier in this chapter, and
it worked nicely. We only read from the two frontends when there is somewhere to send
the requests. We can always read from the backends, as they give us replies to route
back. As long as the backends aren’t talking to us, there’s no point in even looking at the
frontends.

So, our main loop becomes:

• Poll the backends for activity. When we get a message, it may be “ready” from a
worker or it may be a reply. If it’s a reply, we route it back via the local or cloud
frontend.

• If a worker has replied, it has become available, so we queue it and count it.
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• While there are workers available, we take a request (if there are any) from either
frontend and route it either to a local worker or randomly to a cloud peer.

Randomly sending tasks to a peer broker rather than a worker simulates work distri‐
bution across the cluster. It’s dumb, but that is fine for this stage.

We use broker identities to route messages between brokers. Each broker has a name
that we provide on the command line in this simple prototype. As long as these names
don’t overlap with the ØMQ-generated UUIDs used for client nodes, we can figure out
whether to route a reply back to a client or to a broker.

Examples 3-21 through 3-26 show how this works in code.

Example 3-21. Prototype local and cloud flow (peering2.c)
//
//  Broker peering simulation (part 2)
//  Prototypes the request-reply flow
//
#include "czmq.h"

#define NBR_CLIENTS 10
#define NBR_WORKERS 3
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Our own name; in practice this would be configured per node
static char *self;

The client task, shown in Example 3-22, implements a request-reply dialog using a
standard synchronous REQ socket.

Example 3-22. Prototype local and cloud flow (peering2.c): client task
static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://%s-localfe.ipc", self);

    while (true) {
        //  Send request, get reply
        zstr_send (client, "HELLO");
        char *reply = zstr_recv (client);
        if (!reply)
            break;              //  Interrupted
        printf ("Client: %s\n", reply);
        free (reply);
        sleep (1);
    }
    zctx_destroy (&ctx);
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    return NULL;
}

The worker task, shown in Example 3-23, plugs into the load balancer using a REQ
socket.

Example 3-23. Prototype local and cloud flow (peering2.c): worker task
static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://%s-localbe.ipc", self);

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        zframe_print (zmsg_last (msg), "Worker: ");
        zframe_reset (zmsg_last (msg), "OK", 2);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

The main task begins by setting up its frontend and backend sockets and then starting
its client and worker tasks (Example 3-24).

Example 3-24. Prototype local and cloud flow (peering2.c): main task
int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    //
    if (argc < 2) {
        printf ("syntax: peering2 me {you}...\n");
        exit (EXIT_FAILURE);
    }
    self = argv [1];
    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    zctx_t *ctx = zctx_new ();
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    //  Bind cloud frontend to endpoint
    void *cloudfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudfe, self);
    zsocket_bind (cloudfe, "ipc://%s-cloud.ipc", self);

    //  Connect cloud backend to all peers
    void *cloudbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudbe, self);
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to cloud frontend at '%s'\n", peer);
        zsocket_connect (cloudbe, "ipc://%s-cloud.ipc", peer);
    }
    //  Prepare local frontend and backend
    void *localfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localfe, "ipc://%s-localfe.ipc", self);
    void *localbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localbe, "ipc://%s-localbe.ipc", self);

    //  Get user to tell us when we can start...
    printf ("Press Enter when all brokers are started: ");
    getchar ();

    //  Start local workers
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Start local clients
    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);

Next, we handle the request-reply flow (Example 3-25). We’re using load balancing to
poll workers at all times, and clients only when there are one or more workers available.

Example 3-25. Prototype local and cloud flow (peering2.c): request-reply handling
    //  Least recently used queue of available workers
    int capacity = 0;
    zlist_t *workers = zlist_new ();

    while (true) {
        //  First, route any waiting replies from workers
        zmq_pollitem_t backends [] = {
            { localbe, 0, ZMQ_POLLIN, 0 },
            { cloudbe, 0, ZMQ_POLLIN, 0 }
        };
        //  If we have no workers, wait indefinitely
        int rc = zmq_poll (backends, 2,
            capacity? 1000 * ZMQ_POLL_MSEC: -1);
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        if (rc == -1)
            break;              //  Interrupted

        //  Handle reply from local worker
        zmsg_t *msg = NULL;
        if (backends [0].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (localbe);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);
            capacity++;

            //  If it's READY, don't route the message any further
            zframe_t *frame = zmsg_first (msg);
            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
        }
        //  Or handle reply from peer broker
        else
        if (backends [1].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (cloudbe);
            if (!msg)
                break;          //  Interrupted
            //  We don't use peer broker identity for anything
            zframe_t *identity = zmsg_unwrap (msg);
            zframe_destroy (&identity);
        }
        //  Route reply to cloud if it's addressed to a broker
        for (argn = 2; msg && argn < argc; argn++) {
            char *data = (char *) zframe_data (zmsg_first (msg));
            size_t size = zframe_size (zmsg_first (msg));
            if (size == strlen (argv [argn])
            &&  memcmp (data, argv [argn], size) == 0)
                zmsg_send (&msg, cloudfe);
        }
        //  Route reply to client if we still need to
        if (msg)
            zmsg_send (&msg, localfe);

Now we route as many client requests as we have worker capacity for, as illustrated in
Example 3-26. We may reroute requests from our local frontend, but not from the cloud
frontend. We’ll reroute randomly for now, just to test things out. In the next version,
we’ll do this properly by calculating cloud capacity.

Example 3-26. Prototype local and cloud flow (peering2.c): route client requests
        while (capacity) {
            zmq_pollitem_t frontends [] = {
                { localfe, 0, ZMQ_POLLIN, 0 },
                { cloudfe, 0, ZMQ_POLLIN, 0 }
            };
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            rc = zmq_poll (frontends, 2, 0);
            assert (rc >= 0);
            int reroutable = 0;
            //  We'll do peer brokers first, to prevent starvation
            if (frontends [1].revents & ZMQ_POLLIN) {
                msg = zmsg_recv (cloudfe);
                reroutable = 0;
            }
            else
            if (frontends [0].revents & ZMQ_POLLIN) {
                msg = zmsg_recv (localfe);
                reroutable = 1;
            }
            else
                break;      //  No work, go back to backends

            //  If reroutable, send to cloud 20% of the time
            //  Here we'd normally use cloud status information
            //
            if (reroutable && argc > 2 && randof (5) == 0) {
                //  Route to random broker peer
                int random_peer = randof (argc - 2) + 2;
                zmsg_pushmem (msg, argv [random_peer], strlen (argv [random_peer]));
                zmsg_send (&msg, cloudbe);
            }
            else {
                zframe_t *frame = (zframe_t *) zlist_pop (workers);
                zmsg_wrap (msg, frame);
                zmsg_send (&msg, localbe);
                capacity--;
            }
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}

Run this by, for instance, starting two instances of the broker in two windows:
peering2 me you
peering2 you me

Some comments on this code:
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• In the C code at least, using the zmsg class makes life much easier, and our code
much shorter. It’s obviously an abstraction that works. If you build ØMQ applica‐
tions in C, you should use CZMQ.

• Because we’re not getting any state information from peers, we naively assume they
are running. The code prompts us to confirm when we’ve started all the brokers.
In the real case, we wouldn’t send anything to brokers who had not told us they
exist.

You can satisfy yourself that the code works by watching it run forever. If there were
any misrouted messages, clients would end up blocking, and the brokers would stop
printing trace information. You can prove that by killing either of the brokers. The other
broker tries to send requests to the cloud, and one by one its clients block, waiting for
an answer.

Putting It All Together
Let’s put this together into a single package. As before, we’ll run an entire cluster as one
process. We’re going to take the two previous examples and merge them into one prop‐
erly working design that lets us simulate any number of clusters.

This code is the size of both previous prototypes together, at 270 lines of code. That’s
pretty good for a simulation of a cluster that includes clients and workers and cloud
workload distribution. The code is presented in the following series of examples, be‐
ginning with Example 3-27.

Example 3-27. Full cluster simulation (peering3.c)
//
//  Broker peering simulation (part 3)
//  Prototypes the full flow of status and tasks
//
#include "czmq.h"

#define NBR_CLIENTS 10
#define NBR_WORKERS 5
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Our own name; in practice this would be configured per node
static char *self;

Example 3-28 shows the client task. It issues a burst of requests and then sleeps for a
few seconds. This simulates sporadic activity; when a number of clients are active at
once, the local workers should be overloaded. The client uses a REQ socket for requests
and also pushes statistics to the monitor socket.

Worked Example: Inter-Broker Routing | 133



Example 3-28. Full cluster simulation (peering3.c): client task
static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://%s-localfe.ipc", self);
    void *monitor = zsocket_new (ctx, ZMQ_PUSH);
    zsocket_connect (monitor, "ipc://%s-monitor.ipc", self);

    while (true) {
        sleep (randof (5));
        int burst = randof (15);
        while (burst--) {
            char task_id [5];
            sprintf (task_id, "%04X", randof (0x10000));

            //  Send request with random hex ID
            zstr_send (client, task_id);

            //  Wait max 10 seconds for a reply, then complain
            zmq_pollitem_t pollset [1] = { { client, 0, ZMQ_POLLIN, 0 } };
            int rc = zmq_poll (pollset, 1, 10 * 1000 * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

            if (pollset [0].revents & ZMQ_POLLIN) {
                char *reply = zstr_recv (client);
                if (!reply)
                    break;              //  Interrupted
                //  Worker is supposed to answer us with our task ID
                assert (streq (reply, task_id));
                zstr_sendf (monitor, "%s", reply);
                free (reply);
            }
            else {
                zstr_sendf (monitor,
                    "E: CLIENT EXIT - lost task %s", task_id);
                return NULL;
            }
        }
    }
    zctx_destroy (&ctx);
    return NULL;
}

The worker task, which uses a REQ socket to plug into the load balancer, is shown in
Example 3-29. It’s the same stub worker task that you’ve seen in other examples.
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Example 3-29. Full cluster simulation (peering3.c): worker task
static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://%s-localbe.ipc", self);

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        //  Workers are busy for 0/1 seconds
        sleep (randof (2));
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

The main task begins by setting up all its sockets (Example 3-30). The local frontend
talks to clients, and our local backend talks to workers. The cloud frontend talks to peer
brokers as if they were clients, and the cloud backend talks to peer brokers as if they
were workers. The state backend publishes regular state messages, and the state frontend
subscribes to all state backends to collect these messages. Finally, we use a PULL monitor
socket to collect printable messages from tasks.

Example 3-30. Full cluster simulation (peering3.c): main task
int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    //
    if (argc < 2) {
        printf ("syntax: peering3 me {you}...\n");
        exit (EXIT_FAILURE);
    }
    self = argv [1];
    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    zctx_t *ctx = zctx_new ();

    //  Prepare local frontend and backend
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    void *localfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localfe, "ipc://%s-localfe.ipc", self);

    void *localbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localbe, "ipc://%s-localbe.ipc", self);

    //  Bind cloud frontend to endpoint
    void *cloudfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudfe, self);
    zsocket_bind (cloudfe, "ipc://%s-cloud.ipc", self);
    
    //  Connect cloud backend to all peers
    void *cloudbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudbe, self);
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to cloud frontend at '%s'\n", peer);
        zsocket_connect (cloudbe, "ipc://%s-cloud.ipc", peer);
    }
    //  Bind state backend to endpoint
    void *statebe = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (statebe, "ipc://%s-state.ipc", self);

    //  Connect state frontend to all peers
    void *statefe = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statefe, "");
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to state backend at '%s'\n", peer);
        zsocket_connect (statefe, "ipc://%s-state.ipc", peer);
    }
    //  Prepare monitor socket
    void *monitor = zsocket_new (ctx, ZMQ_PULL);
    zsocket_bind (monitor, "ipc://%s-monitor.ipc", self);

After binding and connecting all our sockets, we start our child tasks—workers and
clients—as shown in Example 3-31.

Example 3-31. Full cluster simulation (peering3.c): start child tasks
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Start local clients
    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);

    //  Queue of available workers
    int local_capacity = 0;
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    int cloud_capacity = 0;
    zlist_t *workers = zlist_new ();

The main loop (Example 3-32) has two parts. First, we poll workers and our two service
sockets (statefe and monitor), in any case. If we have no ready workers, then there’s
no point in looking at incoming requests. These can remain on their internal ØMQ
queues.

Example 3-32. Full cluster simulation (peering3.c): main loop
    while (true) {
        zmq_pollitem_t primary [] = {
            { localbe, 0, ZMQ_POLLIN, 0 },
            { cloudbe, 0, ZMQ_POLLIN, 0 },
            { statefe, 0, ZMQ_POLLIN, 0 },
            { monitor, 0, ZMQ_POLLIN, 0 }
        };
        //  If we have no workers ready, wait indefinitely
        int rc = zmq_poll (primary, 4,
            local_capacity? 1000 * ZMQ_POLL_MSEC: -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Track if capacity changes during this iteration
        int previous = local_capacity;

        //  Handle reply from local worker
        zmsg_t *msg = NULL;

        if (primary [0].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (localbe);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);
            local_capacity++;

            //  If it's READY, don't route the message any further
            zframe_t *frame = zmsg_first (msg);
            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
        }
        //  Or handle reply from peer broker
        else
        if (primary [1].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (cloudbe);
            if (!msg)
                break;          //  Interrupted
            //  We don't use peer broker identity for anything
            zframe_t *identity = zmsg_unwrap (msg);
            zframe_destroy (&identity);
        }
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        //  Route reply to cloud if it's addressed to a broker
        for (argn = 2; msg && argn < argc; argn++) {
            char *data = (char *) zframe_data (zmsg_first (msg));
            size_t size = zframe_size (zmsg_first (msg));
            if (size == strlen (argv [argn])
            &&  memcmp (data, argv [argn], size) == 0)
                zmsg_send (&msg, cloudfe);
        }
        //  Route reply to client if we still need to
        if (msg)
            zmsg_send (&msg, localfe);

If we have input messages on our statefe or monitor sockets, we can process these
immediately, as shown in Example 3-33.

Example 3-33. Full cluster simulation (peering3.c): handle state messages
        if (primary [2].revents & ZMQ_POLLIN) {
            char *peer = zstr_recv (statefe);
            char *status = zstr_recv (statefe);
            cloud_capacity = atoi (status);
            free (peer);
            free (status);
        }
        if (primary [3].revents & ZMQ_POLLIN) {
            char *status = zstr_recv (monitor);
            printf ("%s\n", status);
            free (status);
        }

Now we route as many clients requests as we can handle, as illustrated in
Example 3-34. If we have local capacity, we poll both localfe and cloudfe. If we have
cloud capacity only, we poll just localfe. We route any request locally if we can, or else
we route it to the cloud.

Example 3-34. Full cluster simulation (peering3.c): route client requests
        while (local_capacity + cloud_capacity) {
            zmq_pollitem_t secondary [] = {
                { localfe, 0, ZMQ_POLLIN, 0 },
                { cloudfe, 0, ZMQ_POLLIN, 0 }
            };
            if (local_capacity)
                rc = zmq_poll (secondary, 2, 0);
            else
                rc = zmq_poll (secondary, 1, 0);
            assert (rc >= 0);

            if (secondary [0].revents & ZMQ_POLLIN)
                msg = zmsg_recv (localfe);
            else
            if (secondary [1].revents & ZMQ_POLLIN)
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                msg = zmsg_recv (cloudfe);
            else
                break;      //  No work, go back to primary

            if (local_capacity) {
                zframe_t *frame = (zframe_t *) zlist_pop (workers);
                zmsg_wrap (msg, frame);
                zmsg_send (&msg, localbe);
                local_capacity--;
            }
            else {
                //  Route to random broker peer
                int random_peer = randof (argc - 2) + 2;
                zmsg_pushmem (msg, argv [random_peer], strlen (argv [random_peer]));
                zmsg_send (&msg, cloudbe);
            }
        }

We broadcast capacity messages to other peers, as shown in Example 3-35; to reduce
chatter, we do this only if our capacity has changed.

Example 3-35. Full cluster simulation (peering3.c): broadcast capacity
        if (local_capacity != previous) {
            //  We stick our own identity onto the envelope
            zstr_sendm (statebe, self);
            //  Broadcast new capacity
            zstr_sendf (statebe, "%d", local_capacity);
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}

It’s a nontrivial program and took about a day to get working. These are the highlights:

• The client threads detect and report a failed request. They do this by polling for a
response and, if none arrives after a while (10 seconds), printing an error message.

• Client threads don’t print directly, but instead send a message to a monitor socket
(PUSH) that the main loop collects (PULL) and prints off. This is the first case we’ve
seen of using ØMQ sockets for monitoring and logging; this is a big use case that
we’ll come back to later.

• Clients simulate varying loads to get the cluster to 100% at random moments, so
that tasks are shifted over to the cloud. The number of clients and workers and
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delays in the client and worker threads control this. Feel free to play with them to
see if you can make a more realistic simulation.

• The main loop uses two poll sets. It could in fact use three: information, backends,
and frontends. As in the earlier prototype, there is no point in taking a frontend
message if there is no backend capacity.

These are some of the problems that arose during development of this program:

• Clients would freeze, due to requests or replies getting lost somewhere. Recall that
the ROUTER socket drops messages it can’t route. The first tactic here was to modify
the client thread to detect and report such problems. Secondly, I put zmsg_dump()
calls after every receive and before every send in the main loop, until the origins of
the problems were clear.

• The main loop was mistakenly reading from more than one ready socket. This
caused the first message to be lost. I fixed that by reading only from the first ready
socket.

• The zmsg class was not properly encoding UUIDs as C strings. This caused UUIDs
that contain 0 bytes to be corrupted. I fixed this by modifying zmsg to encode UUIDs
as printable hex strings.

This simulation does not detect the disappearance of a cloud peer. If you start several
peers and stop one, and that peer was broadcasting capacity to the others, they will
continue to send it work even after it’s gone. You can try this, and you will get clients
that complain of lost requests. The solution is twofold. First, only keep the capacity
information for a short time, so that if a peer does disappear its capacity is quickly set
to zero. Second, add reliability to the request-reply chain. We’ll look at reliability in the
next chapter.
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CHAPTER 4

Reliable Request-Reply Patterns

Chapter 3 covered advanced uses of ØMQ’s request-reply pattern with working exam‐
ples. This chapter looks at the general question of reliability and builds a set of reliable
messaging patterns on top of ØMQ’s core request-reply pattern.

In this chapter, we focus heavily on user-space request-reply patterns, which are reusable
models that help you design your own ØMQ architectures:

• The Lazy Pirate pattern: reliable request-reply from the client side
• The Simple Pirate pattern: reliable request-reply using load balancing
• The Paranoid Pirate pattern: reliable request-reply with heartbeating
• The Majordomo pattern: service-oriented reliable queuing
• The Titanic pattern: disk-based/disconnected reliable queuing
• The Binary Star pattern: primary backup server failover
• The Freelance pattern: brokerless reliable request-reply

What Is “Reliability”?
Most people who speak of “reliability” don’t really know what they mean by it. We can
only define reliability in terms of failure. That is, if we can handle a certain set of well-
defined and understood failures, we are reliable with respect to those failures. No more,
no less. So let’s look at the possible causes of failure in a distributed ØMQ application,
in roughly descending order of probability:

1. Application code is the worst offender. It can crash and exit, freeze and stop re‐
sponding to input, run too slowly for its input, exhaust all memory, and so on.
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2. System code (such as brokers we write using ØMQ) can die for the same reasons
as application code. System code should be more reliable than application code, but
it can still crash and burn, and especially run out of memory if it tries to queue
messages for slow clients.

3. Message queues can overflow, typically in system code that has learned to deal
brutally with slow clients. When a queue overflows, it starts to discard messages,
so we get “lost” messages.

4. Networks can fail (e.g., WiFi gets switched off or goes out of range). ØMQ will
automatically reconnect in such cases, but in the meantime, messages may get lost.

5. Hardware can fail and take with it all the processes running on that box.
6. Networks can fail in exotic ways; e.g., some ports on a switch may die and those

parts of the network become inaccessible.
7. Entire data centers can be struck by lightning, earthquakes, fire, or more mundane

power or cooling failures.

Making a software system fully reliable against all of these possible failures is an enor‐
mously difficult and expensive job and goes beyond the scope of this modest tome.

Because the first five cases in the preceding list cover 99.9% of real-world requirements
outside large companies (according to a highly scientific study I just ran, which also
told me that 78% of statistics are made up on the spot), that’s what we’ll examine here.
If you’re a large company with money to spend on the last two cases, contact my company
immediately! There’s a large hole behind my beach house waiting to be converted into
an executive swimming pool.

Designing Reliability
So, to make things brutally simple, reliability is “keeping things working properly when
code freezes or crashes,” a situation we’ll shorten to “when code dies.” However, the
things we want to keep working properly are more complex than just messages. We
need to take each core ØMQ messaging pattern and see how to make it work (if we can)
even when code dies.

Let’s take them one by one:
Request-reply:

If the server dies while processing a request, the client can figure that out because
it won’t get an answer back. Then it can give up in a huff, wait and try again later,
find another server, etc. As for the client dying, we can brush that off as “someone
else’s problem” for now.
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Publish-subscribe
If the client dies (having gotten some data), the server won’t know about it. Pub-
sub doesn’t send any information back from the client to the server. However, the
client can contact the server out-of-band—e.g., via request-reply—and say, “Please
resend everything I missed.” As for the server dying, that’s outside the scope of this
discussion. Subscribers can also self-verify that they’re not running too slowly, and
take action (e.g., warn the operator and die) if they are.

Pipeline
If a worker dies (while working), the ventilator doesn’t know about it. Pipelines,
like pub-sub and the grinding gears of time, only work in one direction. But the
downstream collector can detect that one task didn’t get done, and send a message
back to the ventilator saying, “Hey, resend task 324!” If the ventilator or collector
dies, whatever upstream client originally sent the work batch can get tired of waiting
and resend the whole lot. It’s not elegant, but system code should really not die often
enough for this to matter.

In this chapter we’ll focus just on request-reply, which is the low-hanging fruit of reliable
messaging.

The basic request-reply pattern (a REQ client socket doing a blocking send/receive to
a REP server socket) scores low on handling the most common types of failure. If the
server crashes while processing the request, the client just hangs forever. Similarly, if
the network loses the request or the reply, the client hangs forever.

Request-reply is still much better than TCP, thanks to ØMQ’s ability to reconnect peers
silently, to load-balance messages, and so on. But it’s still not good enough for real work.
The only case where you can really trust the basic request-reply pattern is between two
threads in the same process where there’s no network or separate server process to die.

However, with a little extra work, this humble pattern becomes a good basis for real
work across a distributed network, and we get a set of reliable request-reply (RRR)
patterns that I like to call the Pirate patterns (you’ll eventually get the joke, I hope).

There are, in my experience, roughly three ways to connect clients to servers. Each needs
a specific approach to reliability:

1. Multiple clients talking directly to a single server. Use case: a single well-known
server to which clients need to talk. Types of failure we aim to handle: server crashes
and restarts, and network disconnects.

2. Multiple clients talking to a broker proxy that distributes work to multiple workers.
Use case: service-oriented transaction processing. Types of failure we aim to handle:
worker crashes and restarts, worker busy looping, worker overload, queue crashes
and restarts, and network disconnects.
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3. Multiple clients talking to multiple servers with no intermediary proxies. Use case:
distributed services such as name resolution. Types of failure we aim to handle:
service crashes and restarts, service busy looping, service overload, and network
disconnects.

Each of these approaches has its trade-offs, and often you’ll mix them. We’ll look at all
three in detail.

Client-Side Reliability (Lazy Pirate Pattern)
We can get very simple, reliable request-reply with some changes to the client. We call
this the Lazy Pirate pattern (Figure 4-1). Rather than doing a blocking receive, we:

• Poll the REQ socket and receive from it only when it’s sure a reply has arrived.
• Resend a request, if no reply has arrived within a timeout period.
• Abandon the transaction if there is still no reply after several requests.

Figure 4-1. The Lazy Pirate pattern

If we try to use a REQ socket in anything other than a strict send/receive fashion, we’ll
get an error (technically, the REQ socket implements a small finite-state machine to
enforce the send/receive ping-pong, so the error code is called “EFSM”). This is slightly
annoying when we want to use REQ in a Pirate pattern, because we may send several
requests before getting a reply, as you can see in Example 4-1. The pretty good brute-
force solution is to close and reopen the REQ socket after an error.

Example 4-1. Lazy Pirate client (lpclient.c)
//
//  Lazy Pirate client
//  Use zmq_poll to do a safe request-reply
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//  To run, start lpserver and then randomly kill/restart it
//
#include "czmq.h"

#define REQUEST_TIMEOUT     2500    //  msec (> 1000!)
#define REQUEST_RETRIES     3       //  Before we abandon
#define SERVER_ENDPOINT     "tcp://localhost:5555"

int main (void)
{
    zctx_t *ctx = zctx_new ();
    printf ("I: connecting to server...\n");
    void *client = zsocket_new (ctx, ZMQ_REQ);
    assert (client);
    zsocket_connect (client, SERVER_ENDPOINT);

    int sequence = 0;
    int retries_left = REQUEST_RETRIES;
    while (retries_left && !zctx_interrupted) {
        //  We send a request, then we work to get a reply
        char request [10];
        sprintf (request, "%d", ++sequence);
        zstr_send (client, request);

        int expect_reply = 1;
        while (expect_reply) {
            //  Poll socket for a reply, with timeout
            zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
            int rc = zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

Example 4-2 shows how we process a server reply and exit our loop if the reply is valid.
If we didn’t receive a reply, we close the client socket and resend the request. We try a
number of times before finally abandoning.

Example 4-2. Lazy Pirate client (lpclient.c): process server reply
            if (items [0].revents & ZMQ_POLLIN) {
                //  We got a reply from the server, must match sequence
                char *reply = zstr_recv (client);
                if (!reply)
                    break;      //  Interrupted
                if (atoi (reply) == sequence) {
                    printf ("I: server replied OK (%s)\n", reply);
                    retries_left = REQUEST_RETRIES;
                    expect_reply = 0;
                }
                else
                    printf ("E: malformed reply from server: %s\n",
                        reply);
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                free (reply);
            }
            else
            if (--retries_left == 0) {
                printf ("E: server seems to be offline, abandoning\n");
                break;
            }
            else {
                printf ("W: no response from server, retrying...\n");
                //  Old socket is confused; close it and open a new one
                zsocket_destroy (ctx, client);
                printf ("I: reconnecting to server...\n");
                client = zsocket_new (ctx, ZMQ_REQ);
                zsocket_connect (client, SERVER_ENDPOINT);
                //  Send request again, on new socket
                zstr_send (client, request);
            }
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

We run this together with the matching server, shown in Example 4-3.

Example 4-3. Lazy Pirate server (lpserver.c)
//
//  Lazy Pirate server
//  Binds REQ socket to tcp://*:5555
//  Like hwserver except:
//   - echoes request as-is
//   - randomly runs slowly, or exits to simulate a crash.
//
#include "zhelpers.h"

int main (void)
{
    srandom ((unsigned) time (NULL));

    void *context = zmq_ctx_new ();
    void *server = zmq_socket (context, ZMQ_REP);
    zmq_bind (server, "tcp://*:5555");

    int cycles = 0;
    while (1) {
        char *request = s_recv (server);
        cycles++;

        //  Simulate various problems, after a few cycles
        if (cycles > 3 && randof (3) == 0) {
            printf ("I: simulating a crash\n");
            break;
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        }
        else
        if (cycles > 3 && randof (3) == 0) {
            printf ("I: simulating CPU overload\n");
            sleep (2);
        }
        printf ("I: normal request (%s)\n", request);
        sleep (1);              //  Do some heavy work
        s_send (server, request);
        free (request);
    }
    zmq_close (server);
    zmq_ctx_destroy (context);
    return 0;
}

To run this test case, start the client and the server in two console windows. The server
will randomly misbehave after a few messages. You can check the client’s response. Here
is typical output from the server:

I: normal request (1)
I: normal request (2)
I: normal request (3)
I: simulating CPU overload
I: normal request (4)
I: simulating a crash

And here is the client’s response:
I: connecting to server...
I: server replied OK (1)
I: server replied OK (2)
I: server replied OK (3)
W: no response from server, retrying...
I: connecting to server...
W: no response from server, retrying...
I: connecting to server...
E: server seems to be offline, abandoning

The client sequences each message and checks that replies come back exactly in order:
that no requests or replies are lost, and no replies come back more than once or out of
order. Run the test a few times until you’re convinced that this mechanism actually
works. You don’t need sequence numbers in a production application; they just help us
trust our design.

The client uses a REQ socket, and it does the brute-force close/reopen because REQ
sockets impose that strict send/receive cycle. You might be tempted to use a DEALER
instead, but it would not be a good decision. First, it would mean emulating the secret
sauce that REQ does with envelopes (if you’ve forgotten what that is, it’s a good sign you
don’t want to have to do it). Second, it would mean potentially getting back replies that
you didn’t expect.
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Handling failures only at the client works when we have a set of clients talking to a single
server. This design can handle a server crash, but only if recovery means restarting that
same server. If there’s a permanent error, such as a dead power supply on the server
hardware, this approach won’t work. Because the application code in servers is usually
the biggest source of failures in any architecture, depending on a single server is not a
great idea.

So, the pros and cons are:

• Pro: simple to understand and implement.
• Pro: works easily with existing client and server application code.
• Pro: ØMQ automatically retries the actual reconnection until it works.
• Con: doesn’t do failover to backup or alternate servers.

Basic Reliable Queuing (Simple Pirate Pattern)
Our second approach extends the Lazy Pirate pattern with a queue proxy that lets us
talk, transparently, to multiple servers, which we can more accurately call “workers.”
We’ll develop this in stages, starting with a minimal working model, the Simple Pirate
pattern.

In all these Pirate patterns, workers are stateless. If the application requires some shared
state, such as a shared database, we don’t know about it as we design our messaging
framework. Having a queue proxy means workers can come and go without clients
knowing anything about it. If one worker dies, another takes over. This is a nice, simple
topology with only one real weakness: the central queue itself, which can become a
problem to manage and is a single point of failure.

The basis for the queue proxy is the load-balancing broker from Chapter 3. What is the
very minimum we need to do to handle dead or blocked workers? Turns out, it’s sur‐
prisingly little. We already have a retry mechanism in the client, so using the load-
balancing pattern will work pretty well. This fits with ØMQ’s philosophy that we can
extend a peer-to-peer pattern like request-reply by plugging naive proxies in the middle
(Figure 4-2).
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Figure 4-2. The Simple Pirate pattern

We don’t need a special client; we’re still using the Lazy Pirate client. Example 4-4
presents is the queue, which is identical to the main task of the load-balancing broker.

Example 4-4. Simple Pirate queue (spqueue.c)
//
//  Simple Pirate broker
//  This is identical to load-balancing pattern, with no reliability
//  mechanisms. It depends on the client for recovery. Runs forever.
//
#include "czmq.h"

#define WORKER_READY   "\001"      //  Signals worker is ready

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5555");    //  For clients
    zsocket_bind (backend,  "tcp://*:5556");    //  For workers

    //  Queue of available workers
    zlist_t *workers = zlist_new ();
    
    //  The body of this example is exactly the same as lbbroker2
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...
}

Example 4-5 shows the worker, which takes the Lazy Pirate server and adapts it for the
load-balancing pattern (using the REQ “ready” signaling).

Example 4-5. Simple Pirate worker (spworker.c)
//
//  Simple Pirate worker
//  Connects REQ socket to tcp://*:5556
//  Implements worker part of load balancing
//
#include "czmq.h"
#define WORKER_READY   "\001"      //  Signals worker is ready

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);

    //  Set random identity to make tracing easier
    srandom ((unsigned) time (NULL));
    char identity [10];
    sprintf (identity, "%04X-%04X", randof (0x10000), randof (0x10000));
    zmq_setsockopt (worker, ZMQ_IDENTITY, identity, strlen (identity));
    zsocket_connect (worker, "tcp://localhost:5556");

    //  Tell broker we're ready for work
    printf ("I: (%s) worker ready\n", identity);
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    int cycles = 0;
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        //  Simulate various problems, after a few cycles
        cycles++;
        if (cycles > 3 && randof (5) == 0) {
            printf ("I: (%s) simulating a crash\n", identity);
            zmsg_destroy (&msg);
            break;
        }
        else
        if (cycles > 3 && randof (5) == 0) {
            printf ("I: (%s) simulating CPU overload\n", identity);
            sleep (3);
            if (zctx_interrupted)
                break;
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        }
        printf ("I: (%s) normal reply\n", identity);
        sleep (1);              //  Do some heavy work
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return 0;
}

To test this, start a handful of workers, a Lazy Pirate client, and the queue, in any order.
You’ll see that the workers eventually all crash and burn, and the client retries and then
gives up. The queue never stops, and you can restart workers and clients ad nauseum.
This model works with any number of clients and workers.

Robust Reliable Queuing (Paranoid Pirate Pattern)
The Simple Pirate queue pattern works pretty well, especially because it’s just a combi‐
nation of two existing patterns. Still, it does have some weaknesses:

• It’s not robust in the face of a queue crash and restart. The client will recover, but
the workers won’t. While ØMQ will reconnect workers’ sockets automatically, as
far as the newly started queue is concerned the workers haven’t signaled ready, so
they don’t exist. To fix this we have to do heartbeating from queue to worker so that
the worker can detect when the queue has gone away.

• The queue does not detect worker failure, so if a worker dies while idle, the queue
can’t remove it from its worker queue until the queue sends it a request. The client
waits and retries for nothing. It’s not a critical problem, but it’s not nice. To make
this work properly, we need to do heartbeating from worker to queue, so that the
queue can detect a lost worker at any stage.

We’ll fix these issues in a properly pedantic Paranoid Pirate pattern.

We previously used a REQ socket for the worker. For the Paranoid Pirate worker, we’ll
switch to a DEALER socket (Figure 4-3). This has the advantage of letting us send and
receive messages at any time, rather than the lock-step send/receive that REQ imposes.
The downside of DEALER is that we have to do our own envelope management (re-
read Chapter 3 for background on this concept).
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Figure 4-3. The Paranoid Pirate pattern

We’re still using the Lazy Pirate client. The Paranoid Pirate queue proxy is shown in
Example 4-6.

Example 4-6. Paranoid Pirate queue (ppqueue.c)
//
//  Paranoid Pirate queue
//
#include "czmq.h"

#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msec

//  Paranoid Pirate Protocol constants
#define PPP_READY       "\001"      //  Signals worker is ready
#define PPP_HEARTBEAT   "\002"      //  Signals worker heartbeat

Example 4-7 defines the worker class: a structure and a set of functions that act as
constructor, destructor, and methods on worker objects.

Example 4-7. Paranoid Pirate queue (ppqueue.c): worker class structure
typedef struct {
    zframe_t *identity;         //  Identity of worker
    char *id_string;            //  Printable identity
    int64_t expiry;             //  Expires at this time
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} worker_t;

//  Construct new worker
static worker_t *
s_worker_new (zframe_t *identity)
{
    worker_t *self = (worker_t *) zmalloc (sizeof (worker_t));
    self->identity = identity;
    self->id_string = zframe_strdup (identity);
    self->expiry = zclock_time () + HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS;
    return self;
}

//  Destroy specified worker object, including identity frame
static void
s_worker_destroy (worker_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        worker_t *self = *self_p;
        zframe_destroy (&self->identity);
        free (self->id_string);
        free (self);
        *self_p = NULL;
    }
}

The ready method (Example 4-8) puts a worker at the end of the ready list.

Example 4-8. Paranoid Pirate queue (ppqueue.c): worker ready method
static void
s_worker_ready (worker_t *self, zlist_t *workers)
{
    worker_t *worker = (worker_t *) zlist_first (workers);
    while (worker) {
        if (streq (self->id_string, worker->id_string)) {
            zlist_remove (workers, worker);
            s_worker_destroy (&worker);
            break;
        }
        worker = (worker_t *) zlist_next (workers);
    }
    zlist_append (workers, self);
}

The next method, shown in Example 4-9, returns the next available worker’s identity.

Example 4-9. Paranoid Pirate queue (ppqueue.c): get next available worker method
static zframe_t *
s_workers_next (zlist_t *workers)
{
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    worker_t *worker = zlist_pop (workers);
    assert (worker);
    zframe_t *frame = worker->identity;
    worker->identity = NULL;
    s_worker_destroy (&worker);
    return frame;
}

The purge method (Example 4-10) looks for and kills expired workers. We hold workers
from oldest to most recent, so we stop at the first alive worker.

Example 4-10. Paranoid Pirate queue (ppqueue.c): purge expired workers method
static void
s_workers_purge (zlist_t *workers)
{
    worker_t *worker = (worker_t *) zlist_first (workers);
    while (worker) {
        if (zclock_time () < worker->expiry)
            break;              //  Worker is alive, we're done here

        zlist_remove (workers, worker);
        s_worker_destroy (&worker);
        worker = (worker_t *) zlist_first (workers);
    }
}

The main task is a load balancer with heartbeating on workers so we can detect crashed
or blocked worker tasks, as shown in Example 4-11.

Example 4-11. Paranoid Pirate queue (ppqueue.c): main task
int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5555");    //  For clients
    zsocket_bind (backend,  "tcp://*:5556");    //  For workers

    //  List of available workers
    zlist_t *workers = zlist_new ();

    //  Send out heartbeats at regular intervals
    uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

    while (true) {
        zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, zlist_size (workers)? 2: 1,
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            HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Use worker identity for load balancing
            zmsg_t *msg = zmsg_recv (backend);
            if (!msg)
                break;          //  Interrupted

            //  Any sign of life from worker means it's ready
            zframe_t *identity = zmsg_unwrap (msg);
            worker_t *worker = s_worker_new (identity);
            s_worker_ready (worker, workers);

            //  Validate control message, or return reply to client
            if (zmsg_size (msg) == 1) {
                zframe_t *frame = zmsg_first (msg);
                if (memcmp (zframe_data (frame), PPP_READY, 1)
                &&  memcmp (zframe_data (frame), PPP_HEARTBEAT, 1)) {
                    printf ("E: invalid message from worker");
                    zmsg_dump (msg);
                }
                zmsg_destroy (&msg);
            }
            else
                zmsg_send (&msg, frontend);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Now get next client request, route to next worker
            zmsg_t *msg = zmsg_recv (frontend);
            if (!msg)
                break;          //  Interrupted
            zmsg_push (msg, s_workers_next (workers));
            zmsg_send (&msg, backend);
        }

We handle heartbeating after any socket activity. As shown in Example 4-12, first, we
send heartbeats to any idle workers if it’s time, then we purge any dead workers.

Example 4-12. Paranoid Pirate queue (ppqueue.c): handle heartbeating
        if (zclock_time () >= heartbeat_at) {
            worker_t *worker = (worker_t *) zlist_first (workers);
            while (worker) {
                zframe_send (&worker->identity, backend,
                             ZFRAME_REUSE + ZFRAME_MORE);
                zframe_t *frame = zframe_new (PPP_HEARTBEAT, 1);
                zframe_send (&frame, backend, 0);
                worker = (worker_t *) zlist_next (workers);
            }
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            heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        }
        s_workers_purge (workers);
    }

    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        worker_t *worker = (worker_t *) zlist_pop (workers);
        s_worker_destroy (&worker);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return 0;
}

The queue extends the load-balancing pattern with heartbeating of workers. Heart‐
beating is one of those “simple” things that can be difficult to get right. I’ll explain more
about that in the next section; for now, back to the code.

Take a look at the Paranoid Pirate worker in Example 4-13.

Example 4-13. Paranoid Pirate worker (ppworker.c)
//
//  Paranoid Pirate worker
//
#include "czmq.h"

#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msec
#define INTERVAL_INIT       1000    //  Initial reconnect
#define INTERVAL_MAX       32000    //  After exponential backoff

//  Paranoid Pirate Protocol constants
#define PPP_READY       "\001"      //  Signals worker is ready
#define PPP_HEARTBEAT   "\002"      //  Signals worker heartbeat

//  Helper function that returns a new configured socket
//  connected to the Paranoid Pirate queue

static void *
s_worker_socket (zctx_t *ctx) {
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "tcp://localhost:5556");

    //  Tell queue we're ready for work
    printf ("I: worker ready\n");
    zframe_t *frame = zframe_new (PPP_READY, 1);
    zframe_send (&frame, worker, 0);

    return worker;
}
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We have a single task that implements the worker side of the Paranoid Pirate Protocol
(PPP). The heartbeating code in Example 4-14 lets the worker detect if the queue has
died, and vice versa.

Example 4-14. Paranoid Pirate worker (ppworker.c): main task
int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *worker = s_worker_socket (ctx);

    //  If liveness hits zero, queue is considered disconnected
    size_t liveness = HEARTBEAT_LIVENESS;
    size_t interval = INTERVAL_INIT;

    //  Send out heartbeats at regular intervals
    uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

    srandom ((unsigned) time (NULL));
    int cycles = 0;
    while (true) {
        zmq_pollitem_t items [] = { { worker,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        if (items [0].revents & ZMQ_POLLIN) {
            //  Get message
            //  - 3-part envelope + content -> request
            //  - 1-part HEARTBEAT -> heartbeat
            zmsg_t *msg = zmsg_recv (worker);
            if (!msg)
                break;          //  Interrupted

To test the robustness of the queue implementation, we simulate various typical prob‐
lems, such as the worker crashing or running very slowly. We do this after a few cycles
so that the architecture can get up and running first. The problem simulation code is
in Example 4-15.

Example 4-15. Paranoid Pirate worker (ppworker.c): simulating problems
                cycles++;
                if (cycles > 3 && randof (5) == 0) {
                    printf ("I: simulating a crash\n");
                    zmsg_destroy (&msg);
                    break;
                }
                else
                if (cycles > 3 && randof (5) == 0) {
                    printf ("I: simulating CPU overload\n");
                    sleep (3);
                    if (zctx_interrupted)
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                        break;
                }
                printf ("I: normal reply\n");
                zmsg_send (&msg, worker);
                liveness = HEARTBEAT_LIVENESS;
                sleep (1);              //  Do some heavy work
                if (zctx_interrupted)
                    break;
            }
            else

When we get a heartbeat message from the queue, it means the queue is (or rather, was
recently) alive, so we must reset our liveness indicator. The code in Example 4-16 handles
the heartbeats.

Example 4-16. Paranoid Pirate worker (ppworker.c): handle heartbeats
                zframe_t *frame = zmsg_first (msg);
                if (memcmp (zframe_data (frame), PPP_HEARTBEAT, 1) == 0)
                    liveness = HEARTBEAT_LIVENESS;
                else {
                    printf ("E: invalid message\n");
                    zmsg_dump (msg);
                }
                zmsg_destroy (&msg);
            }
            else {
                printf ("E: invalid message\n");
                zmsg_dump (msg);
            }
            interval = INTERVAL_INIT;
        }
        else

If the queue hasn’t sent us heartbeats in a while, we destroy the socket and reconnect,
as shown in Example 4-17. This is the simplest and most brutal way of discarding any
messages we might have sent in the meantime.

Example 4-17. Paranoid Pirate worker (ppworker.c): detecting a dead queue
            printf ("W: heartbeat failure, can't reach queue\n");
            printf ("W: reconnecting in %zd msec...\n", interval);
            zclock_sleep (interval);

            if (interval < INTERVAL_MAX)
                interval *= 2;
            zsocket_destroy (ctx, worker);
            worker = s_worker_socket (ctx);
            liveness = HEARTBEAT_LIVENESS;
        }

        //  Send heartbeat to queue if it's time
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        if (zclock_time () > heartbeat_at) {
            heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
            printf ("I: worker heartbeat\n");
            zframe_t *frame = zframe_new (PPP_HEARTBEAT, 1);
            zframe_send (&frame, worker, 0);
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

Some comments about this example:

• The code includes simulation of failures, as before. This makes it (a) very hard to
debug, and (b) dangerous to reuse. When you want to debug this code, disable the
failure simulation.

• The worker uses a reconnect strategy similar to the one we designed for the Lazy
Pirate client, with two major differences: it does an exponential backoff, and it
retries indefinitely (whereas the client retries a few times before reporting a failure).

You can try the client, queue, and workers by using a script like this:
ppqueue &
for i in 1 2 3 4; do
    ppworker &
    sleep 1
done
lpclient &

You should see the workers die one by one as they simulate a crash, and the client
eventually give up. You can stop and restart the queue, and both the client and the
workers will reconnect and carry on. And no matter what you do to queues and workers,
the client will never get an out-of-order reply: either the whole chain works, or the client
abandons.

Heartbeating
Heartbeating solves the problem of knowing whether a peer is alive or dead. This is not
an issue specific to ØMQ. TCP has a long timeout (30 minutes or so), which means that
it can be impossible to know whether a peer has died, been disconnected, or gone on a
weekend trip to Prague with a case of vodka, a redhead, and a large expense account.

It’s not easy to get heartbeating right. When writing the Paranoid Pirate examples, it
took me about five hours to get the heartbeating working properly. The rest of the
request-reply chain took perhaps 10 minutes. It is especially easy to create “false failures”;
i.e., when peers decide that they are disconnected because the heartbeats aren’t sent
properly.
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In this section, we’ll look at the three main solutions people use for heartbeating with
ØMQ.

Shrugging It Off
The most common approach is to do no heartbeating at all and hope for the best. Many,
if not most, ØMQ applications do this. ØMQ encourages this by hiding peers in many
cases. What problems does this approach cause?

• When we use a ROUTER socket in an application that tracks peers, as peers dis‐
connect and reconnect, the application will leak memory (resources that the ap‐
plication holds for each peer) and get slower and slower.

• When we use SUB- or DEALER-based data recipients, we can’t tell the difference
between good silence (there’s no data) and bad silence (the other end has died).
When a recipient knows the other side has died, it can for example switch over to
a backup route.

• If we use a TCP connection that stays silent for a long while, it will, in some networks,
just die. Sending something (technically, a “keep alive” more than a heartbeat) will
keep the network alive.

One-Way Heartbeats
A second option is to send a heartbeat message from each node to its peers every second
or so. When one node hears nothing from another within some timeout (several sec‐
onds, typically), it will treat that peer as dead. Sounds good, right? Sadly, no. This works
in some cases but has nasty edge cases in others.

For pub-sub, this approach does work, and it’s the only model you can use. SUB sockets
cannot talk back to PUB sockets, but PUB sockets can happily send “I’m alive” messages
to their subscribers.

As an optimization, you can send heartbeats only when there is no real data to send.
Furthermore, you can send heartbeats at progressively longer intervals, if network ac‐
tivity is an issue (e.g., on mobile networks where activity drains the battery). As long as
the recipient can detect a failure (a sharp stop in activity), that’s fine.

Here are the typical problems with this design:

• It can be inaccurate when we send large amounts of data, as heartbeats will be
delayed behind that data. If heartbeats are delayed, you can get false timeouts and
disconnections due to network congestion. Thus, always treat any incoming data
as a heartbeat, whether or not the sender optimizes out heartbeats.
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• While the pub-sub pattern will drop messages for disappeared recipients, PUSH
and DEALER sockets will queue them. So if you’ve send heartbeats to a dead peer
and it comes back to life, it will get all the heartbeats you’ve sent, which can be
thousands. Whoa, whoa!

• This design assumes that heartbeat timeouts are the same across the whole network.
But that won’t be accurate. Some peers will want very aggressive heartbeating in
order to detect faults rapidly. And some will want very relaxed heartbeating in order
to let sleeping networks lie and save power.

Ping-Pong Heartbeats
The third option is to use a ping-pong dialog. One peer sends a ping command to the
other, which replies with a pong command. Neither command has any payload. Pings
and pongs are not correlated. Because the roles of “client” and “server” are arbitrary in
some networks, we usually specify that either peer can in fact send a ping and expect a
pong in response. However, as the timeouts depend on network topologies known best
to dynamic clients, it is usually the client that pings the server.

This works for all ROUTER-based brokers. The same optimizations we used in the
second model make this work even better: treat any incoming data as a pong, and only
send a ping when not otherwise sending data.

Heartbeating for Paranoid Pirate
For Paranoid Pirate, we chose the second approach. It might not have been the simplest
option: if designing this today, I’d probably try a ping-pong approach instead. However,
the principles are similar. The heartbeat messages flow asynchronously in both direc‐
tions, and either peer can decide the other is “dead” and stop talking to it.

In the worker, this is how we handle heartbeats from the queue:

• We calculate a liveness, which is how many heartbeats we can still miss before de‐
ciding the queue is dead. It starts at three and we decrement it each time we miss a
heartbeat.

• We wait in the zmq_poll() loop for one second each time, which is our heartbeat
interval.

• If there’s any message from the queue during that time, we reset our liveness to
three.

• If there’s no message during that time, we count down our liveness.
• If the liveness reaches zero, we consider the queue dead.
• If the queue is dead, we destroy our socket, create a new one, and reconnect.
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• To avoid opening and closing too many sockets, we wait for a certain interval before
reconnecting, and we double the interval each time until it reaches 32 seconds.

And this is how we handle heartbeats to the queue:

• We calculate when to send the next heartbeat; this is a single variable because we’re
talking to one peer, the queue.

• In the zmq_poll() loop, whenever we pass this time, we send a heartbeat to the
queue.

Here’s the essential heartbeating code for the worker:
#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msec
#define INTERVAL_INIT       1000    //  Initial reconnect
#define INTERVAL_MAX       32000    //  After exponential backoff

...
//  If liveness hits zero, queue is considered disconnected
size_t liveness = HEARTBEAT_LIVENESS;
size_t interval = INTERVAL_INIT;

//  Send out heartbeats at regular intervals
uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

while (true) {
    zmq_pollitem_t items [] = { { worker,  0, ZMQ_POLLIN, 0 } };
    int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);

    if (items [0].revents & ZMQ_POLLIN) {
        //  Receive any message from queue
        liveness = HEARTBEAT_LIVENESS;
        interval = INTERVAL_INIT;
    }
    else
    if (--liveness == 0) {
        zclock_sleep (interval);
        if (interval < INTERVAL_MAX)
            interval *= 2;
        zsocket_destroy (ctx, worker);
        ...
        liveness = HEARTBEAT_LIVENESS;
    }
    //  Send heartbeat to queue if it's time
    if (zclock_time () > heartbeat_at) {
        heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        //  Send heartbeat message to queue
    }
}

The queue does the same, but manages an expiration time for each worker.
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Here are some tips for your own heartbeating implementation:

• Use zmq_poll() or a reactor as the core of your application’s main task.
• Start by building the heartbeating between peers, test it by simulating failures, and

then build the rest of the message flow. Adding heartbeating afterwards is much
trickier.

• Use simple tracing (i.e., print to console) to get this working. To help you trace the
flow of messages between peers, use a dump method such as the one zmsg offers,
and number your messages incrementally so you can see if there are gaps.

• In a real application, heartbeating must be configurable and usually negotiated with
the peer. Some peers will want aggressive heartbeating, as low as 10 msec. Other
peers will be far away and want heartbeating as high as 30 seconds.

• If you have different heartbeat intervals for different peers, your poll timeout should
be the lowest (shortest time) of these. Do not use an infinite timeout.

• Do heartbeating on the same socket you use for messages, so your heartbeats also
act as a keep alive to stop the network connection from going stale (some firewalls
can be unkind to silent connections).

Contracts and Protocols
If you’re paying attention, you’ll realize that Paranoid Pirate is not interoperable with
Simple Pirate, because of the heartbeats. But how do we define “interoperable”? To
guarantee interoperability, we need a kind of contract, an agreement that lets different
teams in different times and places write code that is guaranteed to work together. We
call this a “protocol.”

It’s fun to experiment without specifications, but that’s not a sensible basis for real ap‐
plications. What happens if we want to write a worker in another language? Do we have
to read code to see how things work? What if we want to change the protocol for some
reason? Even a simple protocol will, if it’s successful, evolve and become more complex.

Lack of contracts is a sure sign of a disposable application. So let’s write a contract for
this protocol. How do we do that?

There’s a wiki at http://rfc.zeromq.org that we made especially as a home for public ØMQ
contracts.

To create a new specification, register and follow the instructions. It’s fairly straightfor‐
ward, though writing technical texts is not everyone’s cup of tea.

It took me about 15 minutes to draft the new Pirate Pattern Protocol. It’s not a big
specification, but it does capture enough to act as the basis for arguments (“Your queue
isn’t PPP compatible; please fix it!”).
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Turning PPP into a real protocol would take more work:

• There should be a protocol version number in the READY command so that it’s
possible to distinguish between different versions of PPP.

• Right now, READY and HEARTBEAT are not entirely distinct from requests and
replies. To make them distinct, we would need a message structure that includes a
“message type” part.

Service-Oriented Reliable Queuing (Majordomo Pattern)
The nice thing about progress is how fast it happens when lawyers and committees aren’t
involved. Just a few sentences ago, we were dreaming of a better protocol that would fix
the world. And here we have it: the Majordomo Protocol.

This one-page specification turns PPP into something more solid (Figure 4-4). This is
how we should design complex architectures: start by writing down the contracts, and
only then write software to implement them.

Figure 4-4. The Majordomo pattern

The Majordomo Protocol (MDP) extends and improves on PPP in one interesting way:
it adds a “service name” to requests that the client sends, and asks workers to register
for specific services. Adding service names turns our Paranoid Pirate queue into a
service-oriented broker. The nice thing about MDP is that it came out of working code,
a simpler ancestor protocol (PPP), and a precise set of improvements. This made it easy
to draft.
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To implement Majordomo, we need to write a framework for clients and workers. It’s
really not sane to ask every application developer to read the spec and make it work,
when they could be using a simpler API built and tested just once.

So while our first contract (MDP itself) defines how the pieces of our distributed ar‐
chitecture talk to each other, our second contract defines how user applications talk to
the technical framework we’re going to design.

Majordomo has two halves, a client side and a worker side. Since we’ll write both client
and worker applications, we will need two APIs. Here is a sketch for the client API, using
a simple object-oriented approach:

mdcli_t *mdcli_new     (char *broker);
void     mdcli_destroy (mdcli_t **self_p);
zmsg_t  *mdcli_send    (mdcli_t *self, char *service, zmsg_t **request_p);

That’s it. We open a session to the broker, send a request message, get a reply message
back, and eventually close the connection. Here’s a sketch for the worker API:

mdwrk_t *mdwrk_new     (char *broker,char *service);
void     mdwrk_destroy (mdwrk_t **self_p);
zmsg_t  *mdwrk_recv    (mdwrk_t *self, zmsg_t *reply);

It’s more or less symmetrical, but the worker dialog is a little different. The first time a
worker does a recv(), it passes a null reply. Thereafter, it passes the current reply and
gets a new request.

The client and worker APIs were fairly simple to construct because they’re heavily based
on the Paranoid Pirate code we already developed. The client API is shown in
Example 4-18.

Example 4-18. Majordomo client API (mdcliapi.c)
/*  =====================================================================
 *  mdcliapi.c - Majordomo Protocol Client API
 *  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.
 *  ===================================================================== */

#include "mdcliapi.h"

//  Structure of our class
//  We access these properties only via class methods

struct _mdcli_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    void *client;               //  Socket to broker
    int verbose;                //  Print activity to stdout
    int timeout;                //  Request timeout
    int retries;                //  Request retries
};
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//  ---------------------------------------------------------------------
//  Connect or reconnect to broker

void s_mdcli_connect_to_broker (mdcli_t *self)
{
    if (self->client)
        zsocket_destroy (self->ctx, self->client);
    self->client = zsocket_new (self->ctx, ZMQ_REQ);
    zmq_connect (self->client, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);
}

Example 4-19 presents the constructor and destructor for our mdcli class.

Example 4-19. Majordomo client API (mdcliapi.c): constructor and destructor
//  ---------------------------------------------------------------------
//  Constructor

mdcli_t *
mdcli_new (char *broker, int verbose)
{
    assert (broker);

    mdcli_t *self = (mdcli_t *) zmalloc (sizeof (mdcli_t));
    self->ctx = zctx_new ();
    self->broker = strdup (broker);
    self->verbose = verbose;
    self->timeout = 2500;           //  msec
    self->retries = 3;              //  Before we abandon

    s_mdcli_connect_to_broker (self);
    return self;
}

//  ---------------------------------------------------------------------
//  Destructor

void
mdcli_destroy (mdcli_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        mdcli_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self->broker);
        free (self);
        *self_p = NULL;
    }
}
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These are the class methods. We can set the request timeout and number of retry at‐
tempts before sending requests, as shown in Example 4-20.

Example 4-20. Majordomo client API (mdcliapi.c): configure retry behavior
//  ---------------------------------------------------------------------
//  Set request timeout

void
mdcli_set_timeout (mdcli_t *self, int timeout)
{
    assert (self);
    self->timeout = timeout;
}

//  ---------------------------------------------------------------------
//  Set request retries

void
mdcli_set_retries (mdcli_t *self, int retries)
{
    assert (self);
    self->retries = retries;
}

Example 4-21 and 4-22 show the send method. It sends a request to the broker and gets
a reply even if it has to retry several times. It takes ownership of the request message,
and destroys it when sent. It returns the reply message, or NULL if there was no reply
after multiple attempts.

Example 4-21. Majordomo client API (mdcliapi.c): send request and wait for reply
zmsg_t *
mdcli_send (mdcli_t *self, char *service, zmsg_t **request_p)
{
    assert (self);
    assert (request_p);
    zmsg_t *request = *request_p;

    //  Prefix request with protocol frames
    //  Frame 1: "MDPCxy" (six bytes, MDP/Client x.y)
    //  Frame 2: Service name (printable string)
    zmsg_pushstr (request, service);
    zmsg_pushstr (request, MDPC_CLIENT);
    if (self->verbose) {
        zclock_log ("I: send request to '%s' service:", service);
        zmsg_dump (request);
    }
    int retries_left = self->retries;
    while (retries_left && !zctx_interrupted) {
        zmsg_t *msg = zmsg_dup (request);

Service-Oriented Reliable Queuing (Majordomo Pattern) | 167



        zmsg_send (&msg, self->client);

        zmq_pollitem_t items [] = {
            { self->client, 0, ZMQ_POLLIN, 0 }
        };

On any blocking call, libzmq will return -1 if there was an error. We could in theory
check for different error codes, but in practice it’s okay to assume it was EINTR (Ctrl-C).
The body of our send method is shown in Example 4-22.

Example 4-22. Majordomo client API (mdcliapi.c): body of send
        int rc = zmq_poll (items, 1, self->timeout * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;          //  Interrupted

        //  If we got a reply, process it
        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->client);
            if (self->verbose) {
                zclock_log ("I: received reply:");
                zmsg_dump (msg);
            }
            //  We would handle malformed replies better in real code
            assert (zmsg_size (msg) >= 3);

            zframe_t *header = zmsg_pop (msg);
            assert (zframe_streq (header, MDPC_CLIENT));
            zframe_destroy (&header);

            zframe_t *reply_service = zmsg_pop (msg);
            assert (zframe_streq (reply_service, service));
            zframe_destroy (&reply_service);

            zmsg_destroy (&request);
            return msg;     //  Success
        }
        else
        if (--retries_left) {
            if (self->verbose)
                zclock_log ("W: no reply, reconnecting...");
            s_mdcli_connect_to_broker (self);
        }
        else {
            if (self->verbose)
                zclock_log ("W: permanent error, abandoning");
            break;          //  Give up
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, killing client...\n");
    zmsg_destroy (&request);
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    return NULL;
}

Let’s see how the client API looks in action, with an example test program
(Example 4-23) that does 100K request-reply cycles.

Example 4-23. Majordomo client application (mdclient.c)
//
//  Majordomo Protocol client example
//  Uses the mdcli API to hide all MDP aspects
//

//  Lets us build this source without creating a library
#include "mdcliapi.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    int count;
    for (count = 0; count < 100000; count++) {
        zmsg_t *request = zmsg_new ();
        zmsg_pushstr (request, "Hello world");
        zmsg_t *reply = mdcli_send (session, "echo", &request);
        if (reply)
            zmsg_destroy (&reply);
        else
            break;              //  Interrupt or failure
    }
    printf ("%d requests/replies processed\n", count);
    mdcli_destroy (&session);
    return 0;
}

The worker API is presented in Example 4-24 through 4-30.

Example 4-24. Majordomo worker API (mdwrkapi.c)
/*  =====================================================================
 *  mdwrkapi.c - Majordomo Protocol Worker API
 *  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.
 *  ===================================================================== */

#include "mdwrkapi.h"

//  Reliability parameters
#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable

Example 4-25 shows is the structure of a worker API instance. We use a pseudo object-
oriented approach in a lot of the C examples, as well as the CZMQ binding.
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Example 4-25. Majordomo worker API (mdwrkapi.c): worker class structure
//  Structure of our class
//  We access these properties only via class methods

struct _mdwrk_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    char *service;
    void *worker;               //  Socket to broker
    int verbose;                //  Print activity to stdout

    //  Heartbeat management
    uint64_t heartbeat_at;      //  When to send HEARTBEAT
    size_t liveness;            //  How many attempts left
    int heartbeat;              //  Heartbeat delay, in msec
    int reconnect;              //  Reconnect delay, in msec

    int expect_reply;           //  Zero only at start
    zframe_t *reply_to;         //  Return identity, if any
};

We have two utility functions, to send a message to the broker and to (re)connect to the
broker, as you can see in Example 4-26.

Example 4-26. Majordomo worker API (mdwrkapi.c): utility functions
//  ---------------------------------------------------------------------
//  Send message to broker
//  If no msg is provided, creates one internally

static void
s_mdwrk_send_to_broker (mdwrk_t *self, char *command, char *option,
                        zmsg_t *msg)
{
    msg = msg? zmsg_dup (msg): zmsg_new ();

    //  Stack protocol envelope to start of message
    if (option)
        zmsg_pushstr (msg, option);
    zmsg_pushstr (msg, command);
    zmsg_pushstr (msg, MDPW_WORKER);
    zmsg_pushstr (msg, "");

    if (self->verbose) {
        zclock_log ("I: sending %s to broker",
            mdps_commands [(int) *command]);
        zmsg_dump (msg);
    }
    zmsg_send (&msg, self->worker);
}
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//  ---------------------------------------------------------------------
//  Connect or reconnect to broker

void s_mdwrk_connect_to_broker (mdwrk_t *self)
{
    if (self->worker)
        zsocket_destroy (self->ctx, self->worker);
    self->worker = zsocket_new (self->ctx, ZMQ_DEALER);
    zmq_connect (self->worker, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);

    //  Register service with broker
    s_mdwrk_send_to_broker (self, MDPW_READY, self->service, NULL);

    //  If liveness hits zero, queue is considered disconnected
    self->liveness = HEARTBEAT_LIVENESS;
    self->heartbeat_at = zclock_time () + self->heartbeat;
}

Example 4-27 presents the constructor and destructor for our mdwrk class.

Example 4-27. Majordomo worker API (mdwrkapi.c): constructor and destructor
//  ---------------------------------------------------------------------
//  Constructor

mdwrk_t *
mdwrk_new (char *broker,char *service, int verbose)
{
    assert (broker);
    assert (service);

    mdwrk_t *self = (mdwrk_t *) zmalloc (sizeof (mdwrk_t));
    self->ctx = zctx_new ();
    self->broker = strdup (broker);
    self->service = strdup (service);
    self->verbose = verbose;
    self->heartbeat = 2500;     //  msec
    self->reconnect = 2500;     //  msec

    s_mdwrk_connect_to_broker (self);
    return self;
}

//  ---------------------------------------------------------------------
//  Destructor

void
mdwrk_destroy (mdwrk_t **self_p)
{
    assert (self_p);
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    if (*self_p) {
        mdwrk_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self->broker);
        free (self->service);
        free (self);
        *self_p = NULL;
    }
}

We provide two methods to configure the worker API. You can set the heartbeat interval
and retries to match the expected network performance (Example 4-28).

Example 4-28. Majordomo worker API (mdwrkapi.c): configure worker
//  ---------------------------------------------------------------------
//  Set heartbeat delay

void
mdwrk_set_heartbeat (mdwrk_t *self, int heartbeat)
{
    self->heartbeat = heartbeat;
}

//  ---------------------------------------------------------------------
//  Set reconnect delay

void
mdwrk_set_reconnect (mdwrk_t *self, int reconnect)
{
    self->reconnect = reconnect;
}

Example 4-29 shows the recv method; it’s a little misnamed since it first sends any reply
and then waits for a new request. If you have a better name for this, let me know!

Example 4-29. Majordomo worker API (mdwrkapi.c): recv method
//  ---------------------------------------------------------------------
//  Send reply, if any, to broker and wait for next request.

zmsg_t *
mdwrk_recv (mdwrk_t *self, zmsg_t **reply_p)
{
    //  Format and send the reply if we were provided one
    assert (reply_p);
    zmsg_t *reply = *reply_p;
    assert (reply || !self->expect_reply);
    if (reply) {
        assert (self->reply_to);
        zmsg_wrap (reply, self->reply_to);
        s_mdwrk_send_to_broker (self, MDPW_REPLY, NULL, reply);
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        zmsg_destroy (reply_p);
    }
    self->expect_reply = 1;

    while (true) {
        zmq_pollitem_t items [] = {
            { self->worker,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, self->heartbeat * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->worker);
            if (!msg)
                break;          //  Interrupted
            if (self->verbose) {
                zclock_log ("I: received message from broker:");
                zmsg_dump (msg);
            }
            self->liveness = HEARTBEAT_LIVENESS;

            //  Don't try to handle errors, just assert noisily
            assert (zmsg_size (msg) >= 3);

            zframe_t *empty = zmsg_pop (msg);
            assert (zframe_streq (empty, ""));
            zframe_destroy (&empty);

            zframe_t *header = zmsg_pop (msg);
            assert (zframe_streq (header, MDPW_WORKER));
            zframe_destroy (&header);

            zframe_t *command = zmsg_pop (msg);
            if (zframe_streq (command, MDPW_REQUEST)) {
                //  We should pop and save as many addresses as there are
                //  up to a null part, but for now, just save one...
                self->reply_to = zmsg_unwrap (msg);
                zframe_destroy (&command);

Finally, here is where we actually have a message to process; as shown in
Example 4-30, we return it to the caller application.

Example 4-30. Majordomo worker API (mdwrkapi.c): process message
            return msg;     //  We have a request to process
            }
            else
            if (zframe_streq (command, MDPW_HEARTBEAT))
                ;               //  Do nothing for heartbeats
            else
            if (zframe_streq (command, MDPW_DISCONNECT))
                s_mdwrk_connect_to_broker (self);
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            else {
                zclock_log ("E: invalid input message");
                zmsg_dump (msg);
            }
            zframe_destroy (&command);
            zmsg_destroy (&msg);
        }
        else
        if (--self->liveness == 0) {
            if (self->verbose)
                zclock_log ("W: disconnected from broker - retrying...");
            zclock_sleep (self->reconnect);
            s_mdwrk_connect_to_broker (self);
        }
        //  Send HEARTBEAT if it's time
        if (zclock_time () > self->heartbeat_at) {
            s_mdwrk_send_to_broker (self, MDPW_HEARTBEAT, NULL, NULL);
            self->heartbeat_at = zclock_time () + self->heartbeat;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, killing worker...\n");
    return NULL;
}

Let’s see how the worker API looks in action with an example test program
(Example 4-31) that implements an echo service.

Example 4-31. Majordomo worker application (mdworker.c)
//
//  Majordomo Protocol worker example
//  Uses the mdwrk API to hide all MDP aspects
//

//  Lets us build this source without creating a library
#include "mdwrkapi.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdwrk_t *session = mdwrk_new (
        "tcp://localhost:5555", "echo", verbose);

    zmsg_t *reply = NULL;
    while (true) {
        zmsg_t *request = mdwrk_recv (session, &reply);
        if (request == NULL)
            break;              //  Worker was interrupted
        reply = request;        //  Echo is complex... :-)
    }
    mdwrk_destroy (&session);
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    return 0;
}

Here are some things to note about the worker API code:

• The APIs are single-threaded. This means, for example, that the worker won’t send
heartbeats in the background. Happily, this is exactly what we want: if the worker
application gets stuck, heartbeats will stop and the broker will stop sending requests
to the worker.

• The worker API doesn’t do an exponential backoff; it’s not worth the extra com‐
plexity.

• The APIs don’t do any error reporting. If something isn’t as expected, they raise an
assertion (or exception, depending on the language). This is ideal for a reference
implementation, so any protocol errors show immediately. For real applications,
the API should be robust against invalid messages.

You might wonder why the worker API is manually closing its socket and opening a
new one, when ØMQ will automatically reconnect a socket if the peer disappears and
comes back. Look back at the Simple Pirate and Paranoid Pirate workers to understand.
Although ØMQ will automatically reconnect workers if the broker dies and comes back
up, this isn’t sufficient to re-register the workers with the broker. I know of at least two
solutions. The simplest, which we use here, is for the worker to monitor the connection
using heartbeats and, if it decides the broker is dead, to close its socket and start afresh
with a new socket. The alternative is for the broker to challenge unknown workers when
it gets a heartbeat from them and ask them to re-register. That would require protocol
support.

Now let’s design the Majordomo broker. Its core structure is a set of queues, one per
service. We will create these queues as workers appear (we could delete them as workers
disappear, but forget that for now because it gets complex). Additionally, we will keep
a queue of workers per service.

The code for the broker is shown in Example 4-32.

Example 4-32. Majordomo broker (mdbroker.c)
//
//  Majordomo Protocol broker
//  A minimal C implementation of the Majordomo Protocol as defined in
//  http://rfc.zeromq.org/spec:7 and http://rfc.zeromq.org/spec:8.
//
#include "czmq.h"
#include "mdp.h"

//  We'd normally pull these from config data

#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
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#define HEARTBEAT_INTERVAL  2500    //  msec
#define HEARTBEAT_EXPIRY    HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS

The broker class (Example 4-33) defines a single broker instance.

Example 4-33. Majordomo broker (mdbroker.c): broker class structure
typedef struct {
    zctx_t *ctx;                //  Our context
    void *socket;               //  Socket for clients & workers
    int verbose;                //  Print activity to stdout
    char *endpoint;             //  Broker binds to this endpoint
    zhash_t *services;          //  Hash of known services
    zhash_t *workers;           //  Hash of known workers
    zlist_t *waiting;           //  List of waiting workers
    uint64_t heartbeat_at;      //  When to send HEARTBEAT
} broker_t;

static broker_t *
    s_broker_new (int verbose);
static void
    s_broker_destroy (broker_t **self_p);
static void
    s_broker_bind (broker_t *self, char *endpoint);
static void
    s_broker_worker_msg (broker_t *self, zframe_t *sender, zmsg_t *msg);
static void
    s_broker_client_msg (broker_t *self, zframe_t *sender, zmsg_t *msg);
static void
    s_broker_purge (broker_t *self);

The service class (Example 4-34) defines a single service instance.

Example 4-34. Majordomo broker (mdbroker.c): service class structure
typedef struct {
    broker_t *broker;           //  Broker instance
    char *name;                 //  Service name
    zlist_t *requests;          //  List of client requests
    zlist_t *waiting;           //  List of waiting workers
    size_t workers;             //  How many workers we have
} service_t;

static service_t *
    s_service_require (broker_t *self, zframe_t *service_frame);
static void
    s_service_destroy (void *argument);
static void
    s_service_dispatch (service_t *service, zmsg_t *msg);

The worker class (Example 4-35) defines a single worker, idle or active.
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Example 4-35. Majordomo broker (mdbroker.c): worker class structure
typedef struct {
    broker_t *broker;           //  Broker instance
    char *id_string;            //  Identity of worker as string
    zframe_t *identity;         //  Identity frame for routing
    service_t *service;         //  Owning service, if known
    int64_t expiry;             //  When a worker expires, if no heartbeat
} worker_t;

static worker_t *
    s_worker_require (broker_t *self, zframe_t *identity);
static void
    s_worker_delete (worker_t *self, int disconnect);
static void
    s_worker_destroy (void *argument);
static void
    s_worker_send (worker_t *self, char *command, char *option,
                   zmsg_t *msg);
static void
    s_worker_waiting (worker_t *self);

The constructor and destructor for the broker are shown in Example 4-36.

Example 4-36. Majordomo broker (mdbroker.c): broker constructor and destructor
static broker_t *
s_broker_new (int verbose)
{
    broker_t *self = (broker_t *) zmalloc (sizeof (broker_t));

    //  Initialize broker state
    self->ctx = zctx_new ();
    self->socket = zsocket_new (self->ctx, ZMQ_ROUTER);
    self->verbose = verbose;
    self->services = zhash_new ();
    self->workers = zhash_new ();
    self->waiting = zlist_new ();
    self->heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
    return self;
}

static void
s_broker_destroy (broker_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        broker_t *self = *self_p;
        zctx_destroy (&self->ctx);
        zhash_destroy (&self->services);
        zhash_destroy (&self->workers);
        zlist_destroy (&self->waiting);
        free (self);
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        *self_p = NULL;
    }
}

The bind method, shown in Example 4-37, binds the broker instance to an endpoint.
We can call this multiple times. Note that MDP uses a single socket for both clients and
workers.

Example 4-37. Majordomo broker (mdbroker.c): broker bind method
void
s_broker_bind (broker_t *self, char *endpoint)
{
    zsocket_bind (self->socket, endpoint);
    zclock_log ("I: MDP broker/0.2.0 is active at %s", endpoint);
}

The worker_msg method shown in Example 4-38 processes one READY, REPLY,
HEARTBEAT, or DISCONNECT message sent to the broker by a worker.

Example 4-38. Majordomo broker (mdbroker.c): broker worker_msg method
static void
s_broker_worker_msg (broker_t *self, zframe_t *sender, zmsg_t *msg)
{
    assert (zmsg_size (msg) >= 1);     //  At least, command

    zframe_t *command = zmsg_pop (msg);
    char *id_string = zframe_strhex (sender);
    int worker_ready = (zhash_lookup (self->workers, id_string) != NULL);
    free (id_string);
    worker_t *worker = s_worker_require (self, sender);

    if (zframe_streq (command, MDPW_READY)) {
        if (worker_ready)               //  Not first command in session
            s_worker_delete (worker, 1);
        else
        if (zframe_size (sender) >= 4  //  Reserved service name
        &&  memcmp (zframe_data (sender), "mmi.", 4) == 0)
            s_worker_delete (worker, 1);
        else {
            //  Attach worker to service and mark as idle
            zframe_t *service_frame = zmsg_pop (msg);
            worker->service = s_service_require (self, service_frame);
            worker->service->workers++;
            s_worker_waiting (worker);
            zframe_destroy (&service_frame);
        }
    }
    else
    if (zframe_streq (command, MDPW_REPLY)) {
        if (worker_ready) {
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            //  Remove and save client return envelope and insert the
            //  protocol header and service name, then rewrap envelope
            zframe_t *client = zmsg_unwrap (msg);
            zmsg_pushstr (msg, worker->service->name);
            zmsg_pushstr (msg, MDPC_CLIENT);
            zmsg_wrap (msg, client);
            zmsg_send (&msg, self->socket);
            s_worker_waiting (worker);
        }
        else
            s_worker_delete (worker, 1);
    }
    else
    if (zframe_streq (command, MDPW_HEARTBEAT)) {
        if (worker_ready)
            worker->expiry = zclock_time () + HEARTBEAT_EXPIRY;
        else
            s_worker_delete (worker, 1);
    }
    else
    if (zframe_streq (command, MDPW_DISCONNECT))
        s_worker_delete (worker, 0);
    else {
        zclock_log ("E: invalid input message");
        zmsg_dump (msg);
    }
    free (command);
    zmsg_destroy (&msg);
}

Example 4-39 shows how we process a request coming from a client. We implement
Majordomo Management Interface (MMI) requests directly here (at present, only the
mmi.service request).

Example 4-39. Majordomo broker (mdbroker.c): broker client_msg method
static void
s_broker_client_msg (broker_t *self, zframe_t *sender, zmsg_t *msg)
{
    assert (zmsg_size (msg) >= 2);     //  Service name + body

    zframe_t *service_frame = zmsg_pop (msg);
    service_t *service = s_service_require (self, service_frame);

    //  Set reply return identity to client sender
    zmsg_wrap (msg, zframe_dup (sender));

    //  If we got an MMI service request, process that internally
    if (zframe_size (service_frame) >= 4
    &&  memcmp (zframe_data (service_frame), "mmi.", 4) == 0) {
        char *return_code;
        if (zframe_streq (service_frame, "mmi.service")) {
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            char *name = zframe_strdup (zmsg_last (msg));
            service_t *service =
                (service_t *) zhash_lookup (self->services, name);
            return_code = service && service->workers? "200": "404";
            free (name);
        }
        else
            return_code = "501";

        zframe_reset (zmsg_last (msg), return_code, strlen (return_code));

        //  Remove & save client return envelope and insert the
        //  protocol header and service name, then rewrap envelope
        zframe_t *client = zmsg_unwrap (msg);
        zmsg_push (msg, zframe_dup (service_frame));
        zmsg_pushstr (msg, MDPC_CLIENT);
        zmsg_wrap (msg, client);
        zmsg_send (&msg, self->socket);
    }
    else
        //  Else dispatch the message to the requested service
        s_service_dispatch (service, msg);
    zframe_destroy (&service_frame);
}

The purge method, shown in Example 4-40, deletes any idle workers that haven’t pinged
us in a while. We hold workers in order from oldest to most recent, so we can stop
scanning whenever we find a live worker. This means we’ll mainly stop at the first
worker, which is essential when we have large numbers of workers (because we call this
method in our critical path).

Example 4-40. Majordomo broker (mdbroker.c): broker purge method
static void
s_broker_purge (broker_t *self)
{
    worker_t *worker = (worker_t *) zlist_first (self->waiting);
    while (worker) {
        if (zclock_time () < worker->expiry)
            break;                  //  Worker is alive, we're done here
        if (self->verbose)
            zclock_log ("I: deleting expired worker: %s",
                        worker->id_string);

        s_worker_delete (worker, 0);
        worker = (worker_t *) zlist_first (self->waiting);
    }
}

Example 4-41 shows the implementation of the methods that work on a service.
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Example 4-41. Majordomo broker (mdbroker.c): service methods
//  Lazy constructor that locates a service by name, or creates a new
//  service if there is no service already with that name

static service_t *
s_service_require (broker_t *self, zframe_t *service_frame)
{
    assert (service_frame);
    char *name = zframe_strdup (service_frame);

    service_t *service =
        (service_t *) zhash_lookup (self->services, name);
    if (service == NULL) {
        service = (service_t *) zmalloc (sizeof (service_t));
        service->broker = self;
        service->name = name;
        service->requests = zlist_new ();
        service->waiting = zlist_new ();
        zhash_insert (self->services, name, service);
        zhash_freefn (self->services, name, s_service_destroy);
        if (self->verbose)
            zclock_log ("I: added service: %s", name);
    }
    else
        free (name);

    return service;
}

//  Service destructor is called automatically whenever the service is
//  removed from broker->services

static void
s_service_destroy (void *argument)
{
    service_t *service = (service_t *) argument;
    while (zlist_size (service->requests)) {
        zmsg_t *msg = zlist_pop (service->requests);
        zmsg_destroy (&msg);
    }
    zlist_destroy (&service->requests);
    zlist_destroy (&service->waiting);
    free (service->name);
    free (service);
}

The dispatch method, shown in Example 4-42, sends requests to waiting workers.

Example 4-42. Majordomo broker (mdbroker.c): service dispatch method
static void
s_service_dispatch (service_t *self, zmsg_t *msg)
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{
    assert (self);
    if (msg)                    //  Queue message, if any
        zlist_append (self->requests, msg);

    s_broker_purge (self->broker);
    while (zlist_size (self->waiting) && zlist_size (self->requests)) {
        worker_t *worker = zlist_pop (self->waiting);
        zlist_remove (self->broker->waiting, worker);
        zmsg_t *msg = zlist_pop (self->requests);
        s_worker_send (worker, MDPW_REQUEST, NULL, msg);
        zmsg_destroy (&msg);
    }
}

Example 4-43 shows the implementation of the methods that work on a worker.

Example 4-43. Majordomo broker (mdbroker.c): worker methods
//  Lazy constructor that locates a worker by identity, or creates a new
//  worker if there is no worker already with that identity

static worker_t *
s_worker_require (broker_t *self, zframe_t *identity)
{
    assert (identity);

    //  self->workers is keyed off worker identity
    char *id_string = zframe_strhex (identity);
    worker_t *worker =
        (worker_t *) zhash_lookup (self->workers, id_string);

    if (worker == NULL) {
        worker = (worker_t *) zmalloc (sizeof (worker_t));
        worker->broker = self;
        worker->id_string = id_string;
        worker->identity = zframe_dup (identity);
        zhash_insert (self->workers, id_string, worker);
        zhash_freefn (self->workers, id_string, s_worker_destroy);
        if (self->verbose)
            zclock_log ("I: registering new worker: %s", id_string);
    }
    else
        free (id_string);
    return worker;
}

//  The delete method deletes the current worker

static void
s_worker_delete (worker_t *self, int disconnect)
{
    assert (self);
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    if (disconnect)
        s_worker_send (self, MDPW_DISCONNECT, NULL, NULL);

    if (self->service) {
        zlist_remove (self->service->waiting, self);
        self->service->workers--;
    }
    zlist_remove (self->broker->waiting, self);
    //  This implicitly calls s_worker_destroy
    zhash_delete (self->broker->workers, self->id_string);
}

//  Worker destructor is called automatically whenever the worker is
//  removed from broker->workers

static void
s_worker_destroy (void *argument)
{
    worker_t *self = (worker_t *) argument;
    zframe_destroy (&self->identity);
    free (self->id_string);
    free (self);
}

The send method (Example 4-44) formats and sends a command to a worker. The caller
may also provide a command option and a message payload.

Example 4-44. Majordomo broker (mdbroker.c): worker send method
static void
s_worker_send (worker_t *self, char *command, char *option, zmsg_t *msg)
{
    msg = msg? zmsg_dup (msg): zmsg_new ();

    //  Stack protocol envelope to start of message
    if (option)
        zmsg_pushstr (msg, option);
    zmsg_pushstr (msg, command);
    zmsg_pushstr (msg, MDPW_WORKER);

    //  Stack routing envelope to start of message
    zmsg_wrap (msg, zframe_dup (self->identity));

    if (self->broker->verbose) {
        zclock_log ("I: sending %s to worker",
            mdps_commands [(int) *command]);
        zmsg_dump (msg);
    }
    zmsg_send (&msg, self->broker->socket);
}

//  This worker is now waiting for work
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static void
s_worker_waiting (worker_t *self)
{
    //  Queue to broker and service waiting lists
    assert (self->broker);
    zlist_append (self->broker->waiting, self);
    zlist_append (self->service->waiting, self);
    self->expiry = zclock_time () + HEARTBEAT_EXPIRY;
    s_service_dispatch (self->service, NULL);
}

Finally, here is the main task. In Example 4-45, we create a new broker instance and
then process messages on the broker socket.

Example 4-45. Majordomo broker (mdbroker.c): main task
int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));

    broker_t *self = s_broker_new (verbose);
    s_broker_bind (self, "tcp://*:5555");

    //  Get and process messages forever or until interrupted
    while (true) {
        zmq_pollitem_t items [] = {
            { self->socket,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Process next input message, if any
        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->socket);
            if (!msg)
                break;          //  Interrupted
            if (self->verbose) {
                zclock_log ("I: received message:");
                zmsg_dump (msg);
            }
            zframe_t *sender = zmsg_pop (msg);
            zframe_t *empty  = zmsg_pop (msg);
            zframe_t *header = zmsg_pop (msg);

            if (zframe_streq (header, MDPC_CLIENT))
                s_broker_client_msg (self, sender, msg);
            else
            if (zframe_streq (header, MDPW_WORKER))
                s_broker_worker_msg (self, sender, msg);
            else {
                zclock_log ("E: invalid message:");
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                zmsg_dump (msg);
                zmsg_destroy (&msg);
            }
            zframe_destroy (&sender);
            zframe_destroy (&empty);
            zframe_destroy (&header);
        }
        //  Disconnect and delete any expired workers
        //  Send heartbeats to idle workers if needed
        if (zclock_time () > self->heartbeat_at) {
            s_broker_purge (self);
            worker_t *worker = (worker_t *) zlist_first (self->waiting);
            while (worker) {
                s_worker_send (worker, MDPW_HEARTBEAT, NULL, NULL);
                worker = (worker_t *) zlist_next (self->waiting);
            }
            self->heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, shutting down...\n");

    s_broker_destroy (&self);
    return 0;
}

This is by far the most complex example we’ve seen. It’s almost 500 lines of code; writing
this and making it somewhat robust took two days. However, this is still a relatively
short piece of code for a full service-oriented broker.

Notes on this code:

• The Majordomo Protocol lets us handle both clients and workers on a single socket.
This is nicer for those deploying and managing the broker: it just sits on one ØMQ
endpoint rather than the two that most proxies need.

• The broker implements all of MDP/0.1 properly (as far as I know), including dis‐
connection if the broker sends invalid commands, heartbeating, and the rest.

• It can be extended to run multiple threads, each managing one socket and one set
of clients and workers. This could be interesting for segmenting large architectures.
The C code is already organized around a broker class to make this trivial.

• A primary/failover or live/live broker reliability model is easy, as the broker essen‐
tially has no state except service presence. It’s up to clients and workers to choose
another broker if their first choice isn’t up and running.

• The examples use five-second heartbeats, mainly to reduce the amount of output
when you enable tracing. Realistic values would be lower for most LAN applica‐
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tions. However, any retry has to be slow enough to allow for a service to restart, say
10 seconds at least.

We later improved and extended the protocol and the Majordomo implementation,
which now sits in its own GitHub project. If you want a properly usable Majordomo
stack, use the GitHub project.

Asynchronous Majordomo Pattern
The Majordomo implementation in the previous section is simple and stupid. The client
is just the original Simple Pirate, wrapped up in a sexy API. When I fire up a client,
broker, and worker on a test box, it can process 100,000 requests in about 14 seconds.
That is partially due to the code, which cheerfully copies message frames around as if
CPU cycles were free. But the real problem is that we’re doing network round-trips.
ØMQ disables Nagle’s algorithm, but round-tripping is still slow.

Theory is great in theory, but in practice, practice is better. Let’s measure the actual cost
of round-tripping with a simple test program. This sends a bunch of messages, first
waiting for a reply to each message, and second as a batch, reading all the replies back
as a batch. Both approaches do the same work, but they give very different results. We
mock up a client, broker, and worker. The client task is shown in Example 4-46.

Example 4-46. Round-trip demonstrator (tripping.c)
//
//  Round-trip demonstrator
//
//  While this example runs in a single process, that is just to make
//  it easier to start and stop the example. The client task signals to
//  main when it's ready.
//
#include "czmq.h"

static void
client_task (void *args, zctx_t *ctx, void *pipe)
{
    void *client = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (client, "tcp://localhost:5555");
    printf ("Setting up test...\n");
    zclock_sleep (100);

    int requests;
    int64_t start;

    printf ("Synchronous round-trip test...\n");
    start = zclock_time ();
    for (requests = 0; requests < 10000; requests++) {
        zstr_send (client, "hello");
        char *reply = zstr_recv (client);
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        free (reply);
    }
    printf (" %d calls/second\n",
        (1000 * 10000) / (int) (zclock_time () - start));

    printf ("Asynchronous round-trip test...\n");
    start = zclock_time ();
    for (requests = 0; requests < 100000; requests++)
        zstr_send (client, "hello");
    for (requests = 0; requests < 100000; requests++) {
        char *reply = zstr_recv (client);
        free (reply);
    }
    printf (" %d calls/second\n",
        (1000 * 100000) / (int) (zclock_time () - start));
    zstr_send (pipe, "done");
}

The worker task is in Example 4-47. All it does is receive a message, and bounce it back
the way it came.

Example 4-47. Round-trip demonstrator (tripping.c): worker task
static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "tcp://localhost:5556");
    
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

Example 4-48 shows the broker task. It uses the zmq_proxy() function to switch mes‐
sages between the frontend and backend.

Example 4-48. Round-trip demonstrator (tripping.c): broker task
static void *
broker_task (void *args)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (frontend, "tcp://*:5555");
    void *backend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (backend, "tcp://*:5556");
    zmq_proxy (frontend, backend, NULL);
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    zctx_destroy (&ctx);
    return NULL;
}

Finally, Example 4-49 presents the main task, which starts the client, worker, and broker,
and then runs until the client signals it to stop.

Example 4-49. Round-trip demonstrator (tripping.c): main task
int main (void)
{
    //  Create threads
    zctx_t *ctx = zctx_new ();
    void *client = zthread_fork (ctx, client_task, NULL);
    zthread_new (worker_task, NULL);
    zthread_new (broker_task, NULL);

    //  Wait for signal on client pipe
    char *signal = zstr_recv (client);
    free (signal);

    zctx_destroy (&ctx);
    return 0;
}

On my development box, running this program results in:
Setting up test...
Synchronous round-trip test...
 9057 calls/second
Asynchronous round-trip test...
 173010 calls/second

Note that the client thread does a small pause before starting. This is to get around one
of the “features” of the router socket: if you send a message with the address of a peer
that’s not yet connected, the message gets discarded. In this example we don’t use the
load-balancing mechanism, so without the sleep, if the worker thread is too slow to
connect it will lose messages, making a mess of our test.

As we see, round-tripping in the simplest case is 20 times slower than the asynchronous,
“shove it down the pipe as fast as it’ll go” approach. Let’s see if we can apply this to
Majordomo to make it faster.

First, we modify the client API to send and receive in two separate methods:
mdcli_t *mdcli_new     (char *broker);
void     mdcli_destroy (mdcli_t **self_p);
int      mdcli_send    (mdcli_t *self, char *service, zmsg_t **request_p);
zmsg_t  *mdcli_recv    (mdcli_t *self);

It’s literally a few minutes’ work to refactor the synchronous client API to become asyn‐
chronous, as shown in Example 4-50.
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Example 4-50. Majordomo asynchronous client API (mdcliapi2.c)
/*  =====================================================================
 *  mdcliapi2.c - Majordomo Protocol Client API
 *  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.
 *  ===================================================================== */

#include "mdcliapi2.h"

//  Structure of our class
//  We access these properties only via class methods

struct _mdcli_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    void *client;               //  Socket to broker
    int verbose;                //  Print activity to stdout
    int timeout;                //  Request timeout
};

//  ---------------------------------------------------------------------
//  Connect or reconnect to broker. In this asynchronous class, we use a
//  DEALER socket instead of a REQ socket; this lets us send any number
//  of requests without waiting for a reply.

void s_mdcli_connect_to_broker (mdcli_t *self)
{
    if (self->client)
        zsocket_destroy (self->ctx, self->client);
    self->client = zsocket_new (self->ctx, ZMQ_DEALER);
    zmq_connect (self->client, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);
}

//  The constructor and destructor are the same as in mdcliapi, except
//  we don't do retries, so there's no retries property.
...
...

The differences are:

• We use a DEALER socket instead of REQ, so we emulate REQ with an empty de‐
limiter frame before each request and each response.

• We don’t retry requests; if the application needs to retry, it can do this itself.
• We break the synchronous send method into separate send and recv methods.
• The send method is asynchronous and returns immediately after sending. The

caller can thus send a number of messages before getting a response.
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• The recv method waits for (with a timeout) one response and returns that to the
caller.

The corresponding client test program, which sends 100,000 messages and then receives
100,000 back, is shown in Example 4-51.

Example 4-51. Majordomo client application (mdclient2.c)
//
//  Majordomo Protocol client example - asynchronous
//  Uses the mdcli API to hide all MDP aspects
//
//  Lets us build this source without creating a library
#include "mdcliapi2.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    int count;
    for (count = 0; count < 100000; count++) {
        zmsg_t *request = zmsg_new ();
        zmsg_pushstr (request, "Hello world");
        mdcli_send (session, "echo", &request);
    }
    for (count = 0; count < 100000; count++) {
        zmsg_t *reply = mdcli_recv (session);
        if (reply)
            zmsg_destroy (&reply);
        else
            break;              //  Interrupted by Ctrl-C
    }
    printf ("%d replies received\n", count);
    mdcli_destroy (&session);
    return 0;
}

The broker and worker are unchanged because we haven’t modified the protocol at all.
We see an immediate improvement in performance. Here’s the synchronous client
chugging through 100K request-reply cycles:

$ time mdclient
100000 requests/replies processed

real    0m14.088s
user    0m1.310s
sys     0m2.670s

And here’s the asynchronous client, with a single worker:
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$ time mdclient2
100000 replies received

real    0m8.730s
user    0m0.920s
sys     0m1.550s

Twice as fast. Not bad, but let’s fire up 10 workers and see how it handles the traffic:
$ time mdclient2
100000 replies received

real    0m3.863s
user    0m0.730s
sys     0m0.470s

It isn’t fully asynchronous because workers get their messages on a strict last-used basis,
but it will scale better with more workers. On my PC, after eight or so workers, it doesn’t
get any faster. Four cores only stretches so far. But we got a 4x improvement in through‐
put with just a few minutes’ work. The broker is still unoptimized. It spends most of its
time copying message frames around, instead of doing zero-copy, which it could. But
we’re getting 25K reliable request-reply calls a second, with pretty low effort.

However, the asynchronous Majordomo pattern isn’t all roses. It has a fundamental
weakness, namely that it cannot survive a broker crash without more work. If you look
at the mdcliapi2 code you’ll see it does not attempt to reconnect after a failure. A proper
reconnect would require the following:

• A number on every request and a matching number on every reply, which would
ideally require a change to the protocol to enforce

• Tracking and holding onto all outstanding requests in the client API (i.e., those for
which no reply has yet been received)

• In case of fail over, for the client API to resend all outstanding requests to the broker

It’s not a deal breaker, but it does show that performance often means complexity. Is this
worth doing for Majordomo? It depends on your use case. For a name lookup service
you call once per session, no. For a web frontend serving thousands of clients, proba‐
bly yes.

Service Discovery
So, we have a nice service-oriented broker, but we have no way of knowing whether a
particular service is available or not. We know when a request fails, but we don’t know
why. It would be useful to be able to ask the broker questions like, “Is the echo service
running?” The most obvious way to implement this would be to modify our MDP/Client
protocol to add commands to ask such questions. But MDP/Client has the great charm
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of being simple. Adding service discovery to it would make it as complex as the MDP/
Worker protocol.

Another option is to do what email servers do, and ask that undeliverable requests be
returned. This can work well in an asynchronous world, but it also adds complexity. We
need ways to distinguish returned requests from replies and to handle these properly.

Let’s try to use what we’ve already built, building on top of MDP instead of modifying
it. Service discovery is, itself, a service. It might indeed be one of several management
services, such as “disable service X,” “provide statistics,” and so on. What we want is a
general, extensible solution that doesn’t affect the protocol or existing applications.

There’s a small RFC that layers this on top of MDP: the Majordomo Management In‐
terface (MMI). We already implemented it in the broker, though unless you read the
whole thing you probably missed that. I’ll explain how it works in the broker:

• When a client requests a service that starts with mmi., instead of routing this request
to a worker, we handle it internally.

• We handle just one service in our broker, which is mmi.service, the service dis‐
covery service.

• The payload for the request is the name of an external service (a real one, provided
by a worker).

• The broker returns “200” (OK) or “404” (Not found), depending on whether there
are workers registered for that service or not.

Example 4-52 shows how we use the service discovery in an application.

Example 4-52. Service discovery over Majordomo (mmiecho.c)
//
//  MMI echo query example
//

//  Lets us build this source without creating a library
#include "mdcliapi.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    //  This is the service we want to look up
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "echo");

    //  This is the service to which we send our request
    zmsg_t *reply = mdcli_send (session, "mmi.service", &request);
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    if (reply) {
        char *reply_code = zframe_strdup (zmsg_first (reply));
        printf ("Lookup echo service: %s\n", reply_code);
        free (reply_code);
        zmsg_destroy (&reply);
    }
    else
        printf ("E: no response from broker, make sure it's running\n");

    mdcli_destroy (&session);
    return 0;
}

Try this with and without a worker running, and you should see the little program report
“200” or “404” accordingly.

The implementation of MMI in our example broker is flimsy. For example, if a worker
disappears, services remain “present.” In practice, a broker should remove services that
have no workers after some configurable timeout.

Idempotent Services
Idempotency is not something you take a pill for. What it means is that it’s safe to repeat
an operation. Checking the clock is idempotent. Lending one’s credit card to one’s chil‐
dren is not. While many client-to-server use cases are idempotent, some are not. Ex‐
amples of idempotent use cases include:

• Stateless task distribution—i.e., a pipeline where the servers are stateless workers
that compute a reply based purely on the state provided by a request. In such a case,
it’s safe (though inefficient) to execute the same request many times.

• A name service that translates logical addresses into endpoints to bind or connect
to. In such a case it’s safe to make the same lookup request many times.

And here are examples of non-idempotent use cases:

• A logging service. One does not want the same log information recorded more than
once.

• Any service that has an impact on downstream nodes (e.g., sends information on
to other nodes). If that service gets the same request more than once, downstream
nodes will get duplicate information.

• Any service that modifies shared data in some non-idempotent way; e.g., a service
that debits a bank account is definitely not idempotent.

When our server applications are not idempotent, we have to think more carefully about
when exactly they might crash. If an application dies when it’s idle, or while it’s pro‐
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cessing a request, that’s usually fine. We can use database transactions to make sure a
debit and a credit are always done together, if at all. If the server dies while sending its
reply, however, that’s a problem, because as far as it’s concerned, it has done its work.

If the network dies just as the reply is making its way back to the client, the same problem
arises. The client will think the server died and will resend the request, and the server
will do the same work twice, which is not what we want.

To handle non-idempotent operations, we use the fairly standard solution of detecting
and rejecting duplicate requests. This means:

• The client must stamp every request with a unique client identifier and a unique
message number.

• The server, before sending back a reply, stores it using the combination of client ID
and message number as a key.

• The server, when getting a request from a given client, first checks whether it has a
reply for that client ID and message number. If so, it does not process the request,
but just resends the reply.

Disconnected Reliability (Titanic Pattern)
Once you realize that Majordomo is a “reliable” message broker, you might be tempted
to add some spinning rust (that is, ferrous-based hard disk platters). After all, this works
for all the enterprise messaging systems. It’s such a tempting idea that it’s a little sad to
have to be negative toward it. But brutal cynicism is one of my specialties. So, some
reasons you don’t want rust-based brokers sitting in the center of your architecture are:

• As you’ve seen, the Lazy Pirate client performs surprisingly well. It works across a
whole range of architectures, from direct client-to-server to distributed queue
proxies. It does tend to assume that workers are stateless and idempotent, but we
can work around that limitation without resorting to rust.

• Rust brings a whole set of problems, from slow performance to additional pieces
that you have to manage, repair, and handle 6 a.m. panics from, as they inevitably
break at the start of daily operations. The beauty of the Pirate patterns in general is
their simplicity. They won’t crash. And if you’re still worried about the hardware,
you can move to a peer-to-peer pattern that has no broker at all (I’ll explain that
later in this chapter).

Having said this, however, there is one sane use case for rust-based reliability, which is
an asynchronous disconnected network. It solves a major problem with Pirate, namely
that a client has to wait for an answer in real time. If clients and workers are only
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sporadically connected (think of email as an analogy), we can’t use a stateless network
between clients and workers. We have to put state in the middle.

So, here’s the Titanic pattern (Figure 4-5), in which we write messages to disk to ensure
they never get lost, no matter how sporadically clients and workers are connected. As
we did for service discovery, we’re going to layer Titanic on top of MDP rather than
extend it. It’s wonderfully lazy because it means we can implement our fire-and-forget
reliability in a specialized worker, rather than in the broker. This is excellent for several
reasons:

• It is much easier because we divide and conquer: the broker handles message routing
and the worker handles reliability.

• It lets us mix brokers written in one language with workers written in another.
• It lets us evolve the fire-and-forget technology independently.

Figure 4-5. The Titanic pattern

The only downside is that there’s an extra network hop between broker and hard disk.
The benefits are easily worth it.

There are many ways to make a persistent request-reply architecture. We’ll aim for one
that is simple and painless. The simplest design I could come up with, after playing with
this for a few hours, was a “proxy service.” That is, Titanic doesn’t affect workers at all.
If a client wants a reply immediately, it talks directly to a service and hopes the service
is available. If a client is happy to wait a while, it talks to Titanic instead and asks, “Hey,
buddy, would you take care of this for me while I go buy my groceries?”
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Titanic is thus both a worker and a client. The dialog between the client and Titanic goes
along these lines:

• Client: “Please accept this request for me.” Titanic: “OK, done.”
• Client: “Do you have a reply for me?” Titanic: “Yes, here it is.” (Or, “No, not yet”.)
• Client: “OK, you can wipe that request now, I’m happy.” Titanic: “OK, done.”

Whereas the dialog between Titanic and the broker and worker goes like this:

• Titanic: “Hey, Broker, is there a coffee service?”
• Broker: “Um, yeah, seems like there is.”
• Titanic: “Hey, coffee service, please handle this for me.”
• Coffee: “Sure, here you are.”
• Titanic: “Sweeeeet!”

You can work through these and the possible failure scenarios. If a worker crashes while
processing a request, Titanic retries, indefinitely. If a reply gets lost somewhere, Titanic
will retry. If the request gets processed but the client doesn’t get the reply, it will ask
again. If Titanic crashes while processing a request or a reply, the client will try again.
As long as requests are fully committed to safe storage, work can’t get lost.

The handshaking is pedantic, but can be pipelined; i.e., clients can use the asynchronous
Majordomo pattern to do a lot of work and then get the responses later.

We need some way for a client to request its replies. We’ll have many clients asking for
the same services, and clients may disappear and reappear with different identities. Here
is a simple, reasonably secure solution:

• Every request generates a universally unique ID (UUID), which Titanic returns to
the client after it has queued the request.

• When a client asks for a reply, it must specify the UUID for the original request.

In a realistic case, the client would want to store its request UUIDs safely, such as in a
local database.

Before we jump off and write yet another formal specification (fun, fun!), let’s consider
how the client talks to Titanic. One way is to use a single service and send it three different
request types. Another way, which seems simpler, is to use three services:
titanic.request

Stores a request message, and return a UUID for the request.

titanic.reply

Fetches a reply, if available, for a given request UUID.
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titanic.close

Confirms that a reply has been stored and processed.

We’ll just make a multithreaded worker, which, as we’ve seen from our multithreading
experience with ØMQ, is trivial. However, let’s first sketch what Titanic would look like
in terms of ØMQ messages and frames. This gives us the Titanic Service Protocol (TSP).

Using TSP is clearly more work for client applications than accessing a service directly
via MDP. The shortest robust “echo” client example is presented in Example 4-53.

Example 4-53. Titanic client example (ticlient.c)
//
//  Titanic client example
//  Implements client side of http://rfc.zeromq.org/spec:9

//  Lets us build this source without creating a library
#include "mdcliapi.c"

//  Calls a TSP service
//  Returns response if successful (status code 200 OK), else NULL
//
static zmsg_t *
s_service_call (mdcli_t *session, char *service, zmsg_t **request_p)
{
    zmsg_t *reply = mdcli_send (session, service, request_p);
    if (reply) {
        zframe_t *status = zmsg_pop (reply);
        if (zframe_streq (status, "200")) {
            zframe_destroy (&status);
            return reply;
        }
        else
        if (zframe_streq (status, "400")) {
            printf ("E: client fatal error, aborting\n");
            exit (EXIT_FAILURE);
        }
        else
        if (zframe_streq (status, "500")) {
            printf ("E: server fatal error, aborting\n");
            exit (EXIT_FAILURE);
        }
    }
    else
        exit (EXIT_SUCCESS);    //  Interrupted or failed

    zmsg_destroy (&reply);
    return NULL;        //  Didn't succeed; don't care why not
}

The main task (Example 4-54) tests our service call by sending an echo request.

Disconnected Reliability (Titanic Pattern) | 197

http://rfc.zeromq.org/spec:9


Example 4-54. Titanic client example (ticlient.c): main task
int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    //  1. Send 'echo' request to Titanic
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "echo");
    zmsg_addstr (request, "Hello world");
    zmsg_t *reply = s_service_call (
        session, "titanic.request", &request);

    zframe_t *uuid = NULL;
    if (reply) {
        uuid = zmsg_pop (reply);
        zmsg_destroy (&reply);
        zframe_print (uuid, "I: request UUID ");
    }

    //  2. Wait until we get a reply
    while (!zctx_interrupted) {
        zclock_sleep (100);
        request = zmsg_new ();
        zmsg_add (request, zframe_dup (uuid));
        zmsg_t *reply = s_service_call (
            session, "titanic.reply", &request);

        if (reply) {
            char *reply_string = zframe_strdup (zmsg_last (reply));
            printf ("Reply: %s\n", reply_string);
            free (reply_string);
            zmsg_destroy (&reply);

            //  3. Close request
            request = zmsg_new ();
            zmsg_add (request, zframe_dup (uuid));
            reply = s_service_call (session, "titanic.close", &request);
            zmsg_destroy (&reply);
            break;
        }
        else {
            printf ("I: no reply yet, trying again...\n");
            zclock_sleep (5000);     //  Try again in 5 seconds
        }
    }
    zframe_destroy (&uuid);
    mdcli_destroy (&session);
    return 0;
}
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Of course, this can be, and should be, wrapped up in some kind of framework or API.
It’s not healthy to ask average application developers to learn the full details of messaging:
it hurts their brains, costs time, and offers too many ways to introduce buggy complexity.
Additionally, it makes it hard to add intelligence.

For example, this client blocks on each request, whereas in a real application we’d want
to be doing useful work while tasks are executed. It requires some nontrivial plumbing
to build a background thread and talk to that cleanly. This is the kind of thing you want
to wrap in a nice simple API that the average developer cannot misuse. It’s the same
approach that we used for Majordomo.

The Titanic implementation is shown in Example 4-55 through 4-60. This server han‐
dles the three services using three threads, as proposed. It does full persistence to disk
using the most brutal approach possible: one file per message. It’s so simple, it’s scary.
The only complex part is that it keeps a separate queue of all requests in order to avoid
reading the directory over and over.

Example 4-55. Titanic broker example (titanic.c)
//
//  Titanic service
//
//  Implements server side of http://rfc.zeromq.org/spec:9

//  Lets us build this source without creating a library
#include "mdwrkapi.c"
#include "mdcliapi.c"

#include "zfile.h"
#include <uuid/uuid.h>

//  Return a new UUID as a printable character string
//  Caller must free returned string when finished with it

static char *
s_generate_uuid (void)
{
    char hex_char [] = "0123456789ABCDEF";
    char *uuidstr = zmalloc (sizeof (uuid_t) * 2 + 1);
    uuid_t uuid;
    uuid_generate (uuid);
    int byte_nbr;
    for (byte_nbr = 0; byte_nbr < sizeof (uuid_t); byte_nbr++) {
        uuidstr [byte_nbr * 2 + 0] = hex_char [uuid [byte_nbr] >> 4];
        uuidstr [byte_nbr * 2 + 1] = hex_char [uuid [byte_nbr] & 15];
    }
    return uuidstr;
}

//  Returns freshly allocated request filename for given UUID
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#define TITANIC_DIR ".titanic"

static char *
s_request_filename (char *uuid) {
    char *filename = malloc (256);
    snprintf (filename, 256, TITANIC_DIR "/%s.req", uuid);
    return filename;
}

//  Returns freshly allocated reply filename for given UUID

static char *
s_reply_filename (char *uuid) {
    char *filename = malloc (256);
    snprintf (filename, 256, TITANIC_DIR "/%s.rep", uuid);
    return filename;
}

The titanic.request task (Example 4-56) waits for requests to this service. It writes
each request to disk and returns a UUID to the client. The client picks up the reply
asynchronously using the titanic.reply service.

Example 4-56. Titanic broker example (titanic.c): Titanic request service
static void
titanic_request (void *args, zctx_t *ctx, void *pipe)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.request", 0);
    zmsg_t *reply = NULL;

    while (true) {
        //  Send reply if it's not null
        //  And then get next request from broker
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        //  Ensure message directory exists
        zfile_mkdir (TITANIC_DIR);

        //  Generate UUID and save message to disk
        char *uuid = s_generate_uuid ();
        char *filename = s_request_filename (uuid);
        FILE *file = fopen (filename, "w");
        assert (file);
        zmsg_save (request, file);
        fclose (file);
        free (filename);
        zmsg_destroy (&request);

200 | Chapter 4: Reliable Request-Reply Patterns



        //  Send UUID through to message queue
        reply = zmsg_new ();
        zmsg_addstr (reply, uuid);
        zmsg_send (&reply, pipe);

        //  Now send UUID back to client
        //  Done by the mdwrk_recv() at the top of the loop
        reply = zmsg_new ();
        zmsg_addstr (reply, "200");
        zmsg_addstr (reply, uuid);
        free (uuid);
    }
    mdwrk_destroy (&worker);
}

The titanic.reply task, shown in Example 4-57, checks if there’s a reply for the speci‐
fied request (by UUID), and returns a 200 (OK), 300 (Pending), or 400 (Unknown)
accordingly.

Example 4-57. Titanic broker example (titanic.c): Titanic reply service
static void *
titanic_reply (void *context)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.reply", 0);
    zmsg_t *reply = NULL;

    while (true) {
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        char *uuid = zmsg_popstr (request);
        char *req_filename = s_request_filename (uuid);
        char *rep_filename = s_reply_filename (uuid);
        if (zfile_exists (rep_filename)) {
            FILE *file = fopen (rep_filename, "r");
            assert (file);
            reply = zmsg_load (NULL, file);
            zmsg_pushstr (reply, "200"): // OK
            fclose (file);
        }
        else {
            reply = zmsg_new ();
            if (zfile_exists (req_filename))
                zmsg_pushstr (reply, "300"); // Pending
            else
                zmsg_pushstr (reply, "400"); // Unknown
        }
        zmsg_destroy (&request);
        free (uuid);
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        free (req_filename);
        free (rep_filename);
    }
    mdwrk_destroy (&worker);
    return 0;
}

The titanic.close task, shown in Example 4-58, removes any waiting replies for the
request (specified by UUID). It’s idempotent, so it is safe to call it more than once in a
row.

Example 4-58. Titanic broker example (titanic.c): Titanic close task
static void *
titanic_close (void *context)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.close", 0);
    zmsg_t *reply = NULL;

    while (true) {
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        char *uuid = zmsg_popstr (request);
        char *req_filename = s_request_filename (uuid);
        char *rep_filename = s_reply_filename (uuid);
        zfile_delete (req_filename);
        zfile_delete (rep_filename);
        free (uuid);
        free (req_filename);
        free (rep_filename);

        zmsg_destroy (&request);
        reply = zmsg_new ();
        zmsg_addstr (reply, "200");
    }
    mdwrk_destroy (&worker);
    return 0;
}

Example 4-59 shows the main thread for the Titanic worker. It starts three child threads,
for the request, reply, and close services. It then dispatches requests to workers using a
simple brute-force disk queue. It receives request UUIDs from the titanic.request
service, saves these to a disk file, and then throws each request at MDP workers until it
gets a response.

Example 4-59. Titanic broker example (titanic.c): worker task
static int s_service_success (char *uuid);
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int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    zctx_t *ctx = zctx_new ();

    void *request_pipe = zthread_fork (ctx, titanic_request, NULL);
    zthread_new (titanic_reply, NULL);
    zthread_new (titanic_close, NULL);

    //  Main dispatcher loop
    while (true) {
        //  We'll dispatch once per second, if there's no activity
        zmq_pollitem_t items [] = { { request_pipe, 0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, 1000 * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted
        if (items [0].revents & ZMQ_POLLIN) {
            //  Ensure message directory exists
            zfile_mkdir (TITANIC_DIR);

            //  Append UUID to queue, prefixed with '-' for pending
            zmsg_t *msg = zmsg_recv (request_pipe);
            if (!msg)
                break;          //  Interrupted
            FILE *file = fopen (TITANIC_DIR "/queue", "a");
            char *uuid = zmsg_popstr (msg);
            fprintf (file, "-%s\n", uuid);
            fclose (file);
            free (uuid);
            zmsg_destroy (&msg);
        }
        //  Brute force dispatcher
        char entry [] = "?.......:.......:.......:.......:";
        FILE *file = fopen (TITANIC_DIR "/queue", "r+");
        while (file && fread (entry, 33, 1, file) == 1) {
            //  UUID is prefixed with '-' if still waiting
            if (entry [0] == '-') {
                if (verbose)
                    printf ("I: processing request %s\n", entry + 1);
                if (s_service_success (entry + 1)) {
                    //  Mark queue entry as processed
                    fseek (file, -33, SEEK_CUR);
                    fwrite ("+", 1, 1, file);
                    fseek (file, 32, SEEK_CUR);
                }
            }
            //  Skip end of line, LF, or CRLF
            if (fgetc (file) == '\r')
                fgetc (file);
            if (zctx_interrupted)
                break;
        }
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        if (file)
            fclose (file);
    }
    return 0;
}

In the final part of the broker code (Example 4-60), we first check if the requested MDP
service is defined or not, using an MMI lookup to the Majordomo broker. If the service
exists, we send a request and wait for a reply using the conventional MDP client API.
This is not meant to be fast, just very simple.

Example 4-60. Titanic broker example (titanic.c): try to call a service
static int
s_service_success (char *uuid)
{
    //  Load request message, service will be first frame
    char *filename = s_request_filename (uuid);
    FILE *file = fopen (filename, "r");
    free (filename);

    //  If client already closed request, treat as successful
    if (!file)
        return 1;

    zmsg_t *request = zmsg_load (NULL, file);
    fclose (file);
    zframe_t *service = zmsg_pop (request);
    char *service_name = zframe_strdup (service);

    //  Create MDP client session with short timeout
    mdcli_t *client = mdcli_new ("tcp://localhost:5555", FALSE);
    mdcli_set_timeout (client, 1000);  //  1 sec
    mdcli_set_retries (client, 1);     //  only 1 retry

    //  Use MMI protocol to check if service is available
    zmsg_t *mmi_request = zmsg_new ();
    zmsg_add (mmi_request, service);
    zmsg_t *mmi_reply = mdcli_send (client, "mmi.service", &mmi_request);
    int service_ok = (mmi_reply
        && zframe_streq (zmsg_first (mmi_reply), "200"));
    zmsg_destroy (&mmi_reply);

    int result = 0;
    if (service_ok) {
        zmsg_t *reply = mdcli_send (client, service_name, &request);
        if (reply) {
            filename = s_reply_filename (uuid);
            FILE *file = fopen (filename, "w");
            assert (file);
            zmsg_save (reply, file);
            fclose (file);
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            free (filename);
            result = 1;
        }
        zmsg_destroy (&reply);
    }
    else
        zmsg_destroy (&request);

    mdcli_destroy (&client);
    free (service_name);
    return result;
}

To test this, start mdbroker and titanic, and then run ticlient. Now start mdworker
arbitrarily, and you should see the client getting a response and exiting happily.

Some notes about this code:

• Note that some loops start by sending, and others by receiving messages. This is
because Titanic acts both as a client and a worker in different roles.

• The Titanic broker uses the MMI service discovery protocol to send requests only
to services that appear to be running. Since the MMI implementation in our little
Majordomo broker is quite poor, this won’t work all the time.

• We use an inproc connection to send new request data from the titanic.re
quest service through to the main dispatcher. This saves the dispatcher from having
to scan the disk directory, load all request files, and sort them by date/time.

The important thing about this example is not its performance (which, although I ha‐
ven’t tested it, is surely terrible), but how well it implements the reliability contract. To
try it, start the mdbroker and titanic programs. Then start the ticlient, and then start the
mdworker echo service. You can run all four of these using the -v option to do verbose
activity tracing. You can stop and restart any piece except the client, and nothing will
get lost.

If you want to use Titanic in real cases, you’ll rapidly be asking, “How do we make this
faster?” Here’s what I’d do, starting with the example implementation:

• Use a single disk file for all data, rather than multiple files. Operating systems are
usually better at handling a few large files than many smaller ones.

• Organize that disk file as a circular buffer so that new requests can be written con‐
tiguously (with very occasional wraparound). One thread, writing full speed to a
disk file, can work rapidly.

• Keep the index in memory and rebuild the index at startup time, from the disk
buffer. This saves the extra disk head flutter needed to keep the index fully safe on
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disk. You would want an fsync after every message, or every N milliseconds if you
were prepared to lose the last M messages in case of a system failure.

• Use a solid-state drive rather than spinning iron oxide platters.
• Preallocate the entire file, or allocate it in large chunks, which allows the circular

buffer to grow and shrink as needed. This avoids fragmentation and ensures that
most reads and writes are contiguous.

And so on. What I’d not recommend is storing messages in a database, not even a “fast”
key/value store, unless you really like a specific database and don’t have performance
worries. You will pay a steep price for the abstraction—10 to 1,000 times over a raw disk
file.

If you want to make Titanic even more reliable, duplicate the requests to a second server,
and place it in a second location just far away enough to survive a nuclear attack on your
primary location, yet not so far that you get too much latency.

If you want to make Titanic much faster but less reliable, store requests and replies purely
in memory. This will give you the functionality of a disconnected network, but requests
won’t survive a crash of the Titanic server itself.

High-Availability Pair (Binary Star Pattern)
The Binary Star pattern configures two servers as a primary/backup high-availability
pair (Figure 4-6). At any given time, one of these (the active server) accepts connections
from client applications. The other (the passive server) does nothing, but the two servers
monitor each other. If the active one disappears from the network, after a certain time
the passive one takes over as active.

Figure 4-6. High-availability pair, normal operation

We developed the Binary Star pattern at iMatix for our OpenAMQ server. We designed
it:

• To provide a straightforward high-availability solution
• To be simple enough to actually understand and use
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• To fail over reliably when needed, and only when needed

Assuming we have a Binary Star pair running, here are the different scenarios that will
result in a failover (Figure 4-7):

• The hardware running the primary server has a fatal problem (power supply ex‐
plodes, machine catches fire, or someone simply unplugs it by mistake), and dis‐
appears. Applications see this and reconnect to the backup server.

• The network segment on which the primary server sits crashes—perhaps because
a router gets hit by a power spike—and applications start to reconnect to the backup
server.

• The primary server crashes or is killed by the operator and does not restart auto‐
matically.

Figure 4-7. High-availability pair during failover

Recovery from failover works as follows:

• The operators restart the primary server and fix whatever problems were causing
it to disappear from the network.

• The operators stop the backup server at a moment when it will cause minimal
disruption to applications.

• When applications have reconnected to the primary server, the operators restart
the backup server.

Recovery (to using the primary server as the active one) is a manual operation. Painful
experience has taught us that automatic recovery is undesirable. There are several rea‐
sons:

• Failover creates an interruption of service to applications, possibly lasting 10–30
seconds. If there is a real emergency, this is much better than total outage. But if
recovery creates a further such outage, it is better that this happens off-peak, when
users have gone off the network.
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• When there is an emergency, the absolute first priority is certainty for those trying
to fix things. Automatic recovery creates uncertainty for system administrators,
who can no longer be sure which server is in charge without double-checking.

• Automatic recovery can create situations where networks fail over and then recover,
placing operators in the difficult position of analyzing what happened. There was
an interruption of service, but the cause isn’t clear.

Having said this, the Binary Star pattern will automatically fail back to the primary
server if this is running (again) and the backup server fails. In fact, this is how we provoke
recovery.

The shutdown process for a Binary Star pair is to do one of the following:

1. Stop the passive server and then stop the active server at any later time.
2. Stop both servers in any order, but within a few seconds of each other.

Stopping the active and then the passive server with any delay longer than the failover
timeout will cause applications to disconnect, then reconnect, and then disconnect
again, which may disturb users.

Detailed Requirements
The Binary Star pattern is as simple as it can be, while still working accurately. In fact,
the current design is the third complete redesign. Each of the previous designs we found
to be too complex, trying to do too much, and we stripped out functionality until we
came to a design that was understandable, easy to use, and reliable enough to be worth
using.

These are our requirements for a high-availability architecture:

• The failover is meant to provide insurance against catastrophic system failures, such
as hardware breakdown, fire, accident, and so on. There are simpler ways to recover
from ordinary server crashes, and we already covered these.

• Failover time should be under 60 seconds, and preferably under 10 seconds.
• Failover has to happen automatically, whereas recovery must happen manually. We

want applications to switch over to the backup server automatically, but we do not
want them to switch back to the primary server except when the operators have
fixed whatever problem there was and decided that it is a good time to interrupt
applications again.

• The semantics for client applications should be simple and easy for developers to
understand. Ideally, they should be hidden in the client API.
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• There should be clear instructions for network architects on how to avoid designs
that could lead to “split-brain syndrome,” in which both servers in a Binary Star
pair think they are the active server.

• There should be no dependencies on the order in which the two servers are started.
• It must be possible to make planned stops and restarts of either server without

stopping client applications (though they may be forced to reconnect).
• Operators must be able to monitor both servers at all times.
• It must be possible to connect the two servers using a high-speed dedicated network

connection. That is, failover synchronization must be able to use a specific IP route.

We make the following assumptions:

• A single backup server provides enough insurance; we don’t need multiple levels
of backup.

• The primary and backup servers are equally capable of carrying the application
load. We do not attempt to balance load across the servers.

• There is sufficient budget to cover a fully redundant backup server that does nothing
almost all the time.

We don’t attempt to cover the following:

• The use of an active backup server or load balancing. In a Binary Star pair, the
backup server is inactive and does no useful work until the primary server goes off-
line.

• The handling of persistent messages or transactions in any way. We assume the
existence of a network of unreliable (and probably untrusted) servers or Binary Star
pairs.

• Any automatic exploration of the network. The Binary Star pair is manually and
explicitly defined in the network and is known to applications (at least in their
configuration data).

• Replication of state or messages between servers. All server-side state must be re‐
created by applications when they fail over.

Here is the key terminology that we use in Binary Star:
Primary

The server that is normally or initially active.

Backup
The server that is normally passive. It will become active if and when the primary
server disappears from the network, and when client applications ask the backup
server to connect.
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Active
The server that accepts client connections. There is at most one active server.

Passive
The server that takes over if the active server disappears. Note that when a Binary
Star pair is running normally, the primary server is active, and the backup is passive.
When a failover has happened, the roles are switched.

To configure a Binary Star pair, you need to:

1. Tell the primary server where the backup server is located.
2. Tell the backup server where the primary server is located.
3. Optionally, tune the failover response times, which must be the same for both

servers.

The main tuning concern is how frequently you want the servers to check their peering
status, and how quickly you want to activate failover. In our example, the failover time‐
out value defaults to 2,000 msec. If you reduce this, the backup server will take over as
active more rapidly, but may take over in cases where the primary server could recover.
For example, you may have wrapped the primary server in a shell script that restarts it
if it crashes. In that case, the timeout should be higher than the time needed to restart
the primary server.

For client applications to work properly with a Binary Star pair, they must:

1. Know both server addresses.
2. Try to connect to the primary server and if, that fails, to the backup server.
3. Detect a failed connection, typically using heartbeating.
4. Try to reconnect to the primary, and then the backup (in that order), with a delay

between retries that is at least as high as the server failover timeout.
5. Recreate all of the required state.
6. Retransmit messages lost during a failover, if messages need to be reliable.

It’s not trivial work, and we’d usually wrap this in an API that hides it from real end-
user applications.

These are the main limitations of the Binary Star pattern:

• A server process cannot be part of more than one Binary Star pair.
• A primary server can have a single backup server, and no more.
• The passive server does no useful work, and is thus “wasted.”
• The backup server must be capable of handling full application loads.
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• Failover configuration cannot be modified at runtime.
• Client applications must do some work to benefit from failover.

Preventing Split-Brain Syndrome
Split-brain syndrome occurs when different parts of a cluster think they are active at the
same time. It causes applications to stop seeing each other. Binary Star has an algorithm
for detecting and eliminating split brain, which is based on a three-way decision mech‐
anism (a server will not decide to become active until it gets application connection
requests and it cannot see its peer server).

However, it is still possible to (mis)design a network to fool this algorithm. A typical
scenario would be a Binary Star pair that is distributed between two buildings, where
each building also had a set of applications and where there was a single network link
between both buildings. Breaking this link would create two sets of client applications,
each with half of the Binary Star pair, and each failover server would become active.

To prevent split-brain situations, we must connect a Binary Star pair using a dedicated
network link, which can be as simple as plugging them both into the same switch or,
better, using a crossover cable directly between two machines.

We must not split a Binary Star architecture into two islands, each with a set of appli‐
cations. While this may be a common type of network architecture, we should use
federation, not high-availability failover, in such cases.

A suitably paranoid network configuration would use two private cluster interconnects,
rather than a single one. Further, the network cards used for the cluster would be dif‐
ferent from those used for message traffic, and possibly even on different PCI paths on
the server hardware. The goal is to separate possible failures in the network from pos‐
sible failures in the cluster. Network ports have a relatively high failure rate.

Binary Star Implementation
Without further ado, here is a proof-of-concept implementation of the Binary Star
server, beginning with Example 4-61. The primary and backup servers run the same
code, and their roles are chosen by the invoker.

Example 4-61. Binary Star server (bstarsrv.c)
//
//  Binary Star server proof-of-concept implementation. This server does no
//  real work; it just demonstrates the Binary Star failover model.

#include "czmq.h"

//  States in which we can be at any point in time
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typedef enum {
    STATE_PRIMARY = 1,          //  Primary, waiting for peer to connect
    STATE_BACKUP = 2,           //  Backup, waiting for peer to connect
    STATE_ACTIVE = 3,           //  Active - accepting connections
    STATE_PASSIVE = 4           //  Passive - not accepting connections
} state_t;

//  Events, which start with the states our peer can be in
typedef enum {
    PEER_PRIMARY = 1,           //  HA peer is pending primary
    PEER_BACKUP = 2,            //  HA peer is pending backup
    PEER_ACTIVE = 3,            //  HA peer is active
    PEER_PASSIVE = 4,           //  HA peer is passive
    CLIENT_REQUEST = 5          //  Client makes request
} event_t;

//  Our finite-state machine
typedef struct {
    state_t state;              //  Current state
    event_t event;              //  Current event
    int64_t peer_expiry;        //  When peer is considered "dead"
} bstar_t;

//  We send state information this often
//  If peer doesn't respond in two heartbeats, it is "dead"
#define HEARTBEAT 1000          //  In msec

The heart of the Binary Star design is its finite-state machine (FSM). The FSM runs one
event at a time. We apply an event to the current state, which checks if the event is
accepted, and if so sets a new state (Example 4-62).

Example 4-62. Binary Star server (bstarsrv.c): Binary Star state machine
static Bool
s_state_machine (bstar_t *fsm)
{
    Bool exception = FALSE;
    
    //  These are the PRIMARY and BACKUP states; we're waiting to become
    //  ACTIVE or PASSIVE depending on events we get from our peer
    if (fsm->state == STATE_PRIMARY) {
        if (fsm->event == PEER_BACKUP) {
            printf ("I: connected to backup (passive), ready as active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_ACTIVE) {
            printf ("I: connected to backup (active), ready as passive\n");
            fsm->state = STATE_PASSIVE;
        }
        //  Accept client connections
    }
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    else
    if (fsm->state == STATE_BACKUP) {
        if (fsm->event == PEER_ACTIVE) {
            printf ("I: connected to primary (active), ready as passive\n");
            fsm->state = STATE_PASSIVE;
        }
        else
        //  Reject client connections when acting as backup
        if (fsm->event == CLIENT_REQUEST)
            exception = TRUE;
    }
    else

The ACTIVE and PASSIVE states are laid out in Example 4-63.

Example 4-63. Binary Star server (bstarsrv.c): active and passive states
    if (fsm->state == STATE_ACTIVE) {
        if (fsm->event == PEER_ACTIVE) {
            //  Two actives would mean split-brain
            printf ("E: fatal error - dual actives, aborting\n");
            exception = TRUE;
        }
    }
    else
    //  Server is passive
    //  CLIENT_REQUEST events can trigger failover if peer looks dead
    if (fsm->state == STATE_PASSIVE) {
        if (fsm->event == PEER_PRIMARY) {
            //  Peer is restarting - become active, peer will go passive
            printf ("I: primary (passive) is restarting, ready as active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_BACKUP) {
            //  Peer is restarting - become active, peer will go passive
            printf ("I: backup (passive) is restarting, ready as active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_PASSIVE) {
            //  Two passives would mean cluster would be nonresponsive
            printf ("E: fatal error - dual passives, aborting\n");
            exception = TRUE;
        }
        else
        if (fsm->event == CLIENT_REQUEST) {
            //  Peer becomes active if timeout has passed
            //  It's the client request that triggers the failover
            assert (fsm->peer_expiry > 0);
            if (zclock_time () >= fsm->peer_expiry) {
                //  If peer is dead, switch to the active state
                printf ("I: failover successful, ready as active\n");
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                fsm->state = STATE_ACTIVE;
            }
            else
                //  If peer is alive, reject connections
                exception = TRUE;
        }
    }
    return exception;
}

Example 4-64 shows our main task. First we bind/connect our sockets with our peer
and make sure we will get state messages correctly. We use three sockets: one to publish
state, one to subscribe to state, and one for client requests/replies.

Example 4-64. Binary Star server (bstarsrv.c): main task
int main (int argc, char *argv [])
{
    //  Arguments can be either of:
    //      -p  primary server, at tcp://localhost:5001
    //      -b  backup server, at tcp://localhost:5002
    zctx_t *ctx = zctx_new ();
    void *statepub = zsocket_new (ctx, ZMQ_PUB);
    void *statesub = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statesub, "");
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    bstar_t fsm = { 0 };

    if (argc == 2 && streq (argv [1], "-p")) {
        printf ("I: Primary active, waiting for backup (passive)\n");
        zsocket_bind (frontend, "tcp://*:5001");
        zsocket_bind (statepub, "tcp://*:5003");
        zsocket_connect (statesub, "tcp://localhost:5004");
        fsm.state = STATE_PRIMARY;
    }
    else
    if (argc == 2 && streq (argv [1], "-b")) {
        printf ("I: Backup passive, waiting for primary (active)\n");
        zsocket_bind (frontend, "tcp://*:5002");
        zsocket_bind (statepub, "tcp://*:5004");
        zsocket_connect (statesub, "tcp://localhost:5003");
        fsm.state = STATE_BACKUP;
    }
    else {
        printf ("Usage: bstarsrv { -p | -b }\n");
        zctx_destroy (&ctx);
        exit (0);
    }

We now process events on our two input sockets, and process these events one at a time
via our finite-state machine (Example 4-65). Our “work” for a client request is simply
to echo it back.
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Example 4-65. Binary Star server (bstarsrv.c): handling socket input
    //  Set timer for next outgoing state message
    int64_t send_state_at = zclock_time () + HEARTBEAT;
    while (!zctx_interrupted) {
        zmq_pollitem_t items [] = {
            { frontend, 0, ZMQ_POLLIN, 0 },
            { statesub, 0, ZMQ_POLLIN, 0 }
        };
        int time_left = (int) ((send_state_at - zclock_time ()));
        if (time_left < 0)
            time_left = 0;
        int rc = zmq_poll (items, 2, time_left * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN) {
            //  Have a client request
            zmsg_t *msg = zmsg_recv (frontend);
            fsm.event = CLIENT_REQUEST;
            if (s_state_machine (&fsm) == FALSE)
                //  Answer client by echoing request back
                zmsg_send (&msg, frontend);
            else
                zmsg_destroy (&msg);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Have state from our peer, execute as event
            char *message = zstr_recv (statesub);
            fsm.event = atoi (message);
            free (message);
            if (s_state_machine (&fsm))
                break;          //  Error, so exit
            fsm.peer_expiry = zclock_time () + 2 * HEARTBEAT;
        }
        //  If we timed out, send state to peer
        if (zclock_time () >= send_state_at) {
            char message [2];
            sprintf (message, "%d", fsm.state);
            zstr_send (statepub, message);
            send_state_at = zclock_time () + HEARTBEAT;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    //  Shut down sockets and context
    zctx_destroy (&ctx);
    return 0;
}
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Now let’s look at the code for the client, beginning with Example 4-66.

Example 4-66. Binary Star client (bstarcli.c)
//
//  Binary Star client proof-of-concept implementation. This client does no
//  real work; it just demonstrates the Binary Star failover model.

#include "czmq.h"

#define REQUEST_TIMEOUT     1000    //  msec
#define SETTLE_DELAY        2000    //  Before failing over

int main (void)
{
    zctx_t *ctx = zctx_new ();

    char *server [] = { "tcp://localhost:5001", "tcp://localhost:5002" };
    uint server_nbr = 0;

    printf ("I: connecting to server at %s...\n", server [server_nbr]);
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, server [server_nbr]);

    int sequence = 0;
    while (!zctx_interrupted) {
        //  We send a request, then we work to get a reply
        char request [10];
        sprintf (request, "%d", ++sequence);
        zstr_send (client, request);

        int expect_reply = 1;
        while (expect_reply) {
            //  Poll socket for a reply, with timeout
            zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
            int rc = zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

We use a Lazy Pirate strategy in the client. If there’s no reply within our timeout, we
close the socket and try again, as seen in Example 4-67. In Binary Star, it’s the client vote
that decides which server is primary; the client must therefore try to connect to each
server in turn.

Example 4-67. Binary Star client (bstarcli.c): main body of client
            if (items [0].revents & ZMQ_POLLIN) {
                //  We got a reply from the server, must match sequence
                char *reply = zstr_recv (client);
                if (atoi (reply) == sequence) {
                    printf ("I: server replied OK (%s)\n", reply);
                    expect_reply = 0;
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                    sleep (1);  //  One request per second
                }
                else
                    printf ("E: bad reply from server: %s\n", reply);
                free (reply);
            }
            else {
                printf ("W: no response from server, failing over\n");
                
                //  Old socket is confused; close it and open a new one
                zsocket_destroy (ctx, client);
                server_nbr = (server_nbr + 1) % 2;
                zclock_sleep (SETTLE_DELAY);
                printf ("I: connecting to server at %s...\n",
                        server [server_nbr]);
                client = zsocket_new (ctx, ZMQ_REQ);
                zsocket_connect (client, server [server_nbr]);

                //  Send request again, on new socket
                zstr_send (client, request);
            }
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

To test our Binary Star implementation, start the servers and client in any order:
bstarsrv -p     # Start primary
bstarsrv -b     # Start backup
bstarcli

You can then provoke failover by killing the primary server, and recovery by restarting
the primary and killing the backup. Note how it’s the client vote that triggers failover
and recovery.

Binary Star is driven by a finite-state machine (Figure 4-8). States in white accept client
requests, and states in gray refuse them. Events are the peer state, so “Peer Active” means
the other server has told us it’s active. “Client Request” means we’ve received a client
request. “Client Vote” means we’ve received a client request and our peer has been
inactive for two heartbeats.
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Figure 4-8. Binary Star finite-state machine

Note that the servers use PUB-SUB sockets for state exchange. No other socket com‐
bination will work here. PUSH and DEALER block if there is no peer ready to receive
a message. PAIR does not reconnect if the peer disappears and comes back. ROUTER
needs the address of the peer before it can send it a message.

Binary Star Reactor
Binary Star is useful and generic enough to package up as a reusable reactor class. The
reactor then runs and calls our code whenever it has a message to process. This is much
nicer than copying/pasting the Binary Star code into each server where we want that
capability.

In C, we wrap the CZMQ zloop class that we saw before. zloop lets you register handlers
to react on socket and timer events. In the Binary Star reactor, we provide handlers for
voters and for state changes (active to passive, and vice versa). Here is the bstar API:

//  Create a new Binary Star instance, using local (bind) and
//  remote (connect) endpoints to set up the server peering
bstar_t *bstar_new (int primary, char *local, char *remote);

//  Destroy a Binary Star instance
void bstar_destroy (bstar_t **self_p);

//  Return underlying zloop reactor, for timer and reader
//  registration and cancelation
zloop_t *bstar_zloop (bstar_t *self);
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//  Register voting reader
int bstar_voter (bstar_t *self, char *endpoint, int type,
                 zloop_fn handler, void *arg);

//  Register main state change handlers
void bstar_new_active (bstar_t *self, zloop_fn handler, void *arg);
void bstar_new_passive (bstar_t *self, zloop_fn handler, void *arg);

//  Start the reactor, which ends if a callback function returns -1, 
//  or the process received SIGINT or SIGTERM
int bstar_start (bstar_t *self);

The class implementation is in Example 4-68.

Example 4-68. Binary Star core class (bstar.c)
/*  =====================================================================
 *  bstar - Binary Star reactor
 *  ===================================================================== */

#include "bstar.h"

//  States we can be in at any point in time
typedef enum {
    STATE_PRIMARY = 1,          //  Primary, waiting for peer to connect
    STATE_BACKUP = 2,           //  Backup, waiting for peer to connect
    STATE_ACTIVE = 3,           //  Active, accepting connections
    STATE_PASSIVE = 4           //  Passive, not accepting connections
} state_t;

//  Events, which start with the states our peer can be in
typedef enum {
    PEER_PRIMARY = 1,           //  HA peer is pending primary
    PEER_BACKUP = 2,            //  HA peer is pending backup
    PEER_ACTIVE = 3,            //  HA peer is active
    PEER_PASSIVE = 4,           //  HA peer is passive
    CLIENT_REQUEST = 5          //  Client makes request
} event_t;

//  Structure of our class

struct _bstar_t {
    zctx_t *ctx;                //  Our private context
    zloop_t *loop;              //  Reactor loop
    void *statepub;             //  State publisher
    void *statesub;             //  State subscriber
    state_t state;              //  Current state
    event_t event;              //  Current event
    int64_t peer_expiry;        //  When peer is considered "dead"
    zloop_fn *voter_fn;         //  Voting socket handler
    void *voter_arg;            //  Arguments for voting handler
    zloop_fn *active_fn;        //  Call when become active
    void *active_arg;           //  Arguments for handler
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    zloop_fn *passive_fn;       //  Call when become passive
    void *passive_arg;          //  Arguments for handler
};

    //  The finite-state machine is the same as in the proof-of-concept server.
    //  To understand this reactor in detail, first read the CZMQ zloop class.
...

Example 4-69 contains the constructor for our bstar class. We have to tell it whether
we’re a primary or backup server, as well as providing our local and remote endpoints
to bind and connect to.

Example 4-69. Binary Star core class (bstar.c): constructor
bstar_t *
bstar_new (int primary, char *local, char *remote)
{
    bstar_t
        *self;

    self = (bstar_t *) zmalloc (sizeof (bstar_t));

    //  Initialize the Binary Star
    self->ctx = zctx_new ();
    self->loop = zloop_new ();
    self->state = primary? STATE_PRIMARY: STATE_BACKUP;

    //  Create publisher for state going to peer
    self->statepub = zsocket_new (self->ctx, ZMQ_PUB);
    zsocket_bind (self->statepub, local);

    //  Create subscriber for state coming from peer
    self->statesub = zsocket_new (self->ctx, ZMQ_SUB);
    zsockopt_set_subscribe (self->statesub, "");
    zsocket_connect (self->statesub, remote);

    //  Set up basic reactor events
    zloop_timer (self->loop, BSTAR_HEARTBEAT, 0, s_send_state, self);
    zmq_pollitem_t poller = { self->statesub, 0, ZMQ_POLLIN };
    zloop_poller (self->loop, &poller, s_recv_state, self);
    return self;
}

The destructor (Example 4-70) shuts down the bstar reactor.

Example 4-70. Binary Star core class (bstar.c): destructor
void
bstar_destroy (bstar_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        bstar_t *self = *self_p;
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        zloop_destroy (&self->loop);
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}

The zloop method (Example 4-71) returns the underlying zloop reactor, so we can add
additional timers and readers.

Example 4-71. Binary Star core class (bstar.c): zloop method
zloop_t *
bstar_zloop (bstar_t *self)
{
    return self->loop;
}

The voter method, shown in Example 4-72, registers a client voter socket. Messages
received on this socket provide the CLIENT_REQUEST events for the Binary Star FSM and
are passed to the provided application handler. We require exactly one voter per bstar
instance.

Example 4-72. Binary Star core class (bstar.c): voter method
int
bstar_voter (bstar_t *self, char *endpoint, int type, zloop_fn handler,
             void *arg)
{
    //  Hold actual handler+arg so we can call this later
    void *socket = zsocket_new (self->ctx, type);
    zsocket_bind (socket, endpoint);
    assert (!self->voter_fn);
    self->voter_fn = handler;
    self->voter_arg = arg;
    zmq_pollitem_t poller = { socket, 0, ZMQ_POLLIN };
    return zloop_poller (self->loop, &poller, s_voter_ready, self);
}

Next, we register handlers to be called each time there’s a state change.

Example 4-73. Binary Star core class (bstar.c): register state-change handlers
void
bstar_new_active (bstar_t *self, zloop_fn handler, void *arg)
{
    assert (!self->active_fn);
    self->active_fn = handler;
    self->active_arg = arg;
}

void
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bstar_new_passive (bstar_t *self, zloop_fn handler, void *arg)
{
    assert (!self->passive_fn);
    self->passive_fn = handler;
    self->passive_arg = arg;
}

Then we enable/disable verbose tracing, for debugging (Example 4-74).

Example 4-74. Binary Star core class (bstar.c): enable/disable tracing
void bstar_set_verbose (bstar_t *self, Bool verbose)
{
    zloop_set_verbose (self->loop, verbose);
}

Finally, we start the configured reactor (Example 4-75). It will end if any handler returns
-1 to the reactor, or if the process receives a SIGINT or SIGTERM.

Example 4-75. Binary Star core class (bstar.c): start the reactor
int
bstar_start (bstar_t *self)
{
    assert (self->voter_fn);
    s_update_peer_expiry (self);
    return zloop_start (self->loop);
}

This gives us the short main program for the server shown in Example 4-76.

Example 4-76. Binary Star server, using core class (bstarsrv2.c)
//
//  Binary Star server, using bstar reactor
//

//  Lets us build this source without creating a library
#include "bstar.c"

//  Echo service
int s_echo (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    zmsg_t *msg = zmsg_recv (poller->socket);
    zmsg_send (&msg, poller->socket);
    return 0;
}

int main (int argc, char *argv [])
{
    //  Arguments can be either of these:
    //      -p  primary server, at tcp://localhost:5001
    //      -b  backup server, at tcp://localhost:5002
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    bstar_t *bstar;
    if (argc == 2 && streq (argv [1], "-p")) {
        printf ("I: Primary active, waiting for backup (passive)\n");
        bstar = bstar_new (BSTAR_PRIMARY,
            "tcp://*:5003", "tcp://localhost:5004");
        bstar_voter (bstar, "tcp://*:5001", ZMQ_ROUTER, s_echo, NULL);
    }
    else
    if (argc == 2 && streq (argv [1], "-b")) {
        printf ("I: Backup passive, waiting for primary (active)\n");
        bstar = bstar_new (BSTAR_BACKUP,
            "tcp://*:5004", "tcp://localhost:5003");
        bstar_voter (bstar, "tcp://*:5002", ZMQ_ROUTER, s_echo, NULL);
    }
    else {
        printf ("Usage: bstarsrvs { -p | -b }\n");
        exit (0);
    }
    bstar_start (bstar);
    bstar_destroy (&bstar);
    return 0;
}

Brokerless Reliability (Freelance Pattern)
It might seem ironic to focus so much on broker-based reliability, when we often explain
ØMQ as “brokerless messaging.” However, in messaging, as in real life, the middleman
is both a burden and a benefit. In practice, most messaging architectures benefit from
a mix of distributed and brokered messaging. You get the best results when you can
decide freely what trade-offs you want to make. This is why I can drive 20 minutes to a
wholesaler to buy five cases of wine for a party, but I can also walk 10 minutes to a corner
store to buy one bottle for a dinner. Our highly context-sensitive relative valuations of
time, energy, and cost are essential to the real-world economy. And they are essential
to an optimal message-based architecture.

This is why ØMQ does not impose a broker-centric architecture, though it does give
you the tools to build brokers, aka proxies (and we’ve built a dozen or so different ones
so far, just for practice).

So, we’ll end this chapter by deconstructing the broker-based reliability we’ve built so
far, and turning it back into a distributed peer-to-peer architecture I call the Freelance
pattern. Our use case will be a name resolution service. This is a common problem with
ØMQ architectures: how do we know which endpoint to connect to? Hard-coding TCP/
IP addresses in code is insanely fragile. Using configuration files creates an adminis‐
tration nightmare. Imagine if you had to hand-configure your web browser, on every
PC or mobile phone you used, to realize that “google.com” was “74.125.230.82.”

A ØMQ name service (we’ll make a simple implementation) must do the following:
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• Resolve a logical name into at least a bind endpoint and a connect endpoint. A
realistic name service would provide multiple bind endpoints, and possibly multiple
connect endpoints as well.

• Allow us to manage multiple parallel environments—e.g., “test” versus
“production”—without modifying code.

• Be reliable, because if it is unavailable, applications won’t be able to connect to the
network.

Putting a name service behind a service-oriented Majordomo broker is clever from
some points of view. However, it’s simpler and much less surprising to just expose the
name service as a server to which clients can connect directly. If we do this right, the
name service becomes the only global network endpoint we need to hard-code in our
code or configuration files.

The types of failure we aim to handle are server crashes and restarts, server busy looping,
server overload, and network issues. To get reliability, we’ll create a pool of name servers
so if one crashes or goes away, clients can connect to another, and so on. In practice,
two would be enough, but for this example we’ll assume the pool can be any size
(Figure 4-9).

Figure 4-9. The Freelance pattern

In this architecture, a large set of clients connect to a small set of servers directly. The
servers bind to their respective addresses. It’s fundamentally different from a broker-
based approach like Majordomo, where workers connect to the broker. Clients have a
couple of options:

• Use REQ sockets and the Lazy Pirate pattern. Easy, but would need some additional
intelligence so clients don’t stupidly try to reconnect to dead servers over and over.

• Use DEALER sockets and blast out requests (which will be load-balanced to all
connected servers) until they get a reply. Effective, but not elegant.
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• Use ROUTER sockets so clients can address specific servers. But how does the client
know the identity of the server sockets? Either the server has to ping the client first
(complex), or the server has to use a hard-coded, fixed identity known to the client
(nasty).

We’ll develop each of these in the following subsections.

Model One: Simple Retry and Failover
So, our menu appears to offer the following choices: simple, brutal, complex, or nasty.
Let’s start with simple and then work out the kinks. We’ll take Lazy Pirate and rewrite
it to work with multiple server endpoints. We’ll start one or several servers first, spec‐
ifying a bind endpoint as the argument (Example 4-77).

Example 4-77. Freelance server, Model One (flserver1.c)
//
//  Freelance server - Model One
//  Trivial echo service
//
#include "czmq.h"

int main (int argc, char *argv [])
{
    if (argc < 2) {
        printf ("I: syntax: %s <endpoint>\n", argv [0]);
        exit (EXIT_SUCCESS);
    }
    zctx_t *ctx = zctx_new ();
    void *server = zsocket_new (ctx, ZMQ_REP);
    zsocket_bind (server, argv [1]);

    printf ("I: echo service is ready at %s\n", argv [1]);
    while (true) {
        zmsg_t *msg = zmsg_recv (server);
        if (!msg)
            break;          //  Interrupted
        zmsg_send (&msg, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}

Then we’ll start the client (Example 4-78), specifying one or more connect endpoints
as arguments.
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Example 4-78. Freelance client, Model One (flclient1.c)
//
//  Freelance client - Model One
//  Uses REQ socket to query one or more services
//
#include "czmq.h"

#define REQUEST_TIMEOUT     1000
#define MAX_RETRIES         3       //  Before we abandon

static zmsg_t *
s_try_request (zctx_t *ctx, char *endpoint, zmsg_t *request)
{
    printf ("I: trying echo service at %s...\n", endpoint);
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, endpoint);

    //  Send request, wait safely for reply
    zmsg_t *msg = zmsg_dup (request);
    zmsg_send (&msg, client);
    zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
    zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
    zmsg_t *reply = NULL;
    if (items [0].revents & ZMQ_POLLIN)
        reply = zmsg_recv (client);

    //  Close socket in any case, we're done with it now
    zsocket_destroy (ctx, client);
    return reply;
}

The client uses a Lazy Pirate strategy if it only has one server to talk to. If it has two or
more servers to talk to, it will try each server just once. The main client task is in
Example 4-79.

Example 4-79. Freelance client, Model One (flclient1.c): client task
int main (int argc, char *argv [])
{
    zctx_t *ctx = zctx_new ();
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "Hello world");
    zmsg_t *reply = NULL;

    int endpoints = argc - 1;
    if (endpoints == 0)
        printf ("I: syntax: %s <endpoint> ...\n", argv [0]);
    else
    if (endpoints == 1) {
        //  For one endpoint, we retry N times
        int retries;
        for (retries = 0; retries < MAX_RETRIES; retries++) {
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            char *endpoint = argv [1];
            reply = s_try_request (ctx, endpoint, request);
            if (reply)
                break;          //  Successful
            printf ("W: no response from %s, retrying...\n", endpoint);
        }
    }
    else {
        //  For multiple endpoints, try each at most once
        int endpoint_nbr;
        for (endpoint_nbr = 0; endpoint_nbr < endpoints; endpoint_nbr++) {
            char *endpoint = argv [endpoint_nbr + 1];
            reply = s_try_request (ctx, endpoint, request);
            if (reply)
                break;          //  Successful
            printf ("W: no response from %s\n", endpoint);
        }
    }
    if (reply)
        printf ("Service is running OK\n");

    zmsg_destroy (&request);
    zmsg_destroy (&reply);
    zctx_destroy (&ctx);
    return 0;
}

A sample run is:
flserver1 tcp://*:5555 &
flserver1 tcp://*:5556 &
flclient1 tcp://localhost:5555 tcp://localhost:5556

Although the basic approach is Lazy Pirate, the client aims to just get one successful
reply. It has two techniques, depending on whether we are running a single server or
multiple servers:

• With a single server, the client will retry several times, exactly as for Lazy Pirate.
• With multiple servers, the client will try each server at most once until it’s received

a reply or has tried all servers.

This solves the main weakness of Lazy Pirate, namely that it cannot fail over to backup
or alternate servers.

However, this design won’t work well in a real application. If we’re connecting many
sockets and our primary name server is down, we’re going to experience this painful
timeout each time.
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Model Two: Brutal Shotgun Massacre
Let’s switch our client to using a DEALER socket. Our goal here is to make sure we get
a reply back within the shortest possible time, no matter whether a particular server is
up or down. Our client takes this approach:

• We set things up, connecting to all servers.
• When we have a request, we blast it out as many times as we have servers.
• We wait for the first reply, and take that.
• We ignore any other replies.

What will happen in practice is that when all servers are running, ØMQ will distribute
the requests so that each server gets one request and sends one reply. When any server
is offline and disconnected, ØMQ will distribute the requests to the remaining servers.
So, in some cases a server may get the same request more than once.

What’s more annoying for the client is that we’ll get multiple replies back, but there’s no
guarantee we’ll get a precise number of replies. Requests and replies can get lost (e.g.,
if the server crashes while processing a request).

So, we have to number requests and ignore any replies that don’t match the request
number. Our Model One server will work because it’s an echo server, but coincidence
is not a great basis for understanding, so we’ll make a Model Two server here that chews
up the message and returns a correctly numbered reply with the content “OK.” We’ll
use messages consisting of two parts: a sequence number and a body.

We’ll begin by starting one or more servers, specifying a bind endpoint each time, as in
Example 4-80.

Example 4-80. Freelance server, Model Two (flserver2.c)
//
//  Freelance server - Model Two
//  Does some work, replies OK, with message sequencing
//
#include "czmq.h"

int main (int argc, char *argv [])
{
    if (argc < 2) {
        printf ("I: syntax: %s <endpoint>\n", argv [0]);
        exit (EXIT_SUCCESS);
    }
    zctx_t *ctx = zctx_new ();
    void *server = zsocket_new (ctx, ZMQ_REP);
    zsocket_bind (server, argv [1]);

    printf ("I: service is ready at %s\n", argv [1]);
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    while (true) {
        zmsg_t *request = zmsg_recv (server);
        if (!request)
            break;          //  Interrupted
        //  Fail nastily if run against wrong client
        assert (zmsg_size (request) == 2);

        zframe_t *identity = zmsg_pop (request);
        zmsg_destroy (&request);

        zmsg_t *reply = zmsg_new ();
        zmsg_add (reply, identity);
        zmsg_addstr (reply, "OK");
        zmsg_send (&reply, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}

Then we’ll start the client, specifying the connect endpoints as arguments, as in
Example 4-81.

Example 4-81. Freelance client, Model Two (flclient2.c)
//
//  Freelance client - Model Two
//  Uses DEALER socket to blast one or more services
//
#include "czmq.h"

//  We design our client API as a class, using the CZMQ style
#ifdef __cplusplus
extern "C" {
#endif

typedef struct _flclient_t flclient_t;
flclient_t *flclient_new (void);
void        flclient_destroy (flclient_t **self_p);
void        flclient_connect (flclient_t *self, char *endpoint);
zmsg_t     *flclient_request (flclient_t *self, zmsg_t **request_p);

#ifdef __cplusplus
}
#endif

//  If not a single service replies within this time, give up
#define GLOBAL_TIMEOUT 2500

int main (int argc, char *argv [])
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{
    if (argc == 1) {
        printf ("I: syntax: %s <endpoint> ...\n", argv [0]);
        exit (EXIT_SUCCESS);
    }
    //  Create new freelance client object
    flclient_t *client = flclient_new ();

    //  Connect to each endpoint
    int argn;
    for (argn = 1; argn < argc; argn++)
        flclient_connect (client, argv [argn]);

    //  Send a bunch of name resolution "requests," measure time
    int requests = 10000;
    uint64_t start = zclock_time ();
    while (requests--) {
        zmsg_t *request = zmsg_new ();
        zmsg_addstr (request, "random name");
        zmsg_t *reply = flclient_request (client, &request);
        if (!reply) {
            printf ("E: name service not available, aborting\n");
            break;
        }
        zmsg_destroy (&reply);
    }
    printf ("Average round trip cost: %d usec\n",
        (int) (zclock_time () - start) / 10);

    flclient_destroy (&client);
    return 0;
}

The flclient class implementation is shown in Example 4-82. Each instance has a
context, a DEALER socket it uses to talk to the servers, a counter of how many servers
it’s connected to, and a request sequence number.

Example 4-82. Freelance client, Model Two (flclient2.c): class implementation
struct _flclient_t {
    zctx_t *ctx;        //  Our context wrapper
    void *socket;       //  DEALER socket talking to servers
    size_t servers;     //  How many servers we have connected to
    uint sequence;      //  Number of requests ever sent
};

//  --------------------------------------------------------------------
//  Constructor

flclient_t *
flclient_new (void)
{
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    flclient_t
        *self;

    self = (flclient_t *) zmalloc (sizeof (flclient_t));
    self->ctx = zctx_new ();
    self->socket = zsocket_new (self->ctx, ZMQ_DEALER);
    return self;
}

//  --------------------------------------------------------------------
//  Destructor

void
flclient_destroy (flclient_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        flclient_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}

//  --------------------------------------------------------------------
//  Connect to new server endpoint

void
flclient_connect (flclient_t *self, char *endpoint)
{
    assert (self);
    zsocket_connect (self->socket, endpoint);
    self->servers++;
}

The request method in Example 4-83 does the hard work. It sends a request to all
connected servers in parallel (for this to work, all connections must be successful and
completed by this time). It then waits for a single successful reply, and returns that to
the caller. Any other replies are just dropped.

Example 4-83. Freelance client, Model Two (flclient2.c): request method
zmsg_t *
flclient_request (flclient_t *self, zmsg_t **request_p)
{
    assert (self);
    assert (*request_p);
    zmsg_t *request = *request_p;

    //  Prefix request with sequence number and empty envelope
    char sequence_text [10];
    sprintf (sequence_text, "%u", ++self->sequence);
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    zmsg_pushstr (request, sequence_text);
    zmsg_pushstr (request, "");

    //  Blast the request to all connected servers
    int server;
    for (server = 0; server < self->servers; server++) {
        zmsg_t *msg = zmsg_dup (request);
        zmsg_send (&msg, self->socket);
    }
    //  Wait for a matching reply to arrive from anywhere
    //  Because we can poll several times, calculate each one
    zmsg_t *reply = NULL;
    uint64_t endtime = zclock_time () + GLOBAL_TIMEOUT;
    while (zclock_time () < endtime) {
        zmq_pollitem_t items [] = { { self->socket, 0, ZMQ_POLLIN, 0 } };
        zmq_poll (items, 1, (endtime - zclock_time ()) * ZMQ_POLL_MSEC);
        if (items [0].revents & ZMQ_POLLIN) {
            //  Reply is [empty][sequence][OK]
            reply = zmsg_recv (self->socket);
            assert (zmsg_size (reply) == 3);
            free (zmsg_popstr (reply));
            char *sequence = zmsg_popstr (reply);
            int sequence_nbr = atoi (sequence);
            free (sequence);
            if (sequence_nbr == self->sequence)
                break;
        }
    }
    zmsg_destroy (request_p);
    return reply;
}

Here are some things to note about the client implementation:

• The client is structured as a nice little class-based API that hides the dirty work of
creating ØMQ contexts and sockets and talking to the server. That is, if a shotgun
blast to the midriff can be called “talking.”

• The client will abandon the chase if it can’t find any responsive server within a few
seconds.

• The client has to create a valid REP envelope (i.e., add an empty message frame to
the front of the message).

The client performs 10,000 name resolution requests (fake ones, as our server does
essentially nothing) and measures the average cost. On my test box, talking to one server,
this requires about 60 microseconds. Talking to three servers, it takes about 80 micro‐
seconds.

The pros and cons of our shotgun approach are:
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• Pro: it is simple, easy to make and easy to understand.
• Pro: it does the job of failover, and it works rapidly, as long as there is at least one

server running.
• Con: it creates redundant network traffic.
• Con: we can’t prioritize our servers (i.e., primary, then secondary).
• Con: the server can do at most one request at a time, period.

Model Three: Complex and Nasty
The shotgun approach seems too good to be true. Let’s be scientific and work through
all the alternatives. We’re going to explore the complex/nasty option, even if it’s only to
finally realize that we preferred the brutal approach. Ah, the story of my life.

We can solve the main problems of the client by switching to a ROUTER socket. That
lets us send requests to specific servers, avoid servers we know are dead, and in general
be as smart as we want to be. We can also solve the main problem of the server (single-
threadedness) by switching to a ROUTER socket.

But doing ROUTER to ROUTER between two anonymous sockets (which haven’t set
an identity) is not possible. Both sides generate an identity for the other peer only when
they receive a first message, and thus neither can talk to the other until it has first received
a message. The only way out of this conundrum is to cheat and use hard-coded identities
in one direction. The proper way to cheat, in a client/server case, is to let the client
“know” the identity of the server. Doing it the other way around would be insane, on
top of complex and nasty, because any number of clients should be able to arise inde‐
pendently. Insane, complex, and nasty are great attributes for a genocidal dictator, but
terrible ones for software.

Rather than invent yet another concept to manage, we’ll use the connection endpoint
as the identity. This is a unique string on which both sides can agree without more prior
knowledge than they already have for the shotgun model. It’s a sneaky and effective way
to connect two ROUTER sockets.

Remember how ØMQ identities work. The server ROUTER socket sets an identity
before it binds its socket. When a client connects, they do a little handshake to exchange
identities before either side sends a real message. The client ROUTER socket, having
not set an identity, sends a null identity to the server. The server generates a random
UUID to designate the client, for its own use. The server sends its identity (which we’ve
agreed is going to be an endpoint string) to the client.

This means that our client can route a message to the server (i.e., send on its ROUTER
socket, specifying the server endpoint as the identity) as soon as the connection is es‐
tablished. That’s not immediately after doing a zmq_connect(), but at some random
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time thereafter. Herein lies one problem: we don’t know when the server will actually
be available and complete its connection handshake. If the server is online, it could be
after a few milliseconds. If the server is down, and the sysadmin is out to lunch, it could
be an hour from now.

There’s a small paradox here. We need to know when servers become connected and
available for work. In the Freelance pattern, unlike the broker-based patterns we saw
earlier in this chapter, servers are silent until spoken to. Thus, we can’t talk to a server
until it’s told us it’s online, which it can’t do until we’ve asked it.

My solution is to mix in a little of the shotgun approach from Model Two, meaning we’ll
fire (harmless) shots at anything we can, and if anything moves, we know it’s alive. We’re
not going to fire real requests, but rather a kind of ping-pong heartbeat.

This brings us to the realm of protocols again: you’ll find a short spec
that defines how a Freelance client and server exchange ping-pong
commands and request-reply commands at http://rfc.zeromq.org/spec:
10.

This is short and sweet to implement as a server. Example 4-84 presents the code for
Model Three of our echo server, now speaking the Freelance Protocol (FLP).

Example 4-84. Freelance server, Model Three (flserver3.c)
//
//  Freelance server - Model Three
//  Uses a ROUTER/ROUTER socket but just one thread
//
#include "czmq.h"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));

    zctx_t *ctx = zctx_new ();

    //  Prepare server socket with predictable identity
    char *bind_endpoint = "tcp://*:5555";
    char *connect_endpoint = "tcp://localhost:5555";
    void *server = zsocket_new (ctx, ZMQ_ROUTER);
    zmq_setsockopt (server,
        ZMQ_IDENTITY, connect_endpoint, strlen (connect_endpoint));
    zsocket_bind (server, bind_endpoint);
    printf ("I: service is ready at %s\n", bind_endpoint);

    while (!zctx_interrupted) {
        zmsg_t *request = zmsg_recv (server);
        if (verbose && request)
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            zmsg_dump (request);
        if (!request)
            break;          //  Interrupted

        //  Frame 0: identity of client
        //  Frame 1: PING, or client control frame
        //  Frame 2: request body
        zframe_t *identity = zmsg_pop (request);
        zframe_t *control = zmsg_pop (request);
        zmsg_t *reply = zmsg_new ();
        if (zframe_streq (control, "PING"))
            zmsg_addstr (reply, "PONG");
        else {
            zmsg_add (reply, control);
            zmsg_addstr (reply, "OK");
        }
        zmsg_destroy (&request);
        zmsg_push (reply, identity);
        if (verbose && reply)
            zmsg_dump (reply);
        zmsg_send (&reply, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}

The Freelance client, however, has gotten large. For clarity, it’s split into an example
application and a class that does the hard work. The top-level application is shown in
Example 4-85.

Example 4-85. Freelance client, Model Three (flclient3.c)
//
//  Freelance client - Model Three
//  Uses flcliapi class to encapsulate Freelance pattern
//
//  Lets us build this source without creating a library
#include "flcliapi.c"

int main (void)
{
    //  Create new freelance client object
    flcliapi_t *client = flcliapi_new ();

    //  Connect to several endpoints
    flcliapi_connect (client, "tcp://localhost:5555");
    flcliapi_connect (client, "tcp://localhost:5556");
    flcliapi_connect (client, "tcp://localhost:5557");
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    //  Send a bunch of name resolution "requests," measure time
    int requests = 1000;
    uint64_t start = zclock_time ();
    while (requests--) {
        zmsg_t *request = zmsg_new ();
        zmsg_addstr (request, "random name");
        zmsg_t *reply = flcliapi_request (client, &request);
        if (!reply) {
            printf ("E: name service not available, aborting\n");
            break;
        }
        zmsg_destroy (&reply);
    }
    printf ("Average round trip cost: %d usec\n",
        (int) (zclock_time () - start) / 10);

    flcliapi_destroy (&client);
    return 0;
}

Example 4-86 presents the client API class, which is almost as complex and large as the
Majordomo broker.

Example 4-86. Freelance client API (flcliapi.c)
/*  =====================================================================
 *  flcliapi - Freelance pattern agent class
 *  Implements the Freelance Protocol at http://rfc.zeromq.org/spec:10
 *  ===================================================================== */

#include "flcliapi.h"

//  If no server replies within this time, abandon request
#define GLOBAL_TIMEOUT  3000    //  msec
//  PING interval for servers we think are alive
#define PING_INTERVAL   2000    //  msec
//  Server considered dead if silent for this long
#define SERVER_TTL      6000    //  msec

This API works in two halves—a common pattern for APIs that need to run in the
background. One half is a frontend object that our application creates and works with;
the other half is a backend “agent” that runs in a background thread. The frontend talks
to the backend over an inproc pipe socket. The API structure is shown in Example 4-87.

Example 4-87. Freelance client API (flcliapi.c): API structure
//  ---------------------------------------------------------------------
//  Structure of our frontend class

struct _flcliapi_t {
    zctx_t *ctx;        //  Our context wrapper
    void *pipe;         //  Pipe through to flcliapi agent
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};

//  This is the thread that handles our real flcliapi class
static void flcliapi_agent (void *args, zctx_t *ctx, void *pipe);

//  ---------------------------------------------------------------------
//  Constructor

flcliapi_t *
flcliapi_new (void)
{
    flcliapi_t
        *self;

    self = (flcliapi_t *) zmalloc (sizeof (flcliapi_t));
    self->ctx = zctx_new ();
    self->pipe = zthread_fork (self->ctx, flcliapi_agent, NULL);
    return self;
}

//  ---------------------------------------------------------------------
//  Destructor

void
flcliapi_destroy (flcliapi_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        flcliapi_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}

To implement the connect method (Example 4-88), the frontend object sends a multi‐
part message to the backend agent. The first part is a string “CONNECT”, and the second
part is the endpoint. It waits 100 msec for the connection to come up, which isn’t pretty
but saves us from sending all requests to a single server at startup time.

Example 4-88. Freelance client API (flcliapi.c): connect method
void
flcliapi_connect (flcliapi_t *self, char *endpoint)
{
    assert (self);
    assert (endpoint);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, endpoint);
    zmsg_send (&msg, self->pipe);

Brokerless Reliability (Freelance Pattern) | 237



    zclock_sleep (100);      //  Allow connection to come up
}

To implement the request method, the frontend object sends a message to the backend,
specifying a command “REQUEST” and the request message (Example 4-89).

Example 4-89. Freelance client API (flcliapi.c): request method
zmsg_t *
flcliapi_request (flcliapi_t *self, zmsg_t **request_p)
{
    assert (self);
    assert (*request_p);

    zmsg_pushstr (*request_p, "REQUEST");
    zmsg_send (request_p, self->pipe);
    zmsg_t *reply = zmsg_recv (self->pipe);
    if (reply) {
        char *status = zmsg_popstr (reply);
        if (streq (status, "FAILED"))
            zmsg_destroy (&reply);
        free (status);
    }
    return reply;
}

Now let’s look at the backend agent. It runs as an attached thread, talking to its parent
over a pipe socket. It is a fairly complex piece of work, so we’ll break it down into pieces.
First, the agent manages a set of servers, using our familiar class approach
(Example 4-90).

Example 4-90. Freelance client API (flcliapi.c): backend agent
//  ---------------------------------------------------------------------
//  Simple class for one server we talk to

typedef struct {
    char *endpoint;             //  Server identity/endpoint
    uint alive;                 //  1 if known to be alive
    int64_t ping_at;            //  Next ping at this time
    int64_t expires;            //  Expires at this time
} server_t;

server_t *
server_new (char *endpoint)
{
    server_t *self = (server_t *) zmalloc (sizeof (server_t));
    self->endpoint = strdup (endpoint);
    self->alive = 0;
    self->ping_at = zclock_time () + PING_INTERVAL;
    self->expires = zclock_time () + SERVER_TTL;
    return self;
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}

void
server_destroy (server_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        server_t *self = *self_p;
        free (self->endpoint);
        free (self);
        *self_p = NULL;
    }
}

int
server_ping (const char *key, void *server, void *socket)
{
    server_t *self = (server_t *) server;
    if (zclock_time () >= self->ping_at) {
        zmsg_t *ping = zmsg_new ();
        zmsg_addstr (ping, self->endpoint);
        zmsg_addstr (ping, "PING");
        zmsg_send (&ping, socket);
        self->ping_at = zclock_time () + PING_INTERVAL;
    }
    return 0;
}

int
server_tickless (const char *key, void *server, void *arg)
{
    server_t *self = (server_t *) server;
    uint64_t *tickless = (uint64_t *) arg;
    if (*tickless > self->ping_at)
        *tickless = self->ping_at;
    return 0;
}

We build the agent as a class that’s capable of processing messages coming in from its
various sockets, as shown in Example 4-91.

Example 4-91. Freelance client API (flcliapi.c): backend agent class
//  ---------------------------------------------------------------------
//  Simple class for one background agent

typedef struct {
    zctx_t *ctx;                //  Own context
    void *pipe;                 //  Socket to talk back to application
    void *router;               //  Socket to talk to servers
    zhash_t *servers;           //  Servers we've connected to
    zlist_t *actives;           //  Servers we know are alive
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    uint sequence;              //  Number of requests ever sent
    zmsg_t *request;            //  Current request if any
    zmsg_t *reply;              //  Current reply if any
    int64_t expires;            //  Timeout for request/reply
} agent_t;

agent_t *
agent_new (zctx_t *ctx, void *pipe)
{
    agent_t *self = (agent_t *) zmalloc (sizeof (agent_t));
    self->ctx = ctx;
    self->pipe = pipe;
    self->router = zsocket_new (self->ctx, ZMQ_ROUTER);
    self->servers = zhash_new ();
    self->actives = zlist_new ();
    return self;
}

void
agent_destroy (agent_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        agent_t *self = *self_p;
        zhash_destroy (&self->servers);
        zlist_destroy (&self->actives);
        zmsg_destroy (&self->request);
        zmsg_destroy (&self->reply);
        free (self);
        *self_p = NULL;
    }
}

The control_message method, shown in Example 4-92, processes one message from
our frontend class (it’s going to be “CONNECT” or “REQUEST”).

Example 4-92. Freelance client API (flcliapi.c): control messages
//  Callback when we remove server from agent "servers" hash table

static void
s_server_free (void *argument)
{
    server_t *server = (server_t *) argument;
    server_destroy (&server);
}

void
agent_control_message (agent_t *self)
{
    zmsg_t *msg = zmsg_recv (self->pipe);
    char *command = zmsg_popstr (msg);
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    if (streq (command, "CONNECT")) {
        char *endpoint = zmsg_popstr (msg);
        printf ("I: connecting to %s...\n", endpoint);
        int rc = zmq_connect (self->router, endpoint);
        assert (rc == 0);
        server_t *server = server_new (endpoint);
        zhash_insert (self->servers, endpoint, server);
        zhash_freefn (self->servers, endpoint, s_server_free);
        zlist_append (self->actives, server);
        server->ping_at = zclock_time () + PING_INTERVAL;
        server->expires = zclock_time () + SERVER_TTL;
        free (endpoint);
    }
    else
    if (streq (command, "REQUEST")) {
        assert (!self->request);    //  Strict request-reply cycle
        //  Prefix request with sequence number and empty envelope
        char sequence_text [10];
        sprintf (sequence_text, "%u", ++self->sequence);
        zmsg_pushstr (msg, sequence_text);
        //  Take ownership of request message
        self->request = msg;
        msg = NULL;
        //  Request expires after global timeout
        self->expires = zclock_time () + GLOBAL_TIMEOUT;
    }
    free (command);
    zmsg_destroy (&msg);
}

The router_message method, shown in Example 4-93, processes one message from a
connected server.

Example 4-93. Freelance client API (flcliapi.c): router messages
void
agent_router_message (agent_t *self)
{
    zmsg_t *reply = zmsg_recv (self->router);

    //  Frame 0 is server that replied
    char *endpoint = zmsg_popstr (reply);
    server_t *server =
        (server_t *) zhash_lookup (self->servers, endpoint);
    assert (server);
    free (endpoint);
    if (!server->alive) {
        zlist_append (self->actives, server);
        server->alive = 1;
    }
    server->ping_at = zclock_time () + PING_INTERVAL;
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    server->expires = zclock_time () + SERVER_TTL;

    //  Frame 1 may be sequence number for reply
    char *sequence = zmsg_popstr (reply);
    if (atoi (sequence) == self->sequence) {
        zmsg_pushstr (reply, "OK");
        zmsg_send (&reply, self->pipe);
        zmsg_destroy (&self->request);
    }
    else
        zmsg_destroy (&reply);
}

Finally, Example 4-94 shows the agent task itself, which polls its two sockets and pro‐
cesses incoming messages.

Example 4-94. Freelance client API (flcliapi.c): backend agent implementation
static void
flcliapi_agent (void *args, zctx_t *ctx, void *pipe)
{
    agent_t *self = agent_new (ctx, pipe);

    zmq_pollitem_t items [] = {
        { self->pipe, 0, ZMQ_POLLIN, 0 },
        { self->router, 0, ZMQ_POLLIN, 0 }
    };
    while (!zctx_interrupted) {
        //  Calculate tickless timer, up to 1 hour
        uint64_t tickless = zclock_time () + 1000 * 3600;
        if (self->request
        &&  tickless > self->expires)
            tickless = self->expires;
        zhash_foreach (self->servers, server_tickless, &tickless);

        int rc = zmq_poll (items, 2,
            (tickless - zclock_time ()) * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN)
            agent_control_message (self);

        if (items [1].revents & ZMQ_POLLIN)
            agent_router_message (self);

        //  If we're processing a request, dispatch to next server
        if (self->request) {
            if (zclock_time () >= self->expires) {
                //  Request expired, kill it
                zstr_send (self->pipe, "FAILED");
                zmsg_destroy (&self->request);
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            }
            else {
                //  Find server to talk to, remove any expired ones
                while (zlist_size (self->actives)) {
                    server_t *server =
                        (server_t *) zlist_first (self->actives);
                    if (zclock_time () >= server->expires) {
                        zlist_pop (self->actives);
                        server->alive = 0;
                    }
                    else {
                        zmsg_t *request = zmsg_dup (self->request);
                        zmsg_pushstr (request, server->endpoint);
                        zmsg_send (&request, self->router);
                        break;
                    }
                }
            }
        }
        //  Disconnect and delete any expired servers
        //  Send heartbeats to idle servers if needed
        zhash_foreach (self->servers, server_ping, self->router);
    }
    agent_destroy (&self);
}

This API implementation is fairly sophisticated and uses a couple of techniques that we
have not seen before:
Multithreaded API

The client API consists of two parts: a synchronous flcliapi class that runs in the
application thread, and an asynchronous agent class that runs as a background
thread. Remember how ØMQ makes it easy to create multithreaded apps. The
flcliapi and agent classes talk to each other with messages over an inproc socket.
All ØMQ aspects (such as creating and destroying a context) are hidden in the API.
The agent in effect acts like a mini-broker, talking to servers in the background, so
that when we make a request it can make a best effort to reach a server it believes
is available.

Tickless poll timer
In previous poll loops, we always used a fixed tick interval, such as 1 second. This
is simple enough but not excellent on power-sensitive clients (such as notebooks
and mobile phones), where waking the CPU costs power. For fun, and to help save
the planet, the agent uses a “tickless timer,” which calculates the poll delay based on
the next timeout we’re expecting. A proper implementation would keep an ordered
list of timeouts. We just check all timeouts and calculate the poll delay until the next
one.
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Conclusion
In this chapter, we’ve seen a variety of reliable request-reply mechanisms, each with
certain costs and benefits. The example code is largely ready for real use, though it is
not optimized. Of all the different patterns, the two that stand out for production use
are the Majordomo pattern, for broker-based reliability, and the Freelance pattern, for
brokerless reliability.
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CHAPTER 5

Advanced Publish-Subscribe Patterns

In Chapter 3 and Chapter 4, we looked at advanced uses of ØMQ’s request-reply pattern.
If you managed to digest all that, congratulations. In this chapter we’ll focus on publish-
subscribe and extend ØMQ’s core pub-sub pattern with higher-level patterns for per‐
formance, reliability, state distribution, and monitoring.

We’ll cover:

• When to use publish-subscribe
• How to handle too-slow subscribers (the Suicidal Snail pattern)
• How to design high-speed subscribers (the Black Box pattern)
• How to monitor a publish-subscribe network (the Espresso pattern)
• How to build a shared key-value store (the Clone pattern)
• How to use reactors to simplify complex servers
• How to use the Binary Star pattern to add failover to a server

Pros and Cons of Publish-Subscribe
ØMQ’s low-level patterns have their different characters. Pub-sub addresses an old
messaging problem, which is multicast or group messaging. It has that unique mix of
meticulous simplicity and brutal indifference that characterizes ØMQ. It’s worth un‐
derstanding the trade-offs that pub-sub makes, how these benefit us, and how we can
work around them if needed.

First, PUB sends each message to “all of many,” whereas PUSH and DEALER rotate
messages to “one of many.” You cannot simply replace PUSH with PUB or vice versa
and hope that things will work. This bears repeating, because people seem to quite often
suggest doing this.
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More profoundly, pub-sub is aimed at scalability. This means large volumes of data, sent
rapidly to many recipients. If you need millions of messages per second sent to thou‐
sands of points, you’ll appreciate pub-sub a lot more than if you need a few messages a
second sent to a handful of recipients.

To get scalability, pub-sub uses the same trick as push-pull, which is to get rid of back-
chatter. This means that recipients don’t talk back to senders. There are some
exceptions—e.g., SUB sockets will send subscriptions to PUB sockets—but this is
anonymous and infrequent.

Killing back-chatter is essential to real scalability. With pub-sub, it’s how the pattern can
map cleanly to the Pragmatic General Multicast (PGM) protocol, which is handled by
the network switch. In other words, subscribers don’t connect to the publisher at all;
they connect to a multicast group on the switch, to which the publisher sends its mes‐
sages.

When we remove back-chatter, our overall message flow becomes much simpler, which
lets us make simpler APIs, simpler protocols, and in general reach many more people.
But we also remove any possibility to coordinate senders and receivers. What this means
is:

• Publishers can’t tell when subscribers are successfully connected, both on initial
connections and on reconnections after network failures.

• Subscribers can’t tell publishers anything that would allow publishers to control the
rate of messages they send. Publishers only have one setting, which is full speed,
and subscribers must either keep up or lose messages.

• Publishers can’t tell when subscribers have disappeared due to processes crashing,
networks breaking, and so on.

The downside is that we actually need all of these features if we want to do reliable
multicast. The ØMQ pub-sub pattern will lose messages arbitrarily when a subscriber
is connecting, when a network failure occurs, or just if the subscriber or network can’t
keep up with the publisher.

The upside is that there are many use cases where almost reliable multicast is just fine.
When we need this back-chatter, we can either switch to using ROUTER-DEALER
(which I tend to do for most normal-volume cases), or we can add a separate channel
for synchronization (we’ll see an example of this later in this chapter).

Pub-sub is like a radio broadcast: you miss everything before you join, and then how
much information you get depends on the quality of your reception. Surprisingly, this
model is useful and widespread because it maps perfectly to real-world distribution of
information. Think of Facebook and Twitter, the BBC World Service, and the sports
results.
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As we did for request-reply, let’s define reliability in terms of what can go wrong. Here
are the classic failure cases for pub-sub:

• Subscribers join late, so they miss messages the server already sent.
• Subscribers can fetch messages too slowly, so queues build up and then overflow.
• Subscribers can drop off and lose messages while they are away.
• Subscribers can crash and restart, and lose whatever data they’ve already received.
• Networks can become overloaded and drop data (specifically, for PGM).
• Networks can become too slow, so publisher-side queues overflow and publishers

crash.

A lot more can go wrong, but these are the typical failures we see in a realistic system.
Since v3.x, ØMQ forces default limits on its internal buffers (the so-called high-water
mark or HWM), so publisher crashes are rarer unless you deliberately set the HWM to
infinite.

All of these failure cases have answers, though not always simple ones. Reliability re‐
quires complexity that most of us don’t need most of the time, which is why ØMQ doesn’t
attempt to do this out of the box.

Pub-Sub Tracing (Espresso Pattern)
Let’s start this chapter by looking at a way to trace pub-sub networks. In Chapter 2 we
saw a simple proxy that used these to do transport bridging. The zmq_proxy() method
has three arguments: a frontend and backend socket that it bridges together, and a
capture socket to which it will send all messages.

The code is deceptively simple, as you can see in Example 5-1.

Example 5-1. Espresso pattern (espresso.c)
//
//  Espresso pattern
//  This shows how to capture data using a pub-sub proxy
//
#include "czmq.h"

//  The subscriber thread requests messages starting with
//  A and B, then reads and counts incoming messages.

static void
subscriber_thread (void *args, zctx_t *ctx, void *pipe)
{
    //  Subscribe to "A" and "B"
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsocket_connect (subscriber, "tcp://localhost:6001");
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    zsockopt_set_subscribe (subscriber, "A");
    zsockopt_set_subscribe (subscriber, "B");

    int count = 0;
    while (count < 5) {
        char *string = zstr_recv (subscriber);
        if (!string)
            break;              //  Interrupted
        free (string);
        count++;
    }
    zsocket_destroy (ctx, subscriber);
}

The publisher sends random messages starting with A–J, as seen in Example 5-2.

Example 5-2. Espresso pattern (espresso.c): publisher thread
static void
publisher_thread (void *args, zctx_t *ctx, void *pipe)
{
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:6000");

    while (!zctx_interrupted) {
        char string [10];
        sprintf (string, "%c-%05d", randof (10) + 'A', randof (100000));
        if (zstr_send (publisher, string) == -1)
            break;              //  Interrupted
        zclock_sleep (100);     //  Wait for 1/10th second
    }
}

The listener, shown in Example 5-3, receives all messages flowing through the proxy on
its pipe. In CZMQ, the pipe is a pair of ZMQ_PAIR sockets that connect attached child
threads. In other languages, your mileage may vary.

Example 5-3. Espresso pattern (espresso.c): listener thread
static void
listener_thread (void *args, zctx_t *ctx, void *pipe)
{
    //  Print everything that arrives on pipe
    while (true) {
        zframe_t *frame = zframe_recv (pipe);
        if (!frame)
            break;              //  Interrupted
        zframe_print (frame, NULL);
        zframe_destroy (&frame);
    }
}
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The main task (Example 5-4) starts the subscriber and publisher, and then sets itself up
as a listening proxy. The listener runs as a child thread.

Example 5-4. Espresso pattern (espresso.c): main thread
int main (void)
{
    //  Start child threads
    zctx_t *ctx = zctx_new ();
    zthread_fork (ctx, publisher_thread, NULL);
    zthread_fork (ctx, subscriber_thread, NULL);

    void *subscriber = zsocket_new (ctx, ZMQ_XSUB);
    zsocket_connect (subscriber, "tcp://localhost:6000");
    void *publisher = zsocket_new (ctx, ZMQ_XPUB);
    zsocket_bind (publisher, "tcp://*:6001");
    void *listener = zthread_fork (ctx, listener_thread, NULL);
    zmq_proxy (subscriber, publisher, listener);

    puts (" interrupted");
    //  Tell attached threads to exit
    zctx_destroy (&ctx);
    return 0;
}

Espresso works by creating a listener thread that reads a PAIR socket and prints anything
it gets. That PAIR socket is one end of a pipe; the other end (another PAIR) is the socket
we pass to zmq_proxy(). In practice, you’d filter interesting messages to get the essence
of what you want to track (hence the name of the pattern).

The subscriber thread subscribes to “A” and “B,” receives five messages, and then destroys
its socket. When you run an example, the listener prints two subscription messages, five
data messages, two unsubscribe messages, and then silence:

[002] 0141
[002] 0142
[007] B-91164
[007] B-12979
[007] A-52599
[007] A-06417
[007] A-45770
[002] 0041
[002] 0042

That shows neatly how the publisher socket stops sending data when there are no sub‐
scribers for it. The publisher thread is still sending messages. The socket just drops them
silently.
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Last Value Caching
If you’ve used commercial publish-subscribe systems, you may be used to some features
that are missing in the fast and cheerful ØMQ pub-sub model. One of these is last value
caching (LVC). This solves the problem of how a new subscriber catches up when it
joins the network. The theory is that publishers get notified when a new subscriber joins
and subscribes to some specific topics. The publisher can then rebroadcast the last
message for those topics.

I’ve already explained why publishers don’t get notified when there are new subscribers:
in large pub-sub systems the volumes of data make it pretty much impossible. To make
really large-scale pub-sub networks work, you need a protocol like PGM that exploits
an upscale Ethernet switch’s ability to multicast data to thousands of subscribers. Trying
to do a TCP unicast from the publisher to each of thousands of subscribers just doesn’t
scale. You get weird spikes, unfair distribution (some subscribers getting the message
before others), network congestion, and general unhappiness.

PGM is a one-way protocol: the publisher sends a message to a multicast address at the
switch, which then rebroadcasts that to all interested subscribers. The publisher never
sees when subscribers join or leave: this all happens in the switch, which we don’t really
want to start reprogramming.

However, in a lower-volume network with a few dozen subscribers and a limited number
of topics we can use TCP, and then the XSUB and XPUB sockets do talk to each other,
as we just saw in the Espresso pattern.

Can we make a last value cache using ØMQ? The answer is yes, if we make a proxy that
sits between the publisher and subscribers—i.e., an analog for the PGM switch, but one
we can program ourselves.

We’ll start by making a publisher and subscriber that highlight the worst-case scenario.
This publisher is pathological. It starts by immediately sending messages to each of a
thousand topics, and then it sends one update a second to a random topic. A subscriber
connects and subscribes to a topic. Without LVC, a subscriber would have to wait an
average of 500 seconds to get any data. To add some drama, let’s pretend there’s an
escaped convict called Gregor threatening to rip the head off Roger the toy bunny if we
can’t fix that 8.3-minutes delay.

Example 5-5 presents the publisher code. Note that it has a command-line option to
connect to some address, but otherwise binds to an endpoint. We’ll use this later to
connect to our last value cache.

Example 5-5. Pathological publisher (pathopub.c)
//
//  Pathological publisher
//  Sends out 1,000 topics and then one random update per second
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//
#include "czmq.h"

int main (int argc, char *argv [])
{
    zctx_t *context = zctx_new ();
    void *publisher = zsocket_new (context, ZMQ_PUB);
    if (argc == 2)
        zsocket_connect (publisher, argv [1]);
    else
        zsocket_bind (publisher, "tcp://*:5556");

    //  Ensure subscriber connection has time to complete
    sleep (1);

    //  Send out all 1,000 topic messages
    int topic_nbr;
    for (topic_nbr = 0; topic_nbr < 1000; topic_nbr++) {
        zstr_sendfm (publisher, "%03d", topic_nbr, ZMQ_SNDMORE);
        zstr_send (publisher, "Save Roger");
    }
    //  Send one random update per second
    srandom ((unsigned) time (NULL));
    while (!zctx_interrupted) {
        sleep (1);
        zstr_sendfm (publisher, "%03d", randof (1000), ZMQ_SNDMORE);
        zstr_send (publisher, "Off with his head!");
    }
    zctx_destroy (&context);
    return 0;
}

The code for the subscriber is in Example 5-6.

Example 5-6. Pathological subscriber (pathosub.c)
//
//  Pathological subscriber
//  Subscribes to one random topic and prints received messages
//
#include "czmq.h"

int main (int argc, char *argv [])
{
    zctx_t *context = zctx_new ();
    void *subscriber = zsocket_new (context, ZMQ_SUB);
    if (argc == 2)
        zsocket_connect (subscriber, argv [1]);
    else
        zsocket_connect (subscriber, "tcp://localhost:5556");

    srandom ((unsigned) time (NULL));
    char subscription [5];
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    sprintf (subscription, "%03d", randof (1000));
    zsocket_set_subscribe (subscriber, subscription);
    
    while (true) {
        char *topic = zstr_recv (subscriber);
        if (!topic)
            break;
        char *data = zstr_recv (subscriber);
        assert (streq (topic, subscription));
        puts (data);
        free (topic);
        free (data);
    }
    zctx_destroy (&context);
    return 0;
}

Try building and running these: first the subscriber, then the publisher. You’ll see that
the subscriber reports getting “Save Roger,” as you’d expect:

./pathosub &

./pathopub

It’s when you run a second subscriber that you understand Roger’s predicament: you
have to leave it an awfully long time before it reports getting any data. Our last value
cache is presented in Example 5-7 through 5-9. As I promised, it’s a proxy that binds to
two sockets and then handles messages on both.

Example 5-7. Last value caching proxy (lvcache.c)
//
//  Last value cache
//  Uses XPUB subscription messages to resend data
//
#include "czmq.h"

int main (void)
{
    zctx_t *context = zctx_new ();
    void *frontend = zsocket_new (context, ZMQ_SUB);
    zsocket_bind (frontend, "tcp://*:5557");
    void *backend = zsocket_new (context, ZMQ_XPUB);
    zsocket_bind (backend, "tcp://*:5558");

    //  Subscribe to every single topic from publisher
    zsocket_set_subscribe (frontend, "");

    //  Store last instance of each topic in a cache
    zhash_t *cache = zhash_new ();

We route topic updates from frontend to backend, and we handle subscriptions by
sending whatever we cached, if anything, as illustrated in Example 5-8.
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Example 5-8. Last value caching proxy (lvcache.c): main poll loop
        zmq_pollitem_t items [] = {
            { frontend, 0, ZMQ_POLLIN, 0 },
            { backend,  0, ZMQ_POLLIN, 0 }
        };
        if (zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC) == -1)
            break;              //  Interrupted

        //  Any new topic data we cache and then forward
        if (items [0].revents & ZMQ_POLLIN) {
            char *topic = zstr_recv (frontend);
            char *current = zstr_recv (frontend);
            if (!topic)
                break;
            char *previous = zhash_lookup (cache, topic);
            if (previous) {
                zhash_delete (cache, topic);
                free (previous);
            }
            zhash_insert (cache, topic, current);
            zstr_sendm (backend, topic);
            zstr_send (backend, current);
            free (topic);
        }

When we get a new subscription, we pull data from the cache, as shown in Example 5-9.

Example 5-9. Last value caching proxy (lvcache.c): handle subscriptions
            zframe_t *frame = zframe_recv (backend);
            if (!frame)
                break;
            //  Event is one byte, 0=unsub or 1=sub, followed by topic
            byte *event = zframe_data (frame);
            if (event [0] == 1) {
                char *topic = zmalloc (zframe_size (frame));
                memcpy (topic, event + 1, zframe_size (frame) - 1);
                printf ("Sending cached topic %s\n", topic);
                char *previous = zhash_lookup (cache, topic);
                if (previous) {
                    zstr_sendm (backend, topic);
                    zstr_send (backend, previous);
                }
                free (topic);
            }
            zframe_destroy (&frame);
        }
    }
    zctx_destroy (&context);
    zhash_destroy (&cache);
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    return 0;
}

Now, run the proxy, and then the publisher:
./lvcache &
./pathopub tcp://localhost:5557

Then run as many instances of the subscriber as you want to try, each time connecting
to the proxy on port 5558:

./pathosub tcp://localhost:5558

Each subscriber happily reports “Save Roger,” and Gregor the Escaped Convict slinks
back to his seat for dinner and a nice cup of hot milk, which is all he really wanted in
the first place.

One note: by default, the XPUB socket does not report duplicate subscriptions, which
is what you want when you’re naively connecting an XPUB to an XSUB. Our example
sneakily gets around this by using random topics, so the chance of it not working is one
in a million. In a real LVC proxy you’ll want to use the ZMQ_XPUB_VERBOSE option that
we implement in Chapter 6, The ØMQ Community as an exercise.

Slow Subscriber Detection (Suicidal Snail Pattern)
A common problem you will hit when using the pub-sub pattern in real life is the slow
subscriber. In an ideal world, we stream data at full speed from publishers to subscribers.
In reality, subscriber applications are often written in interpreted languages, or do a lot
of work, or are just badly written, to the extent that they can’t keep up with publishers.

How do we handle a slow subscriber? The ideal fix is to make the subscriber faster, but
that might take a significant amount of work and time. Some of the classic strategies for
handling a slow subscriber are:

• Queue messages on the publisher. This is what Gmail does when I don’t read my
email for a couple of hours. But in high-volume messaging, pushing queues up‐
stream has the thrilling but unprofitable result of making publishers run out of
memory and then crash—especially if there are lots of subscribers and it’s not pos‐
sible to flush to disk for performance reasons.

• Queue messages on the subscriber. This is much better, and it’s what ØMQ does by
default if the network can keep up with things. If anyone’s going to run out of
memory and crash, it’ll be the subscriber rather than the publisher, which is fair.
This is perfect for “peaky” streams where a subscriber can’t keep up for a while, but
can catch up when the stream slows down. However, it’s no answer to a subscriber
that’s simply too slow in general.
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• Stop queuing new messages after a while. This is what Gmail does when my mailbox
overflows its precious gigabytes of space. New messages just get rejected or dropped.
This is a great strategy from the perspective of the publisher, and it’s what ØMQ
does when the publisher sets an HWM. However, it still doesn’t help us fix the slow
subscriber—now we just get gaps in our message stream.

• Punish slow subscribers with a disconnect. This is what Hotmail (remember that?)
did when I didn’t log in for two weeks, which is why I was on my fifteenth Hotmail
account when it hit me that there was perhaps a better way. It’s a nice, brutal strategy
that forces subscribers to sit up and pay attention, and it would be ideal for this
situation. However, ØMQ doesn’t do this, and there’s no way to layer it on top
because subscribers are invisible to publisher applications.

None of these classic strategies fit, so we need to get creative. Rather than disconnecting
the publisher, let’s convince the subscriber to kill itself. This is the Suicidal Snail pattern.
When a subscriber detects that it’s running too slowly (where “too slowly” is presumably
a configured option that really means “so slowly that if you ever get here, shout really
loudly because I need to know, so I can fix this!”), it croaks and dies.

How can a subscriber detect this? One way would be to sequence messages (number
them in order) and use an HWM at the publisher. Now, if the subscriber detects a gap
(i.e., the numbering isn’t consecutive), it knows something is wrong. We then tune the
HWM to the “croak and die if you hit this” level.

There are two problems with this solution. First, if we have many publishers, how do
we sequence messages? The solution is to give each publisher a unique ID and add that
to the sequencing. Second, if subscribers use ZMQ_SUBSCRIBE filters, they will get gaps
by definition. Our precious sequencing will be for nothing.

Some use cases won’t use filters, and sequencing will work for them. But a more general
solution is that the publisher timestamps each message. When a subscriber gets a mes‐
sage, it checks the time, and if the difference is more than, say, one second, it does the
“croak and die” thing, possibly firing off a squawk to some operator console first.

The Suicidal Snail pattern works especially well when subscribers have their own clients
and service-level agreements and need to guarantee certain maximum latencies. Abort‐
ing a subscriber may not seem like a constructive way to guarantee a maximum latency,
but it’s the assertion model. Abort today, and the problem will be fixed. Allow late data
to flow downstream, and the problem may cause wider damage and take longer to appear
on the radar.
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Example 5-10 shows a minimal example of a Suicidal Snail.

Example 5-10. Suicidal Snail (suisnail.c)
//
//  Suicidal Snail
//
#include "czmq.h"

//  This is our subscriber. It connects to the publisher and subscribes to
//  everything. It sleeps for a short time between messages to simulate doing
//  too much work. If a message is more than one second late, it croaks.

#define MAX_ALLOWED_DELAY   1000    //  msecs

static void
subscriber (void *args, zctx_t *ctx, void *pipe)
{
    //  Subscribe to everything
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5556");

    //  Get and process messages
    while (true) {
        char *string = zstr_recv (subscriber);
        printf("%s\n", string);
        int64_t clock;
        int terms = sscanf (string, "%" PRId64, &clock);
        assert (terms == 1);
        free (string);

        //  Suicidal Snail logic
        if (zclock_time () - clock > MAX_ALLOWED_DELAY) {
            fprintf (stderr, "E: subscriber cannot keep up, aborting\n");
            break;
        }
        //  Work for 1 msec plus some random additional time
        zclock_sleep (1 + randof (2));
    }
    zstr_send (pipe, "gone and died");
}

Example 5-11 presents our publisher task. It publishes a time-stamped message to its
PUB socket every millisecond.

Example 5-11. Suicidal Snail (suisnail.c): publisher task
static void
publisher (void *args, zctx_t *ctx, void *pipe)
{
    //  Prepare publisher
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
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    zsocket_bind (publisher, "tcp://*:5556");

    while (true) {
        //  Send current clock (msec) to subscribers
        char string [20];
        sprintf (string, "%" PRId64, zclock_time ());
        zstr_send (publisher, string);
        char *signal = zstr_recv_nowait (pipe);
        if (signal) {
            free (signal);
            break;
        }
        zclock_sleep (1);            //  1msec wait
    }
}

The main task (Example 5-12) simply starts a client and a server, and then waits for the
client to signal that it has died.

Example 5-12. Suicidal Snail (suisnail.c): main task
int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *pubpipe = zthread_fork (ctx, publisher, NULL);
    void *subpipe = zthread_fork (ctx, subscriber, NULL);
    free (zstr_recv (subpipe));
    zstr_send (pubpipe, "break");
    zclock_sleep (100);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about the Suicidal Snail example:

• The message here consists simply of the current system clock as a number of mil‐
liseconds. In a realistic application, you’d have at least a message header with the
timestamp and a message body with data.

• The example has subscriber and publisher in a single process as two threads. In
reality, they would be separate processes. Using threads is just convenient for the 
demonstration.

Slow Subscriber Detection (Suicidal Snail Pattern) | 257



High-Speed Subscribers (Black Box Pattern)
Now let’s look at one way to make our subscribers faster. A common use case for pub-
sub is distributing large data streams, like market data coming from stock exchanges.
A typical setup would have a publisher connected to a stock exchange, taking price
quotes and sending them out to a number of subscribers. If there were only a handful
of subscribers, we could use TCP. With a larger number of subscribers, we’d probably
use reliable multicast, i.e., PGM.

Let’s imagine our feed has an average of 100,000 100-byte messages a second. That’s a
typical rate, after filtering market data we don’t need to send on to subscribers. Now we
decide to record a day’s data (maybe 250 GB in 8 hours), and then replay it to a simulation
network (i.e., a small group of subscribers). While 100K messages a second is easy for
a ØMQ application, we want to replay it much faster.

So we set up our architecture with a bunch of boxes—one for the publisher and one for
each subscriber. These are well-specified boxes—8 cores, 12 for the publisher.

And as we pump data into our subscribers, we notice two things:

1. When we do even the slightest amount of work with a message, it slows down our
subscribers to the point where they can’t catch up with the publisher again.

2. We’re hitting a ceiling, at both the publisher and the subscribers, of around 6M
messages a second, even after careful optimization and TCP tuning.

The first thing we have to do is break our subscriber into a multithreaded design so that
we can do work with messages in one set of threads, while reading messages in another.
Typically, we don’t want to process every message the same way. Rather, the subscriber
will filter some messages, perhaps by prefix key. When a message matches some criteria,
the subscriber will call a worker to deal with it. In ØMQ terms, this means sending the
message to a worker thread.

So, the subscriber looks something like a queue device. We could use various sockets to
connect the subscriber and workers. If we assume one-way traffic and workers that are
all identical, we can use PUSH and PULL and delegate all the routing work to ØMQ
(Figure 5-1). This is the simplest and fastest approach.
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Figure 5-1. The Simple Black Box pattern

The subscriber talks to the publisher over TCP or PGM. The subscriber talks to its
workers, which are all in the same process, over inproc.

Now to break that ceiling. The subscriber thread hits 100% of CPU, and because it is
one thread, it cannot use more than one core. A single thread will always hit a ceiling,
be it at 2M, 6M, or more messages per second. We want to split the work across multiple
threads that can run in parallel.

The approach used by many high-performance products, which works here, is shard‐
ing. Using sharding, we split the work into parallel and independent streams. Half of
the topic keys are in one stream, half in another (Figure 5-2). We could use many streams,
but performance won’t scale unless we have free cores.
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Figure 5-2. The Mad Black Box pattern

With two streams, working at full speed, we would configure ØMQ as follows:

• Two I/O threads, rather than one
• Two network interfaces card (NICs), one per subscriber
• Each I/O thread bound to a specific NIC
• Two subscriber threads, bound to specific cores
• Two SUB sockets, one per subscriber thread
• The remaining cores assigned to worker threads
• Worker threads connected to both subscriber PUSH sockets

Ideally, we want to match the number of fully loaded threads in our architecture with
the number of cores. When threads start to fight for cores and CPU cycles, the cost of
adding more threads outweighs the benefits.

Reliable Publish-Subscribe (Clone Pattern)
As a larger worked example, we’ll take the problem of making a reliable
publish-subscribe architecture. We’ll develop this in stages. The goal is to allow a set of
applications to share some common state. Here are our technical challenges:
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• We have a large set of client applications—say, thousands or tens of thousands.
• They will join and leave the network arbitrarily.
• These applications must share a single, eventually consistent state.
• Any application can update the state at any point in time.

Let’s say that updates are reasonably low-volume, we don’t have real time goals, and the
whole state can fit into memory. Some plausible use cases are:

• A configuration that is shared by a group of cloud servers
• Some game state shared by a group of players
• Exchange rate data that is updated in real time and available to applications

Centralized Versus Decentralized
A first decision we have to make is whether to work with a central server or not. It makes
a big difference in the resulting design. The trade-offs are these:

• Conceptually, a central server is simpler to understand because networks are not
naturally symmetrical. With a central server we avoid all questions of discovery,
bind versus connect, and so on.

• Generally, a fully distributed architecture is technically more challenging but ends
up with simpler protocols. That is, each node must act as server and client in the
right way, which is delicate. When done right, the results are simpler than using a
central server. We saw this in the Freelance pattern in Chapter 4.

• A central server will become a bottleneck in high-volume use cases. If handling
scale on the order of millions of messages a second is required, we should aim for
decentralization right away.

• A centralized architecture will scale to more nodes more easily than a decentralized
one. That is, it’s easier to connect 10,000 nodes to one server than to each other.

So, for the Clone pattern we’ll work with a server that publishes state updates and a set
of clients that represent applications.

Representing State as Key-Value Pairs
We’ll develop the Clone pattern in stages, solving one problem at a time. First, let’s look
at how to update a shared state across a set of clients. We need to decide how to represent
our state, as well as the updates. The simplest plausible format is a key-value store, where
one key-value pair represents an atomic unit of change in the shared state.
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We looked at a simple pub-sub example in Chapter 2, the weather server and client. Let’s
change the server to send key-value pairs, and the client to store these in a hash table.
This lets us send updates from one server to a set of clients using the classic pub-sub
model (Figure 5-3).

Figure 5-3. Publishing state updates

An update is either a new key-value pair, a modified value for an existing key, or a deleted
key. We can assume for now that the whole store fits in memory and that applications
access it by key, such as by a hash table or dictionary. For larger stores and some kind
of persistence we’d probably store the state in a database, but that’s not relevant here.

Our first attempt at the server is shown in Example 5-13.

Example 5-13. Clone server, Model One (clonesrv1.c)
//
//  Clone server-Model One
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and publisher socket
    zctx_t *ctx = zctx_new ();
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5556");
    zclock_sleep (200);

    zhash_t *kvmap = zhash_new ();
    int64_t sequence = 0;
    srandom ((unsigned) time (NULL));
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    while (!zctx_interrupted) {
        //  Distribute as key-value message
        kvmsg_t *kvmsg = kvmsg_new (++sequence);
        kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
        kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
        kvmsg_send     (kvmsg, publisher);
        kvmsg_store   (&kvmsg, kvmap);
    }
    printf (" Interrupted\n%d messages out\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

And our first attempt at the client is shown in Example 5-14.

Example 5-14. Clone client, Model One (clonecli1.c)
//
//  Clone client - Model One
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and updates socket
    zctx_t *ctx = zctx_new ();
    void *updates = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (updates, "");
    zsocket_connect (updates, "tcp://localhost:5556");

    zhash_t *kvmap = zhash_new ();
    int64_t sequence = 0;

    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (updates);
        if (!kvmsg)
            break;          //  Interrupted
        kvmsg_store (&kvmsg, kvmap);
        sequence++;
    }
    printf (" Interrupted\n%d messages in\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about this first model:
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• All the hard work is done in a kvmsg class. This class works with key-value message
objects, which are multipart ØMQ messages structured as three frames: a key (a
ØMQ string), a sequence number (a 64-bit value, in network byte order), and a
binary body (which holds everything else).

• The server generates messages with a randomized four-digit key, which lets us sim‐
ulate a large but not enormous hash table (10K entries).

• We don’t implement deletions in this version: all messages are inserts or updates.
• The server does a 200 msec pause after binding its socket. This is to prevent slow

joiner syndrome, where the subscriber loses messages as it connects to the server’s
socket. We’ll remove that in later versions of the Clone code.

• We’ll use the terms publisher and subscriber in the code to refer to sockets. This will
help later when we have multiple sockets doing different things.

Example 5-15 shows the kvmsg class, in the simplest form that works for now.

Example 5-15. Key-value message class (kvsimple.c)
/*  =====================================================================
 *  kvsimple - simple key-value message class for example applications
 *  ===================================================================== */

#include "kvsimple.h"
#include "zlist.h"

//  Keys are short strings
#define KVMSG_KEY_MAX   255

//  Message is formatted on wire as 4 frames:
//  frame 0: key (0MQ string)
//  frame 1: sequence (8 bytes, network order)
//  frame 2: body (blob)
#define FRAME_KEY       0
#define FRAME_SEQ       1
#define FRAME_BODY      2
#define KVMSG_FRAMES    3

//  The kvmsg class holds a single key-value message consisting of a
//  list of 0 or more frames

struct _kvmsg {
    //  Presence indicators for each frame
    int present [KVMSG_FRAMES];
    //  Corresponding 0MQ message frames, if any
    zmq_msg_t frame [KVMSG_FRAMES];
    //  Key, copied into safe C string
    char key [KVMSG_KEY_MAX + 1];
};
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Example 5-16 contains the code for the constructor and destructor for the class.

Example 5-16. Key-value message class (kvsimple.c): constructor and destructor
//  Constructor, takes a sequence number for the new kvmsg instance
kvmsg_t *
kvmsg_new (int64_t sequence)
{
    kvmsg_t
        *self;

    self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
    kvmsg_set_sequence (self, sequence);
    return self;
}

//  zhash_free_fn callback helper that does the low level destruction
void
kvmsg_free (void *ptr)
{
    if (ptr) {
        kvmsg_t *self = (kvmsg_t *) ptr;
        //  Destroy message frames, if any
        int frame_nbr;
        for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
            if (self->present [frame_nbr])
                zmq_msg_close (&self->frame [frame_nbr]);

        //  Free object itself
        free (self);
    }
}

//  Destructor
void
kvmsg_destroy (kvmsg_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_free (*self_p);
        *self_p = NULL;
    }
}

The recv method, shown in Example 5-17, reads a key-value message from the socket
and returns a new kvmsg instance.

Example 5-17. Key-value message class (kvsimple.c): recv method
kvmsg_t *
kvmsg_recv (void *socket)
{
    assert (socket);
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    kvmsg_t *self = kvmsg_new (0);

    //  Read all frames off the wire, reject if bogus
    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        if (self->present [frame_nbr])
            zmq_msg_close (&self->frame [frame_nbr]);
        zmq_msg_init (&self->frame [frame_nbr]);
        self->present [frame_nbr] = 1;
        if (zmq_msg_recv (&self->frame [frame_nbr], socket, 0) == -1) {
            kvmsg_destroy (&self);
            break;
        }
        //  Verify multipart framing
        int rcvmore = (frame_nbr < KVMSG_FRAMES - 1)? 1: 0;
        if (zsockopt_rcvmore (socket) != rcvmore) {
            kvmsg_destroy (&self);
            break;
        }
    }
    return self;
}

The send method (Example 5-18) sends a multiframe key-value message to a socket.

Example 5-18. Key-value message class (kvsimple.c): send method
void
kvmsg_send (kvmsg_t *self, void *socket)
{
    assert (self);
    assert (socket);

    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        zmq_msg_t copy;
        zmq_msg_init (&copy);
        if (self->present [frame_nbr])
            zmq_msg_copy (&copy, &self->frame [frame_nbr]);
        zmq_msg_send (&copy, socket, 
            (frame_nbr < KVMSG_FRAMES - 1)? ZMQ_SNDMORE: 0);
        zmq_msg_close (&copy);
    }
}

The key methods in Example 5-19 let the caller get and set the message key as a fixed
string and as a printf-formatted string.

Example 5-19. Key-value message class (kvsimple.c): key methods
char *
kvmsg_key (kvmsg_t *self)
{

266 | Chapter 5: Advanced Publish-Subscribe Patterns



    assert (self);
    if (self->present [FRAME_KEY]) {
        if (!*self->key) {
            size_t size = zmq_msg_size (&self->frame [FRAME_KEY]);
            if (size > KVMSG_KEY_MAX)
                size = KVMSG_KEY_MAX;
            memcpy (self->key,
                zmq_msg_data (&self->frame [FRAME_KEY]), size);
            self->key [size] = 0;
        }
        return self->key;
    }
    else
        return NULL;
}

void
kvmsg_set_key (kvmsg_t *self, char *key)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_KEY];
    if (self->present [FRAME_KEY])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, strlen (key));
    memcpy (zmq_msg_data (msg), key, strlen (key));
    self->present [FRAME_KEY] = 1;
}

void
kvmsg_fmt_key (kvmsg_t *self, char *format, ...)
{
    char value [KVMSG_KEY_MAX + 1];
    va_list args;

    assert (self);
    va_start (args, format);
    vsnprintf (value, KVMSG_KEY_MAX, format, args);
    va_end (args);
    kvmsg_set_key (self, value);
}

The two methods in Example 5-20 let the caller get and set the message sequence num‐
ber.

Example 5-20. Key-value message class (kvsimple.c): sequence methods
int64_t
kvmsg_sequence (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_SEQ]) {
        assert (zmq_msg_size (&self->frame [FRAME_SEQ]) == 8);
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        byte *source = zmq_msg_data (&self->frame [FRAME_SEQ]);
        int64_t sequence = ((int64_t) (source [0]) << 56)
                         + ((int64_t) (source [1]) << 48)
                         + ((int64_t) (source [2]) << 40)
                         + ((int64_t) (source [3]) << 32)
                         + ((int64_t) (source [4]) << 24)
                         + ((int64_t) (source [5]) << 16)
                         + ((int64_t) (source [6]) << 8)
                         +  (int64_t) (source [7]);
        return sequence;
    }
    else
        return 0;
}

void
kvmsg_set_sequence (kvmsg_t *self, int64_t sequence)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_SEQ];
    if (self->present [FRAME_SEQ])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, 8);

    byte *source = zmq_msg_data (msg);
    source [0] = (byte) ((sequence >> 56) & 255);
    source [1] = (byte) ((sequence >> 48) & 255);
    source [2] = (byte) ((sequence >> 40) & 255);
    source [3] = (byte) ((sequence >> 32) & 255);
    source [4] = (byte) ((sequence >> 24) & 255);
    source [5] = (byte) ((sequence >> 16) & 255);
    source [6] = (byte) ((sequence >> 8)  & 255);
    source [7] = (byte) ((sequence)       & 255);

    self->present [FRAME_SEQ] = 1;
}

The two methods in Example 5-21 let the caller get and set the message body, as a fixed
string and as a printf-formatted string.

Example 5-21. Key-value message class (kvsimple.c): message body methods
byte *
kvmsg_body (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_BODY])
        return (byte *) zmq_msg_data (&self->frame [FRAME_BODY]);
    else
        return NULL;
}
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void
kvmsg_set_body (kvmsg_t *self, byte *body, size_t size)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_BODY];
    if (self->present [FRAME_BODY])
        zmq_msg_close (msg);
    self->present [FRAME_BODY] = 1;
    zmq_msg_init_size (msg, size);
    memcpy (zmq_msg_data (msg), body, size);
}

void
kvmsg_fmt_body (kvmsg_t *self, char *format, ...)
{
    char value [255 + 1];
    va_list args;

    assert (self);
    va_start (args, format);
    vsnprintf (value, 255, format, args);
    va_end (args);
    kvmsg_set_body (self, (byte *) value, strlen (value));
}

The size method (Example 5-22) returns the body size of the most recently read mes‐
sage, if any exists.

Example 5-22. Key-value message class (kvsimple.c): size method
size_t
kvmsg_size (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_BODY])
        return zmq_msg_size (&self->frame [FRAME_BODY]);
    else
        return 0;
}

The store method (Example 5-23) stores the key-value message into a hashmap, unless
the key and value are both null. It nullifies the kvmsg reference so that the object is owned
by the hashmap, not the caller.

Example 5-23. Key-value message class (kvsimple.c): store method
void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_t *self = *self_p;
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        assert (self);
        if (self->present [FRAME_KEY]
        &&  self->present [FRAME_BODY]) {
            zhash_update (hash, kvmsg_key (self), self);
            zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
        }
        *self_p = NULL;
    }
}

The dump method, shown in Example 5-24, prints the key-value message to stderr for
debugging and tracing:

Example 5-24. Key-value message class (kvsimple.c): dump method
void
kvmsg_dump (kvmsg_t *self)
{
    if (self) {
        if (!self) {
            fprintf (stderr, "NULL");
            return;
        }
        size_t size = kvmsg_size (self);
        byte  *body = kvmsg_body (self);
        fprintf (stderr, "[seq:%" PRId64 "]", kvmsg_sequence (self));
        fprintf (stderr, "[key:%s]", kvmsg_key (self));
        fprintf (stderr, "[size:%zd] ", size);
        int char_nbr;
        for (char_nbr = 0; char_nbr < size; char_nbr++)
            fprintf (stderr, "%02X", body [char_nbr]);
        fprintf (stderr, "\n");
    }
    else
        fprintf (stderr, "NULL message\n");
}

It’s good practice to have a self-test method that tests the class; this also shows how it’s
used in applications. Our self-test method is shown in Example 5-25.

Example 5-25. Key-value message class (kvsimple.c): test method
int
kvmsg_test (int verbose)
{
    kvmsg_t
        *kvmsg;

    printf (" * kvmsg: ");

    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *output = zsocket_new (ctx, ZMQ_DEALER);
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    int rc = zmq_bind (output, "ipc://kvmsg_selftest.ipc");
    assert (rc == 0);
    void *input = zsocket_new (ctx, ZMQ_DEALER);
    rc = zmq_connect (input, "ipc://kvmsg_selftest.ipc");
    assert (rc == 0);

    zhash_t *kvmap = zhash_new ();

    //  Test send and receive of simple message
    kvmsg = kvmsg_new (1);
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_store (&kvmsg, kvmap);

    kvmsg = kvmsg_recv (input);
    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    kvmsg_store (&kvmsg, kvmap);

    //  Shut down and destroy all objects
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);

    printf ("OK\n");
    return 0;
}

Later, we’ll make a more sophisticated kvmsg class that will work in real applications.

Both the server and the clients maintain hash tables, but this first model only works
properly if we start all clients before the server and the clients never crash. That’s very 
artificial.

Getting an Out-of-Band Snapshot
So now we have our second problem: how to deal with late-joining clients or clients that
crash and then restart.

For a late (or recovering) client to catch up with a server, it has to get a snapshot of the
server’s state. Just as we’ve reduced “message” to mean “a sequenced key-value pair,” we
can reduce “state” to mean “a hash table.” To get the server state, a client opens a DEALER
socket and asks for it explicitly (Figure 5-4).
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Figure 5-4. State replication

To make this work, we have to solve a problem of timing. Getting a state snapshot will
take a certain amount of time, possibly fairly long if the snapshot is large. We need to
correctly apply updates to the snapshot, but the server won’t know when to start sending
us updates. One approach would be to start subscribing, get a first update, and then ask
for “state for update N.” This would require the server to store one snapshot for each
update, though, which isn’t practical.

Instead, we will do the synchronization in the client, as follows:

• The client first subscribes to updates and then makes a state request. This guarantees
that the state is going to be newer than the oldest update it has.

• The client waits for the server to reply with state, and meanwhile queues all updates.
It does this simply by not reading them: ØMQ keeps them queued on the socket
queue.

• When the client receives its state update, it begins once again to read updates.
However, it discards any updates that are older than the state update (so, if the state
update includes updates up to 200, the client will discard updates up to 201).

• The client then applies updates to its own state snapshot.

It’s a simple model that exploits ØMQ’s own internal queues. Model Two of our Clone
server is shown in Example 5-26.

Example 5-26. Clone server, Model Two (clonesrv2.c)
//
//  Clone server - Model Two
//

//  Lets us build this source without creating a library
#include "kvsimple.c"
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static int s_send_single (const char *key, void *data, void *args);
static void state_manager (void *args, zctx_t *ctx, void *pipe);

int main (void)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5557");

    int64_t sequence = 0;
    srandom ((unsigned) time (NULL));

    //  Start state manager and wait for synchronization signal
    void *updates = zthread_fork (ctx, state_manager, NULL);
    free (zstr_recv (updates));

    while (!zctx_interrupted) {
        //  Distribute as key-value message
        kvmsg_t *kvmsg = kvmsg_new (++sequence);
        kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
        kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
        kvmsg_send     (kvmsg, publisher);
        kvmsg_send     (kvmsg, updates);
        kvmsg_destroy (&kvmsg);
    }
    printf (" Interrupted\n%d messages out\n", (int) sequence);
    zctx_destroy (&ctx);
    return 0;
}

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    //  Send identity of recipient first
    zframe_send (&kvroute->identity,
        kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    kvmsg_send (kvmsg, kvroute->socket);
    return 0;
}
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The state manager task, shown in Example 5-27, maintains the state and handles re‐
quests from clients for snapshots.

Example 5-27. Clone server, Model Two (clonesrv2.c): state manager
static void
state_manager (void *args, zctx_t *ctx, void *pipe)
{
    zhash_t *kvmap = zhash_new ();

    zstr_send (pipe, "READY");
    void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (snapshot, "tcp://*:5556");

    zmq_pollitem_t items [] = {
        { pipe, 0, ZMQ_POLLIN, 0 },
        { snapshot, 0, ZMQ_POLLIN, 0 }
    };
    int64_t sequence = 0;       //  Current snapshot version number
    while (!zctx_interrupted) {
        int rc = zmq_poll (items, 2, -1);
        if (rc == -1 && errno == ETERM)
            break;              //  Context has been shut down

        //  Apply state update from main thread
        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (pipe);
            if (!kvmsg)
                break;          //  Interrupted
            sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, kvmap);
        }
        //  Execute state snapshot request
        if (items [1].revents & ZMQ_POLLIN) {
            zframe_t *identity = zframe_recv (snapshot);
            if (!identity)
                break;          //  Interrupted

            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            if (streq (request, "ICANHAZ?"))
                free (request);
            else {
                printf ("E: bad request, aborting\n");
                break;
            }
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity };

            //  For each entry in kvmap, send kvmsg to client
            zhash_foreach (kvmap, s_send_single, &routing);
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            //  Now send END message with sequence number
            printf ("Sending state shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) "", 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
        }
    }
    zhash_destroy (&kvmap);
}

Model Two of our Clone client is shown in Example 5-28.

Example 5-28. Clone client, Model Two (clonecli2.c)
//
//  Clone client - Model Two
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and subscriber
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (snapshot, "tcp://localhost:5556");
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5557");

    zhash_t *kvmap = zhash_new ();

    //  Get state snapshot
    int64_t sequence = 0;
    zstr_send (snapshot, "ICANHAZ?");
    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (snapshot);
        if (!kvmsg)
            break;          //  Interrupted
        if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
            sequence = kvmsg_sequence (kvmsg);
            printf ("Received snapshot=%d\n", (int) sequence);
            kvmsg_destroy (&kvmsg);
            break;          //  Done
        }
        kvmsg_store (&kvmsg, kvmap);
    }
    //  Now apply pending updates, discard out-of-sequence messages
    while (!zctx_interrupted) {
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        kvmsg_t *kvmsg = kvmsg_recv (subscriber);
        if (!kvmsg)
            break;          //  Interrupted
        if (kvmsg_sequence (kvmsg) > sequence) {
            sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, kvmap);
        }
        else
            kvmsg_destroy (&kvmsg);
    }
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about these two programs:

• The server uses two tasks. One thread produces the updates (randomly) and sends
these to the main PUB socket, while the other thread handles state requests on the
ROUTER socket. The two communicate across PAIR sockets over an inproc
connection.

• The client is really simple. In C it consists of about 50 lines of code. A lot of the
heavy lifting is done in the kvmsg class. Even so, the basic Clone pattern is easier to
implement than it seemed at first.

• We don’t use anything fancy for serializing the state. The hash table holds a set of
kvmsg objects, and the server sends these, as a batch of messages, to the client re‐
questing state. If multiple clients request state at once, each will get a different
snapshot.

• We assume that the client has exactly one server to talk to. The server must be
running; we do not try to solve the question of what happens if the server crashes.

Right now, these two programs don’t do anything real, but they correctly synchronize
state. It’s a neat example of how to mix different patterns: PAIR-PAIR, PUB-SUB, and
ROUTER-DEALER.

Republishing Updates from Clients
In our second model, changes to the key-value store came from the server itself. This
is a centralized model that is useful, for example, if we have a central configuration file
we want to distribute, with local caching on each node. A more interesting model takes
updates from clients, not the server. The server thus becomes a stateless broker. This
gives us a few benefits:

• We’re less worried about the reliability of the server. If it crashes, we can start a new
instance and feed it new values.
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• We can use the key-value store to share knowledge between active peers.

To send updates from clients back to the server, we could use a variety of socket patterns.
The simplest plausible solution is a PUSH-PULL combination (Figure 5-5).

Figure 5-5. Republishing updates

Why don’t we allow clients to publish updates directly to each other? While this would
reduce latency, it would remove the guarantee of consistency. You can’t get consistent
shared state if you allow the order of updates to change depending on who receives
them. If two clients make changes at the same time, but to different keys, there will be
no confusion. But if the two clients try to change the same key at roughly the same time,
they’ll end up with different notions of its value.

There are a few strategies for obtaining consistency when changes happen in multiple
places at once. We’ll use the approach of centralizing all change. No matter the precise
timing of the changes that clients make, they are all pushed through the server, which
enforces a single sequence according to the order in which it gets updates.

By mediating all changes, the server can also add a unique sequence number to all
updates. With unique sequencing, clients can detect the nastier failures—network con‐
gestion and queue overflow. If a client discovers that its incoming message stream has
a hole, it can take action. It seems sensible for the client to contact the server and ask
for the missing messages, but in practice that isn’t useful. If there are holes, they’re caused
by network stress, and adding more stress to the network will make things worse. All
the client can do is warn its users that it is “unable to continue,” stop, and not restart
until someone has manually checked the cause of the problem.

In our third model, we’ll generate state updates in the client. The server code is in
Example 5-29.
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Example 5-29. Clone server, Model Three (clonesrv3.c)
//
//  Clone server - Model Three
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    //  Send identity of recipient first
    zframe_send (&kvroute->identity,
        kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    kvmsg_send (kvmsg, kvroute->socket);
    return 0;
}

int main (void)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (snapshot, "tcp://*:5556");
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5557");
    void *collector = zsocket_new (ctx, ZMQ_PULL);
    zsocket_bind (collector, "tcp://*:5558");

The body of the main task, shown in Example 5-30, collects updates from clients and
publishes them back out to clients.

Example 5-30. Clone server, Model Three (clonesrv3.c): body of main task
    int64_t sequence = 0;
    zhash_t *kvmap = zhash_new ();

    zmq_pollitem_t items [] = {
        { collector, 0, ZMQ_POLLIN, 0 },
        { snapshot, 0, ZMQ_POLLIN, 0 }
    };
    while (!zctx_interrupted) {
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        int rc = zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC);

        //  Apply state update sent from client
        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (collector);
            if (!kvmsg)
                break;          //  Interrupted
            kvmsg_set_sequence (kvmsg, ++sequence);
            kvmsg_send (kvmsg, publisher);
            kvmsg_store (&kvmsg, kvmap);
            printf ("I: publishing update %5d\n", (int) sequence);
        }
        //  Execute state snapshot request
        if (items [1].revents & ZMQ_POLLIN) {
            zframe_t *identity = zframe_recv (snapshot);
            if (!identity)
                break;          //  Interrupted

            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            if (streq (request, "ICANHAZ?"))
                free (request);
            else {
                printf ("E: bad request, aborting\n");
                break;
            }
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity };

            //  For each entry in kvmap, send kvmsg to client
            zhash_foreach (kvmap, s_send_single, &routing);

            //  Now send END message with sequence number
            printf ("I: sending shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) "", 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
        }
    }
    printf (" Interrupted\n%d messages handled\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);

    return 0;
}

The code for Model Three of our client is in Examples 5-31 through 5-33.
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Example 5-31. Clone client, Model Three (clonecli3.c)
//
//  Clone client - Model Three
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and subscriber
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (snapshot, "tcp://localhost:5556");
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5557");
    void *publisher = zsocket_new (ctx, ZMQ_PUSH);
    zsocket_connect (publisher, "tcp://localhost:5558");

    zhash_t *kvmap = zhash_new ();
    srandom ((unsigned) time (NULL));

We first request a state snapshot, as shown in Example 5-32.

Example 5-32. Clone client, Model Three (clonecli3.c): getting a state snapshot
    zstr_send (snapshot, "ICANHAZ?");
    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (snapshot);
        if (!kvmsg)
            break;          //  Interrupted
        if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
            sequence = kvmsg_sequence (kvmsg);
            printf ("I: received snapshot=%d\n", (int) sequence);
            kvmsg_destroy (&kvmsg);
            break;          //  Done
        }
        kvmsg_store (&kvmsg, kvmap);
    }

Then we wait for updates from the server and, every so often, send a random key-value
update to the server, as shown in Example 5-33.

Example 5-33. Clone client, Model Three (clonecli3.c): processing state updates
    int64_t alarm = zclock_time () + 1000;
    while (!zctx_interrupted) {
        zmq_pollitem_t items [] = { { subscriber, 0, ZMQ_POLLIN, 0 } };
        int tickless = (int) ((alarm - zclock_time ()));
        if (tickless < 0)
            tickless = 0;
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        int rc = zmq_poll (items, 1, tickless * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (subscriber);
            if (!kvmsg)
                break;          //  Interrupted

            //  Discard out-of-sequence kvmsgs, including heartbeats
            if (kvmsg_sequence (kvmsg) > sequence) {
                sequence = kvmsg_sequence (kvmsg);
                kvmsg_store (&kvmsg, kvmap);
                printf ("I: received update=%d\n", (int) sequence);
            }
            else
                kvmsg_destroy (&kvmsg);
        }
        //  If we timed out, generate a random kvmsg
        if (zclock_time () >= alarm) {
            kvmsg_t *kvmsg = kvmsg_new (0);
            kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
            kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
            kvmsg_send     (kvmsg, publisher);
            kvmsg_destroy (&kvmsg);
            alarm = zclock_time () + 1000;
        }
    }
    printf (" Interrupted\n%d messages in\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about this third design:

• The server has collapsed to a single task. It manages a PULL socket for incoming
updates, a ROUTER socket for state requests, and a PUB socket for outgoing up‐
dates.

• The client uses a simple tickless timer to send a random update to the server once
a second. In a real implementation, we would drive updates from application code.

Working with Subtrees
As we grow the number of clients, the size of our shared store will also grow. Eventually,
it stops being reasonable to send everything to every client. This is the classic story with
publish-subscribe: when you have a very small number of clients, you can send every
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message to all clients, but as you grow the architecture this becomes inefficient. Clients
specialize in different areas.

So, even when working with a shared store, some clients will want to work only with a
part of that store, which we call a subtree. The client has to request the subtree when it
makes a state request, and it must specify the same subtree when it subscribes to updates.

There are a couple of common syntaxes for trees. One is the path hierarchy, and another
is the topic tree. These look like this:

• Path hierarchy: /some/list/of/paths
• Topic tree: some.list.of.topics

We’ll use the path hierarchy and extend our client and server so that a client can work
with a single subtree. Once you see how to work with a single subtree, you’ll be able to
extend this yourself to handle multiple subtrees if your use case demands it.

Example 5-34 shows the server implementing subtrees, a small variation on Model
Three.

Example 5-34. Clone server, Model Four (clonesrv4.c)
//
//  Clone server — Model Four
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
    char *subtree;          //  Client subtree specification
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
    &&  memcmp (kvroute->subtree,
                kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
        //  Send identity of recipient first
        zframe_send (&kvroute->identity,
            kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
        kvmsg_send (kvmsg, kvroute->socket);
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    }
    return 0;
}

//  The main task is identical to clonesrv3 except for where it
//  handles subtrees
...
            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            char *subtree = NULL;
            if (streq (request, "ICANHAZ?")) {
                free (request);
                subtree = zstr_recv (snapshot);
            }
...
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity, subtree };
...
            //  Now send END message with sequence number
            printf ("I: sending shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) subtree, 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
            free (subtree);
        }
    }
...

The corresponding client code is presented in Example 5-35.

Example 5-35. Clone client, Model Four (clonecli4.c)
//
//  Clone client — Model Four
//

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  This client is identical to clonecli3 except for where we
//  handle subtrees
#define SUBTREE "/client/"
...
    zsocket_connect (subscriber, "tcp://localhost:5557");
    zsockopt_set_subscribe (subscriber, SUBTREE);
...
    //  We first request a state snapshot
    int64_t sequence = 0;
    zstr_sendm (snapshot, "ICANHAZ?");
    zstr_send  (snapshot, SUBTREE);
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...
        //  If we timed out, generate a random kvmsg
        if (zclock_time () >= alarm) {
            kvmsg_t *kvmsg = kvmsg_new (0);
            kvmsg_fmt_key  (kvmsg, "%s%d", SUBTREE, randof (10000));
            kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
            kvmsg_send     (kvmsg, publisher);
            kvmsg_destroy (&kvmsg);
            alarm = zclock_time () + 1000;
        }
...

Ephemeral Values
An ephemeral value is one that expires automatically unless regularly refreshed. If you
think of Clone being used for a registration service, then ephemeral values would let
you use dynamic values. A node joins the network, publishes its address, and refreshes
this regularly. If the node dies, its address eventually gets removed.

The usual abstraction for ephemeral values is to attach them to a session and delete them
when the session ends. In Clone, sessions would be defined by clients and would end if
the client died. A simpler alternative is to attach a time to live (TTL) to ephemeral values,
which the server uses to expire values that haven’t been refreshed in time.

A good design principle that I use whenever possible is to not invent concepts that are
not absolutely essential. If we have a large quantity of ephemeral values, sessions offer
better performance. If we use a handful of ephemeral values, it’s fine to set a TTL on
each one. If we use masses of ephemeral values, it’s more efficient to attach them to
sessions and expire them in bulk. This isn’t a problem we face at this stage, and we may
never face it, so sessions go out the window here.

Now we will implement ephemeral values. First, we need a way to encode the TTL in
the key-value message. We could add a frame, but the problem with using ØMQ frames
for properties is that each time we want to add a new property, we have to change the
message structure. It breaks compatibility. So, let’s add a properties frame to the message,
and write code to let us get and put property values.

Next we need a way to say, “delete this value.” Up until now, servers and clients have
always blindly inserted or updated new values into their hash tables. We’ll say that if the
value is empty, that means “delete this key.”

Example 5-36 shows a more complete version of the kvmsg class, which implements a
properties frame (and adds a UUID frame, which we’ll need later). It also handles empty
values by deleting the key from the hash, if necessary.

Example 5-36. Key-value message class: full (kvmsg.c)
/*  =====================================================================
 *  kvmsg - key-value message class for example applications
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 *  ===================================================================== */

#include "kvmsg.h"
#include <uuid/uuid.h>
#include "zlist.h"

//  Keys are short strings
#define KVMSG_KEY_MAX   255

//  Message is formatted on wire as 4 frames:
//  frame 0: key (0MQ string)
//  frame 1: sequence (8 bytes, network order)
//  frame 2: uuid (blob, 16 bytes)
//  frame 3: properties (0MQ string)
//  frame 4: body (blob)
#define FRAME_KEY       0
#define FRAME_SEQ       1
#define FRAME_UUID      2
#define FRAME_PROPS     3
#define FRAME_BODY      4
#define KVMSG_FRAMES    5

//  Structure of our class
struct _kvmsg {
    //  Presence indicators for each frame
    int present [KVMSG_FRAMES];
    //  Corresponding 0MQ message frames, if any
    zmq_msg_t frame [KVMSG_FRAMES];
    //  Key, copied into safe C string
    char key [KVMSG_KEY_MAX + 1];
    //  List of properties, as name=value strings
    zlist_t *props;
    size_t props_size;
};

The two helpers in Example 5-37 serialize a list of properties to and from a message
frame.

Example 5-37. Key-value message class, full (kvmsg.c): property encoding
static void
s_encode_props (kvmsg_t *self)
{
    zmq_msg_t *msg = &self->frame [FRAME_PROPS];
    if (self->present [FRAME_PROPS])
        zmq_msg_close (msg);

    zmq_msg_init_size (msg, self->props_size);
    char *prop = zlist_first (self->props);
    char *dest = (char *) zmq_msg_data (msg);
    while (prop) {
        strcpy (dest, prop);
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        dest += strlen (prop);
        *dest++ = '\n';
        prop = zlist_next (self->props);
    }
    self->present [FRAME_PROPS] = 1;
}

static void
s_decode_props (kvmsg_t *self)
{
    zmq_msg_t *msg = &self->frame [FRAME_PROPS];
    self->props_size = 0;
    while (zlist_size (self->props))
        free (zlist_pop (self->props));

    size_t remainder = zmq_msg_size (msg);
    char *prop = (char *) zmq_msg_data (msg);
    char *eoln = memchr (prop, '\n', remainder);
    while (eoln) {
        *eoln = 0;
        zlist_append (self->props, strdup (prop));
        self->props_size += strlen (prop) + 1;
        remainder -= strlen (prop) + 1;
        prop = eoln + 1;
        eoln = memchr (prop, '\n', remainder);
    }
}

The constructor and destructor for the class are shown in Example 5-38.

Example 5-38. Key-value message class, full (kvmsg.c): constructor and destructor
//  Constructor, takes a sequence number for the new kvmsg instance
kvmsg_t *
kvmsg_new (int64_t sequence)
{
    kvmsg_t
        *self;

    self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
    self->props = zlist_new ();
    kvmsg_set_sequence (self, sequence);
    return self;
}

//  zhash_free_fn callback helper that does the low-level destruction
void
kvmsg_free (void *ptr)
{
    if (ptr) {
        kvmsg_t *self = (kvmsg_t *) ptr;
        //  Destroy message frames, if any
        int frame_nbr;
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        for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
            if (self->present [frame_nbr])
                zmq_msg_close (&self->frame [frame_nbr]);

        //  Destroy property list
        while (zlist_size (self->props))
            free (zlist_pop (self->props));
        zlist_destroy (&self->props);

        //  Free object itself
        free (self);
    }
}

//  Destructor
void
kvmsg_destroy (kvmsg_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_free (*self_p);
        *self_p = NULL;
    }
}

The recv method in Example 5-39 reads a key-value message from the socket and
returns a new kvmsg instance.

Example 5-39. Key-value message class, full (kvmsg.c): recv method
kvmsg_t *
kvmsg_recv (void *socket)
{
    //  This method is almost unchanged from kvsimple
...
    if (self)
        s_decode_props (self);
    return self;
}

//  ---------------------------------------------------------------------
//  Send key-value message to socket; any empty frames are sent as such

void
kvmsg_send (kvmsg_t *self, void *socket)
{
    assert (self);
    assert (socket);

    s_encode_props (self);
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    //  The rest of the method is unchanged from kvsimple
...

The dup method (Example 5-40) duplicates a kvmsg instance and returns the new in‐
stance.

Example 5-40. Key-value message class, full (kvmsg.c): dup method
kvmsg_t *
kvmsg_dup (kvmsg_t *self)
{
    kvmsg_t *kvmsg = kvmsg_new (0);
    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        if (self->present [frame_nbr]) {
            zmq_msg_t *src = &self->frame [frame_nbr];
            zmq_msg_t *dst = &kvmsg->frame [frame_nbr];
            zmq_msg_init_size (dst, zmq_msg_size (src));
            memcpy (zmq_msg_data (dst),
                    zmq_msg_data (src), zmq_msg_size (src));
            kvmsg->present [frame_nbr] = 1;
        }
    }
    kvmsg->props_size = zlist_size (self->props);
    char *prop = (char *) zlist_first (self->props);
    while (prop) {
        zlist_append (kvmsg->props, strdup (prop));
        prop = (char *) zlist_next (self->props);
    }
    return kvmsg;
}

//  The key, sequence, body, and size methods are the same as in kvsimple
...

The methods in Example 5-41 get and set the UUID for the key-value message.

Example 5-41. Key-value message class, full (kvmsg.c): UUID methods
byte *
kvmsg_uuid (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_UUID]
    &&  zmq_msg_size (&self->frame [FRAME_UUID]) == sizeof (uuid_t))
        return (byte *) zmq_msg_data (&self->frame [FRAME_UUID]);
    else
        return NULL;
}

//  Set the UUID to a random generated value
void
kvmsg_set_uuid (kvmsg_t *self)

288 | Chapter 5: Advanced Publish-Subscribe Patterns



{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_UUID];
    uuid_t uuid;
    uuid_generate (uuid);
    if (self->present [FRAME_UUID])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, sizeof (uuid));
    memcpy (zmq_msg_data (msg), uuid, sizeof (uuid));
    self->present [FRAME_UUID] = 1;
}

The methods in Example 5-42 get and set a specified message property.

Example 5-42. Key-value message class, full (kvmsg.c): property methods
//  Get message property, return "" if no such property is defined
char *
kvmsg_get_prop (kvmsg_t *self, char *name)
{
    assert (strchr (name, '=') == NULL);
    char *prop = zlist_first (self->props);
    size_t namelen = strlen (name);
    while (prop) {
        if (strlen (prop) > namelen
        &&  memcmp (prop, name, namelen) == 0
        &&  prop [namelen] == '=')
            return prop + namelen + 1;
        prop = zlist_next (self->props);
    }
    return "";
}

//  Set message property. Property name cannot contain '='. Max length of
//  value is 255 chars.
void
kvmsg_set_prop (kvmsg_t *self, char *name, char *format, ...)
{
    assert (strchr (name, '=') == NULL);

    char value [255 + 1];
    va_list args;
    assert (self);
    va_start (args, format);
    vsnprintf (value, 255, format, args);
    va_end (args);

    //  Allocate name=value string
    char *prop = malloc (strlen (name) + strlen (value) + 2);

    //  Remove existing property, if any
    sprintf (prop, "%s=", name);
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    char *existing = zlist_first (self->props);
    while (existing) {
        if (memcmp (prop, existing, strlen (prop)) == 0) {
            self->props_size -= strlen (existing) + 1;
            zlist_remove (self->props, existing);
            free (existing);
            break;
        }
        existing = zlist_next (self->props);
    }
    //  Add new name=value property string
    strcat (prop, value);
    zlist_append (self->props, prop);
    self->props_size += strlen (prop) + 1;
}

The store method (Example 5-43) stores the key-value message into a hashmap, unless
the key and value are both null. It nullifies the kvmsg reference so that the object is owned
by the hashmap, not the caller.

Example 5-43. Key-value message class, full (kvmsg.c): store method
void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_t *self = *self_p;
        assert (self);
        if (kvmsg_size (self)) {
            if (self->present [FRAME_KEY]
            &&  self->present [FRAME_BODY]) {
                zhash_update (hash, kvmsg_key (self), self);
                zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
            }
        }
        else
            zhash_delete (hash, kvmsg_key (self));

        *self_p = NULL;
    }
}

The dump method (Example 5-44) extends the kvsimple implementation with support
for message properties.

Example 5-44. Key-value message class, full (kvmsg.c): dump method
void
kvmsg_dump (kvmsg_t *self)
{
...
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        fprintf (stderr, "[size:%zd] ", size);
        if (zlist_size (self->props)) {
            fprintf (stderr, "[");
            char *prop = zlist_first (self->props);
            while (prop) {
                fprintf (stderr, "%s;", prop);
                prop = zlist_next (self->props);
            }
            fprintf (stderr, "]");
        }
...

The selftest method, shown in Example 5-45, is the same as in kvsimple, with added
support for the UUID and property features of kvmsg.

Example 5-45. Key-value message class, full (kvmsg.c): test method
int
kvmsg_test (int verbose)
{
...
    //  Test send and receive of simple message
    kvmsg = kvmsg_new (1);
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_uuid (kvmsg);
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_store (&kvmsg, kvmap);

    kvmsg = kvmsg_recv (input);
    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    kvmsg_store (&kvmsg, kvmap);

    //  Test send and receive of message with properties
    kvmsg = kvmsg_new (2);
    kvmsg_set_prop (kvmsg, "prop1", "value1");
    kvmsg_set_prop (kvmsg, "prop2", "value1");
    kvmsg_set_prop (kvmsg, "prop2", "value2");
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_uuid (kvmsg);
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_destroy (&kvmsg);

    kvmsg = kvmsg_recv (input);
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    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
    kvmsg_destroy (&kvmsg);
...

The Model Five client is almost identical to Model Four. It uses the full kvmsg class now,
and sets a randomized ttl property (measured in seconds) on each message:

kvmsg_set_prop (kvmsg, "ttl", "%d", randof (30));

Using a Reactor
Up until now, we have used a poll loop in the server. In this next model of the server,
we switch to using a reactor. In C, we use CZMQ’s zloop class. Using a reactor makes
the code more verbose but easier to understand and build out, because each piece of the
server is handled by a separate reactor handler.

We use a single thread and pass a server object around to the reactor handlers. We could
have organized the server as multiple threads, each handling one socket or timer, but
that works better when threads don’t have to share data. In this case, all work is centered
around the server’s hashmap, so one thread is simpler.

There are three reactor handlers:

• One to handle snapshot requests coming on the ROUTER socket
• One to handle incoming updates from clients, coming on the PULL socket
• One to expire ephemeral values that have passed their TTL

The code for Model Five of the Clone server is shown in Example 5-46.

Example 5-46. Clone server, Model Five (clonesrv5.c)
//
//  Clone server — Model Five
//

//  Lets us build this source without creating a library
#include "kvmsg.c"

//  zloop reactor handlers
static int s_snapshots  (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_collector  (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_flush_ttl  (zloop_t *loop, zmq_pollitem_t *poller, void *args);

//  Our server is defined by these properties
typedef struct {
    zctx_t *ctx;                //  Context wrapper
    zhash_t *kvmap;             //  Key-value store
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    zloop_t *loop;              //  zloop reactor
    int port;                   //  Main port we're working on
    int64_t sequence;           //  The number of updates we've completed
    void *snapshot;             //  Handle snapshot requests
    void *publisher;            //  Publish updates to clients
    void *collector;            //  Collect updates from clients
} clonesrv_t;

int main (void)
{
    clonesrv_t *self = (clonesrv_t *) zmalloc (sizeof (clonesrv_t));

    self->port = 5556;
    self->ctx = zctx_new ();
    self->kvmap = zhash_new ();
    self->loop = zloop_new ();
    zloop_set_verbose (self->loop, FALSE);

    //  Set up our Clone server sockets
    self->snapshot  = zsocket_new (self->ctx, ZMQ_ROUTER);
    zsocket_bind (self->snapshot,  "tcp://*:%d", self->port);
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    zsocket_bind (self->publisher, "tcp://*:%d", self->port + 1);
    self->collector = zsocket_new (self->ctx, ZMQ_PULL);
    zsocket_bind (self->collector, "tcp://*:%d", self->port + 2);

    //  Register our handlers with reactor
    zmq_pollitem_t poller = { 0, 0, ZMQ_POLLIN };
    poller.socket = self->snapshot;
    zloop_poller (self->loop, &poller, s_snapshots, self);
    poller.socket = self->collector;
    zloop_poller (self->loop, &poller, s_collector, self);
    zloop_timer (self->loop, 1000, 0, s_flush_ttl, self);

    //  Run reactor until process interrupted
    zloop_start (self->loop);

    zloop_destroy (&self->loop);
    zhash_destroy (&self->kvmap);
    zctx_destroy (&self->ctx);
    free (self);
    return 0;
}

We handle ICANHAZ? requests by sending snapshot data to the client that requested
it, as shown in Example 5-47.

Example 5-47. Clone server, Model Five (clonesrv5.c): send snapshots
//  Routing information for a key-value snapshot
typedef struct {
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    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
    char *subtree;          //  Client subtree specification
} kvroute_t;

//  We call this function for each key-value pair in our hash table
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
    &&  memcmp (kvroute->subtree,
                kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
        zframe_send (&kvroute->identity,    //  Choose recipient
            kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
        kvmsg_send (kvmsg, kvroute->socket);
    }
    return 0;
}

Example 5-48 shows is the reactor handler for the snapshot socket; it accepts just the
ICANHAZ? request and replies with a state snapshot ending with a KTHXBAI message.

Example 5-48. Clone server, Model Five (clonesrv5.c): snapshot handler
static int
s_snapshots (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    zframe_t *identity = zframe_recv (poller->socket);
    if (identity) {
        //  Request is in second frame of message
        char *request = zstr_recv (poller->socket);
        char *subtree = NULL;
        if (streq (request, "ICANHAZ?")) {
            free (request);
            subtree = zstr_recv (poller->socket);
        }
        else
            printf ("E: bad request, aborting\n");

        if (subtree) {
            //  Send state socket to client
            kvroute_t routing = { poller->socket, identity, subtree };
            zhash_foreach (self->kvmap, s_send_single, &routing);

            //  Now send END message with sequence number
            zclock_log ("I: sending shapshot=%d", (int) self->sequence);
            zframe_send (&identity, poller->socket, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (self->sequence);
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            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) subtree, 0);
            kvmsg_send     (kvmsg, poller->socket);
            kvmsg_destroy (&kvmsg);
            free (subtree);
        }
        zframe_destroy(&identity);
    }
    return 0;
}

We store each update with a new sequence number and, if necessary, a time to live, as
shown in Example 5-49. We publish updates immediately on our publisher socket.

Example 5-49. Clone server, Model Five (clonesrv5.c): collect updates
static int
s_collector (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (kvmsg) {
        kvmsg_set_sequence (kvmsg, ++self->sequence);
        kvmsg_send (kvmsg, self->publisher);
        int ttl = atoi (kvmsg_get_prop (kvmsg, "ttl"));
        if (ttl)
            kvmsg_set_prop (kvmsg, "ttl",
                "%" PRId64, zclock_time () + ttl * 1000);
        kvmsg_store (&kvmsg, self->kvmap);
        zclock_log ("I: publishing update=%d", (int) self->sequence);
    }
    return 0;
}

At regular intervals, we flush ephemeral values that have expired (Example 5-50). This
could be slow on very large data sets.

Example 5-50. Clone server, Model Five (clonesrv5.c): flush ephemeral values
//  If key-value pair has expired, delete it and publish the
//  fact to listening clients
static int
s_flush_single (const char *key, void *data, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = (kvmsg_t *) data;
    int64_t ttl;
    sscanf (kvmsg_get_prop (kvmsg, "ttl"), "%" PRId64, &ttl);
    if (ttl && zclock_time () >= ttl) {
        kvmsg_set_sequence (kvmsg, ++self->sequence);
        kvmsg_set_body (kvmsg, (byte *) "", 0);
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        kvmsg_send (kvmsg, self->publisher);
        kvmsg_store (&kvmsg, self->kvmap);
        zclock_log ("I: publishing delete=%d", (int) self->sequence);
    }
    return 0;
}

static int
s_flush_ttl (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;
    if (self->kvmap)
        zhash_foreach (self->kvmap, s_flush_single, args);
    return 0;
}

Adding the Binary Star Pattern for Reliability
The Clone models we’ve explored up until now have been relatively simple. However,
we’re now going to get into unpleasantly complex territory, which has me getting up for
another espresso. You should appreciate the fact that implementing “reliable” messaging
is complex enough that you always need to ask, “Do we actually need this?” before
jumping into it. If you can get away with being unreliable, or with “good enough” reli‐
ability, you can make a huge win in terms of cost and complexity. Sure, you may lose
some data now and then. It is often a good trade-off. Having said, that, and... sips...
because the espresso is really good, let’s jump in.

As you play with the last model, you’ll stop and restart the server. It might look like it
recovers, but of course it’s applying updates to an empty state instead of the proper
current state. Any new client joining the network will only get the latest updates instead
of the full historical record.

What we want is a way for the server to recover from being killed or crashing. We also
need to provide backup in case the server is out of commission for any length of time.
When people ask for “reliability,” ask them to list the failures they want to handle. In
our case, these are:

• The server process crashes and is automatically or manually restarted. The process
loses its state and has to get it back from somewhere.

• The server machine dies and is offline for a significant time. Clients have to switch
to an alternate server somewhere.

• The server process or machine gets disconnected from the network, such as when
a switch dies or a data center gets knocked out. It may come back at some point,
but in the meantime clients need an alternate server.
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Our first step is to add a second server. We can use the Binary Star pattern from Chap‐
ter 6 to organize these into a primary and a backup. Binary Star is a reactor pattern, so
it’s useful that we’ve already refactored the last server model into a reactor style.

We need to ensure that updates are not lost if the primary server crashes. The simplest
technique is to send them to both servers. The backup server can then act as a client
and keep its state synchronized by receiving updates, as all clients do. It’ll also get new
updates from clients. It can’t yet store these in its hash table, but it can hold onto them
for a while.

So, Model Six introduces the following changes from Model Five:

• We use a pub-sub flow instead of a push-pull flow for client updates sent to the
servers. This takes care of fanning out the updates to both servers. Otherwise, we’d
have to use two DEALER sockets.

• We add heartbeats to server updates (to clients), so that a client can detect when
the primary server has died. It can then switch over to the backup server.

• We connect the two servers using the Binary Star bstar reactor class. Binary Star
relies on the clients to “vote” by making an explicit request to the server they con‐
sider “active.” We’ll use snapshot requests as the voting mechanism.

• We make all update messages uniquely identifiable by adding a UUID field. The
client generates this, and the server propagates it back on republished updates.

• The passive server keeps a “pending list” of updates that it has received from clients
but not yet from the active server, and updates it’s received from the active server
but not yet from the clients. The list is ordered from oldest to newest, so that it is
easy to remove updates off the head.

It’s useful to design the client logic as a finite-state machine. The client cycles through
three states:

1. The client opens and connects its sockets, and then requests a snapshot from the
first server. To avoid request storms, it will ask any given server only twice. One
request might get lost, which would be bad luck. Two getting lost would be care‐
lessness.

2. The client waits for a reply (snapshot data) from the current server and, if it gets it,
stores it. If there is no reply within some timeout, it fails over to the next server.

3. When the client has gotten its snapshot, it waits for and processes updates. Again,
if it doesn’t hear anything from the server within some timeout, it fails over to the
next server.

The client loops forever. It’s quite likely during startup or failover that some clients may
be trying to talk to the primary server while others are trying to talk to the backup server.
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The Binary Star state machine handles this (Figure 5-6), hopefully accurately. It’s hard
to prove software correct; instead, we hammer it until we can’t prove it wrong.

Figure 5-6. Clone client finite-state machine

Failover happens as follows:

• The client detects that primary server is no longer sending heartbeats, and con‐
cludes it has died. The client connects to the backup server and requests a new state
snapshot.

• The backup server starts to receive snapshot requests from clients, and detects that
primary server has gone, so it takes over as primary.

• The backup server applies its pending list to its own hash table, and then starts to
process state snapshot requests.

When the primary server comes back online, it will:

• Start up as passive server, and connect to the backup server as a Clone client.
• Start to receive updates from clients, via its SUB socket.

We make a few assumptions:

• At least one server will keep running. If both servers crash, we lose all server state
and there’s no way to recover it.

• Multiple clients do not update the same hash keys at the same time. Client updates
will arrive at the two servers in a different order. Therefore, the backup server may
apply updates from its pending list in a different order than the primary server
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would or did. Updates from one client will always arrive in the same order on both
servers, so that is safe.

Thus the architecture for our high-availability server pair using the Binary Star pattern
has two servers and a set of clients that talk to both servers (Figure 5-7).

Figure 5-7. High-availability Clone server pair

Examples 5-51 through 5-58 present the sixth and last model of the Clone server.

Example 5-51. Clone server, Model Six (clonesrv6.c)
//
//  Clone server — Model Six
//

//  Lets us build this source without creating a library
#include "bstar.c"
#include "kvmsg.c"

In Example 5-52, we define a set of reactor handlers and our server object structure.

Example 5-52. Clone server, Model Six (clonesrv6.c): definitions
//  bstar reactor handlers
static int s_snapshots   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_collector   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_flush_ttl   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_send_hugz   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_new_active  (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_new_passive (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_subscriber  (zloop_t *loop, zmq_pollitem_t *poller, void *args);

//  Our server is defined by these properties
typedef struct {
    zctx_t *ctx;                //  Context wrapper
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    zhash_t *kvmap;             //  Key-value store
    bstar_t *bstar;             //  bstar reactor core
    int64_t sequence;           //  How many updates we're at
    int port;                   //  Main port we're working on
    int peer;                   //  Main port of our peer
    void *publisher;            //  Publish updates and hugz
    void *collector;            //  Collect updates from clients
    void *subscriber;           //  Get updates from peer
    zlist_t *pending;           //  Pending updates from clients
    Bool primary;               //  TRUE if we're primary
    Bool active;                //  TRUE if we're active
    Bool passive;               //  TRUE if we're passive
} clonesrv_t;

The main task parses the command line to decide whether to start as a primary or backup
server. We’re using the Binary Star pattern for reliability. This interconnects the two
servers so they can agree on which one is the primary and which one is the backup. To
allow the two servers to run on the same box, we use different ports for the primary and
backup, as shown in Example 5-53. Ports 5003/5004 are used to interconnect the servers.
Ports 5556/5566 are used to receive voting events (snapshot requests in the clone pat‐
tern). Ports 5557/5567 are used by the publisher, and ports 5558/5568 are used by the
collector.

Example 5-53. Clone server, Model Six (clonesrv6.c): main task setup
int main (int argc, char *argv [])
{
    clonesrv_t *self = (clonesrv_t *) zmalloc (sizeof (clonesrv_t));
    if (argc == 2 && streq (argv [1], "-p")) {
        zclock_log ("I: primary active, waiting for backup (passive)");
        self->bstar = bstar_new (BSTAR_PRIMARY, "tcp://*:5003",
                                 "tcp://localhost:5004");
        bstar_voter (self->bstar, "tcp://*:5556", ZMQ_ROUTER, s_snapshots, self);
        self->port = 5556;
        self->peer = 5566;
        self->primary = TRUE;
    }
    else
    if (argc == 2 && streq (argv [1], "-b")) {
        zclock_log ("I: backup passive, waiting for primary (active)");
        self->bstar = bstar_new (BSTAR_BACKUP, "tcp://*:5004",
                                 "tcp://localhost:5003");
        bstar_voter (self->bstar, "tcp://*:5566", ZMQ_ROUTER, s_snapshots, self);
        self->port = 5566;
        self->peer = 5556;
        self->primary = FALSE;
    }
    else {
        printf ("Usage: clonesrv4 { -p | -b }\n");
        free (self);
        exit (0);
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    }
    //  Primary server will become first active
    if (self->primary)
        self->kvmap = zhash_new ();

    self->ctx = zctx_new ();
    self->pending = zlist_new ();
    bstar_set_verbose (self->bstar, TRUE);

    //  Set up our clone server sockets
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    self->collector = zsocket_new (self->ctx, ZMQ_SUB);
    zsockopt_set_subscribe (self->collector, "");
    zsocket_bind (self->publisher, "tcp://*:%d", self->port + 1);
    zsocket_bind (self->collector, "tcp://*:%d", self->port + 2);

    //  Set up our own clone client interface to peer
    self->subscriber = zsocket_new (self->ctx, ZMQ_SUB);
    zsockopt_set_subscribe (self->subscriber, "");
    zsocket_connect (self->subscriber, "tcp://localhost:%d", self->peer + 1);

After we’ve set up our sockets, we register our Binary Star event handlers and then start
the bstar reactor. This finishes when the user presses Ctrl-C or when the process re‐
ceives a SIGINT interrupt. The main task body is shown in Example 5-54.

Example 5-54. Clone server, Model Six (clonesrv6.c): main task body
    //  Register state change handlers
    bstar_new_active (self->bstar, s_new_active, self);
    bstar_new_passive (self->bstar, s_new_passive, self);

    //  Register our other handlers with the bstar reactor
    zmq_pollitem_t poller = { self->collector, 0, ZMQ_POLLIN };
    zloop_poller (bstar_zloop (self->bstar), &poller, s_collector, self);
    zloop_timer  (bstar_zloop (self->bstar), 1000, 0, s_flush_ttl, self);
    zloop_timer  (bstar_zloop (self->bstar), 1000, 0, s_send_hugz, self);

    //  Start the bstar reactor
    bstar_start (self->bstar);

    //  Interrupted, so shut down
    while (zlist_size (self->pending)) {
        kvmsg_t *kvmsg = (kvmsg_t *) zlist_pop (self->pending);
        kvmsg_destroy (&kvmsg);
    }
    zlist_destroy (&self->pending);
    bstar_destroy (&self->bstar);
    zhash_destroy (&self->kvmap);
    zctx_destroy (&self->ctx);
    free (self);

    return 0;
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}

//  We handle ICANHAZ? requests exactly as in the clonesrv5 example.
...

The collector (Example 5-55) is more complex than in the clonesrv5 example because
the way in which it processes updates depends on whether the server is active or passive.
The active server applies them immediately to its kvmap, whereas the passive one queues
them as pending.

Example 5-55. Clone server, Model Six (clonesrv6.c): collect updates
//  If message was already on pending list, remove it and return TRUE;
//  else return FALSE
static int
s_was_pending (clonesrv_t *self, kvmsg_t *kvmsg)
{
    kvmsg_t *held = (kvmsg_t *) zlist_first (self->pending);
    while (held) {
        if (memcmp (kvmsg_uuid (kvmsg),
                    kvmsg_uuid (held), sizeof (uuid_t)) == 0) {
            zlist_remove (self->pending, held);
            return TRUE;
        }
        held = (kvmsg_t *) zlist_next (self->pending);
    }
    return FALSE;
}

static int
s_collector (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (kvmsg) {
        if (self->active) {
            kvmsg_set_sequence (kvmsg, ++self->sequence);
            kvmsg_send (kvmsg, self->publisher);
            int ttl = atoi (kvmsg_get_prop (kvmsg, "ttl"));
            if (ttl)
                kvmsg_set_prop (kvmsg, "ttl",
                    "%" PRId64, zclock_time () + ttl * 1000);
            kvmsg_store (&kvmsg, self->kvmap);
            zclock_log ("I: publishing update=%d", (int) self->sequence);
        }
        else {
            //  If we already got message from active, drop it; else
            //  hold on pending list
            if (s_was_pending (self, kvmsg))
                kvmsg_destroy (&kvmsg);
            else
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                zlist_append (self->pending, kvmsg);
        }
    }
    return 0;
}

//  We purge ephemeral values using exactly the same code as in
//  the previous clonesrv5 example
...

We send a HUGZ message once a second to all subscribers so that they can detect if our
server dies (Example 5-56). They’ll then switch over to the backup server, which will
become active.

Example 5-56. Clone server, Model Six (clonesrv6.c): heartbeating
static int
s_send_hugz (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_new (self->sequence);
    kvmsg_set_key  (kvmsg, "HUGZ");
    kvmsg_set_body (kvmsg, (byte *) "", 0);
    kvmsg_send     (kvmsg, self->publisher);
    kvmsg_destroy (&kvmsg);

    return 0;
}

When we switch from passive to active, we apply our pending list so that our kvmap is
up-to-date. When we switch to passive, we wipe our kvmap and grab a new snapshot
from the active process. Example 5-57 illustrates.

Example 5-57. Clone server, Model Six (clonesrv6.c): handling state changes
static int
s_new_active (zloop_t *loop, zmq_pollitem_t *unused, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    self->active = TRUE;
    self->passive = FALSE;

    //  Stop subscribing to updates
    zmq_pollitem_t poller = { self->subscriber, 0, ZMQ_POLLIN };
    zloop_poller_end (bstar_zloop (self->bstar), &poller);

    //  Apply pending list to own hash table
    while (zlist_size (self->pending)) {
        kvmsg_t *kvmsg = (kvmsg_t *) zlist_pop (self->pending);
        kvmsg_set_sequence (kvmsg, ++self->sequence);
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        kvmsg_send (kvmsg, self->publisher);
        kvmsg_store (&kvmsg, self->kvmap);
        zclock_log ("I: publishing pending=%d", (int) self->sequence);
    }
    return 0;
}

static int
s_new_passive (zloop_t *loop, zmq_pollitem_t *unused, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    zhash_destroy (&self->kvmap);
    self->active = FALSE;
    self->passive = TRUE;

    //  Start subscribing to updates
    zmq_pollitem_t poller = { self->subscriber, 0, ZMQ_POLLIN };
    zloop_poller (bstar_zloop (self->bstar), &poller, s_subscriber, self);

    return 0;
}

When we get an update, we create a new kvmap if necessary, and then add our update
to our kvmap (Example 5-58). We’re always passive in this case.

Example 5-58. Clone server, Model Six (clonesrv6.c): subscriber handler
static int
s_subscriber (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;
    //  Get state snapshot if necessary
    if (self->kvmap == NULL) {
        self->kvmap = zhash_new ();
        void *snapshot = zsocket_new (self->ctx, ZMQ_DEALER);
        zsocket_connect (snapshot, "tcp://localhost:%d", self->peer);
        zclock_log ("I: asking for snapshot from: tcp://localhost:%d",
                    self->peer);
        zstr_sendm (snapshot, "ICANHAZ?");
        zstr_send (snapshot, ""); // blank subtree to get all
        while (true) {
            kvmsg_t *kvmsg = kvmsg_recv (snapshot);
            if (!kvmsg)
                break;          //  Interrupted
            if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
                self->sequence = kvmsg_sequence (kvmsg);
                kvmsg_destroy (&kvmsg);
                break;          //  Done
            }
            kvmsg_store (&kvmsg, self->kvmap);
        }
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        zclock_log ("I: received snapshot=%d", (int) self->sequence);
        zsocket_destroy (self->ctx, snapshot);
    }
    //  Find and remove update from pending list
    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (!kvmsg)
        return 0;

    if (strneq (kvmsg_key (kvmsg), "HUGZ")) {
        if (!s_was_pending (self, kvmsg)) {
            //  If active update came before client update, flip it
            //  around, store active update (with sequence) on pending
            //  list, and use it to clear client update when it comes later
            zlist_append (self->pending, kvmsg_dup (kvmsg));
        }
        //  If update is more recent than our kvmap, apply it
        if (kvmsg_sequence (kvmsg) > self->sequence) {
            self->sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, self->kvmap);
            zclock_log ("I: received update=%d", (int) self->sequence);
        }
        else
            kvmsg_destroy (&kvmsg);
    }
    else
        kvmsg_destroy (&kvmsg);

    return 0;
}

This model is only a few hundred lines of code, but it took quite a while to get working.
To be accurate, building Model Six took about a full week of “Sweet god, this is just too
complex for the book” hacking. We’ve assembled pretty much everything and the kitch‐
en sink into this small application. We have failover, ephemeral values, subtrees, and so
on. What surprised me was that the up-front design was pretty accurate. Still, the details
of writing and debugging so many socket flows are quite challenging.

The reactor-based design removes a lot of the grunt work from the code, and what
remains is simpler and easier to understand. We reuse the bstar reactor from Chap‐
ter 4. The whole server runs as one thread, so there’s no inter-thread weirdness going
on—just a structure pointer (self) passed around to all handlers, which can do their
thing happily. One nice side effect of using reactors is that the code, being less tightly
integrated into a poll loop, is much easier to reuse. Large chunks of Model Six are taken
from Model Five.

I built it piece by piece, and got each piece working properly before going onto the next
one. Because there are four or five main socket flows, that meant quite a lot of debugging
and testing. I debugged just by dumping messages to the console. Don’t use classic
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debuggers to step through ØMQ applications; you need to see the message flows to
make any sense of what is going on.

For testing, I always try to use valgrind, which catches memory leaks and invalid mem‐
ory accesses. In C, this is a major concern, as you can’t delegate to a garbage collector.
Using proper and consistent abstractions like kvmsg and CZMQ helps enormously.

The Clustered Hashmap Protocol
While the Model Six server is pretty much a mashup of the previous model plus the
Binary Star pattern, the client is quite a lot more complex. But before we get to that, let’s
look at the final protocol. I’ve written this up as a specification on the ZeroMQ RFC
website as the Clustered Hashmap Protocol (CHP).

Roughly, there are two ways to design a complex protocol such as this one. One way is
to separate each flow into its own set of sockets. This is the approach we used here. The
advantage is that each flow is simple and clean. The disadvantage is that managing
multiple socket flows at once can be quite complex. Using a reactor makes it simpler,
but still, it makes a lot of moving pieces that have to fit together correctly.

The second way to make such a protocol is to use a single socket pair for everything. In
this case I’d have used ROUTER for the server and DEALER for the clients, and then
done everything over that connection. It makes for a more complex protocol, but at
least the complexity is all in one place. In Chapter 7 we’ll look at an example of a protocol
done over a ROUTER-DEALER combination.

Let’s read through the CHP specification now. This text is taken directly from the RFC.
Note that “SHOULD” and “MUST” are keywords that we use in protocol specifications
to indicate requirement levels.

Goals

CHP is meant to provide a basis for reliable pub-sub across a cluster of clients connected
over a ØMQ network. It defines a “hashmap” abstraction consisting of key-value pairs.
Any client can modify any key-value pair at any time, and changes are propagated to
all clients. A client can join the network at any time.

Architecture

CHP connects a set of client applications and a set of servers. Clients connect to the
server. Clients do not see each other. Clients can come and go arbitrarily.

Ports and Connections

The server MUST open three ports as follows:

• A SNAPSHOT port (ØMQ ROUTER socket) at port number P.
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• A PUBLISHER port (ØMQ PUB socket) at port number P + 1.
• A COLLECTOR port (ØMQ SUB socket) at port number P + 2.

The client SHOULD open at least two connections:

• A SNAPSHOT connection (ØMQ DEALER socket) to port number P.
• A SUBSCRIBER connection (ØMQ SUB socket) to port number P + 1.

The client MAY open a third connection, if it wants to update the hashmap:

• A PUBLISHER connection (ØMQ PUB socket) to port number P + 2.

This extra frame is not shown in the commands explained below.

State Synchronization

The client MUST start by sending an ICANHAZ command to its snapshot connection.
This command consists of two frames as follows:

ICANHAZ command
       -----------------------------------
       Frame 0: "ICANHAZ?"
       Frame 1: subtree specification

Both frames are ØMQ strings. The subtree specification MAY be empty. If not empty,
it consists of a slash followed by one or more path segments, ending in a slash.

The server MUST respond to an ICANHAZ command by sending zero or more
KVSYNC commands to its snapshot port, followed with a KTHXBAI command. The
server MUST prefix each command with the identity of the client, as provided by ØMQ
with the ICANHAZ command. The KVSYNC command specifies a single key-value
pair as follows:

KVSYNC command
       -----------------------------------
       Frame 0: key, as 0MQ string
       Frame 1: sequence number, 8 bytes in network order
       Frame 2: <empty>
       Frame 3: <empty>
       Frame 4: value, as blob

The sequence number has no significance and may be zero.

The KTHXBAI command takes this form:
KTHXBAI command
       -----------------------------------
       Frame 0: "KTHXBAI"
       Frame 1: sequence number, 8 bytes in network order
       Frame 2: <empty>
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       Frame 3: <empty>
       Frame 4: subtree specification

The sequence number MUST be the highest sequence number of the KVSYNC com‐
mands previously sent.

When the client has received a KTHXBAI command it SHOULD start to receive mes‐
sages from its subscriber connection, and apply them.

Server-to-Client Updates

When the server has an update for its hashmap it MUST broadcast this on its publisher
socket as a KVPUB command. The KVPUB command has this form:

KVPUB command
    -----------------------------------
    Frame 0: key, as 0MQ string
    Frame 1: sequence number, 8 bytes in network order
    Frame 2: UUID, 16 bytes
    Frame 3: properties, as 0MQ string
    Frame 4: value, as blob

The sequence number MUST be strictly incremental. The client MUST discard any
KVPUB command whose sequence numbers are not strictly greater than the last
KTHXBAI or KVPUB command received.

The UUID is optional and frame 2 MAY be empty (size zero). The properties field is
formatted as zero or more instances of name=value followed by a newline character. If
the key-value pair has no properties, the properties field is empty.

If the value is empty, the client SHOULD delete its key-value entry with the specified
key.

In the absence of other updates the server SHOULD send a HUGZ command at regular
intervals, e.g., once per second. The HUGZ command has this format:

HUGZ command
    -----------------------------------
    Frame 0: "HUGZ"
    Frame 1: 00000000
    Frame 2: <empty>
    Frame 3: <empty>
    Frame 4: <empty>

The client MAY treat the absence of HUGZ as an indicator that the server has crashed;
see “Reliability” below.

Client-to-Server Updates

When the client has an update for its hashmap, it MAY send this to the server via its
publisher connection as a KVSET command. The KVSET command has this form:
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KVSET command
    -----------------------------------
    Frame 0: key, as 0MQ string
    Frame 1: sequence number, 8 bytes in network order
    Frame 2: UUID, 16 bytes
    Frame 3: properties, as 0MQ string
    Frame 4: value, as blob

The sequence number has no significance and may be zero. The UUID SHOULD be a
universally unique identifier, if a reliable server architecture is used.

If the value is empty, the server MUST delete its key-value entry with the specified key.

The server SHOULD accept the following properties:

• ttl - specifies a time-to-live in seconds. If the KVSET command has a ttl property,
the server SHOULD delete the key-value pair and broadcast a KVPUB with an
empty value in order to delete this from all clients when the TTL has expired.

Reliability

CHP may be used in a dual-server configuration where a backup server takes over if
the primary server fails. CHP does not specify the mechanisms used for this failover,
but the Binary Star pattern from Chapter 4 may be helpful.

To assist server reliability, the client MAY:

• Set a UUID in every KVSET command.
• Detect the lack of HUGZ over a time period and use this as an indicator that the

current server has failed.
• Connect to a backup server and re-request a state synchronization.

Scalability and Performance

CHP is designed to be scalable to large numbers (thousands) of clients, limited only by
system resources on the broker. Since all updates pass through a single server the overall
throughput will be limited to some millions of updates per second, at peak, and probably
less.

Security

CHP does not implement any authentication, access control, or encryption mechanisms
and should not be used in any deployment where these are required.
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Building a Multithreaded Stack and API
The client stack we’ve used so far isn’t smart enough to handle this protocol properly.
As soon as we start doing heartbeats, we need a client stack that can run in a background
thread. In the Freelance pattern at the end of Chapter 4, we used a multithreaded API
but didn’t explain it in detail. It turns out that multithreaded APIs are quite useful when
you start to make more complex ØMQ protocols, like CHP.

If you make a nontrivial protocol and you expect applications to implement it properly,
most developers will get it wrong most of the time. You’re going to be left with a lot of
unhappy people complaining that your protocol is too complex, too fragile, and too
hard to use. Whereas if you give them a simple API to call, you have some chance of
them buying in.

Our multithreaded API consists of a frontend object and a background agent, connected
by two PAIR sockets (Figure 5-8). Connecting two PAIR sockets like this is so useful
that your high-level binding should probably do what CZMQ does, which is package a
“create new thread with a pipe that I can use to send messages to it” method.

Figure 5-8. Multithreaded API

The multithreaded APIs that we see in this book all take the same form:

• The constructor for the object (clone_new()) creates a context and starts a back‐
ground thread connected with a pipe. It holds onto one end of the pipe so it can
send commands to the background thread.

• The background thread starts an agent that is essentially a zmq_poll() loop reading
from the pipe socket, and any other sockets (here, the DEALER and SUB sockets).
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• The main application thread and the background thread now communicate only
via ØMQ messages. By convention, the frontend sends string commands so that
each method on the class turns into a message sent to the backend agent, like this:

void
clone_connect (clone_t *self, char *address, char *service)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, address);
    zmsg_addstr (msg, service);
    zmsg_send (&msg, self->pipe);
}

• If the method needs a return code, it can wait for a reply message from the agent.
• If the agent needs to send asynchronous events back to the frontend, we add a recv

method to the class, which waits for messages on the frontend pipe.
• We may want to expose the frontend pipe socket handle to allow the class to be

integrated into further poll loops. Otherwise, any recv method would block the
application.

The clone class has the same structure as the flcliapi class from Chapter 4 and adds
the logic from the last model of the Clone client. Without ØMQ, this kind of multi‐
threaded API design would have required weeks of really hard work. With ØMQ, it only
took a day or two of work.

The actual API methods for the clone class are quite simple:
//  Create a new clone class instance
clone_t *
    clone_new (void);

//  Destroy a clone class instance
void
    clone_destroy (clone_t **self_p);

//  Define the subtree, if any, for this clone class
void
    clone_subtree (clone_t *self, char *subtree);

//  Connect the clone class to one server
void
    clone_connect (clone_t *self, char *address, char *service);

//  Set a value in the shared hashmap
void
    clone_set (clone_t *self, char *key, char *value, int ttl);
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//  Get a value from the shared hashmap
char *
    clone_get (clone_t *self, char *key);

Example 5-59 presents the Clone client, which has now become just a thin shell using
the clone cl.

Example 5-59. Clone client, Model Six (clonecli6.c)
//  Clone client Model Six
#include "clone.c"
#define SUBTREE "/client/"
int main (void)
{
    //  Create distributed hash instance
    clone_t *clone = clone_new ();
    //  Specify configuration
    clone_subtree (clone, SUBTREE);
    clone_connect (clone, "tcp://localhost", "5556");
    clone_connect (clone, "tcp://localhost", "5566");
    //  Set random tuples into the distributed hash
    while (!zctx_interrupted) {
        //  Set random value, check it was stored
        char key [255];
        char value [10];
        sprintf (key, "%s%d", SUBTREE, randof (10000));
        sprintf (value, "%d", randof (1000000));
        clone_set (clone, key, value, randof (30));
        sleep (1);
    }
    clone_destroy (&clone);
    return 0;
}

Note the connect method, which specifies one server endpoint. Under the hood, we’re
in fact talking to three ports. However, as the CHP specifies, the three ports are on
consecutive port numbers:

• The server state router (ROUTER) is at port P.
• The server updates publisher (PUB) is at port P + 1.
• The server updates subscriber (SUB) is at port P + 2.

So we can fold the three connections into one logical operation (which we implement
as three separate ØMQ connect calls).

Let’s end with the source code for the clone stack. This is a complex piece of code, but
it’s easier to understand when you break it into the frontend object class and the backend
agent. The frontend sends string commands (“SUBTREE”, “CONNECT”, “SET”, “GET”)
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to the agent, which handles these commands as well as talking to the server(s). Here is
the agent’s logic:

1. Start up by getting a snapshot from the first server.
2. When we get a snapshot, switch to reading from the subscriber socket.
3. If we don’t get a snapshot, then fail over to the second server.
4. Poll on the pipe and the subscriber socket.
5. If we got input on the pipe, handle the control message from the frontend object.
6. If we got input on the subscriber, store or apply the update.
7. If we didn’t get anything from the server within a certain time, fail over.
8. Repeat until the process is interrupted by Ctrl-C.

And here is the actual clone class implementation. The structure of the class is given
in Example 5-60.

Example 5-60. Clone class (clone.c)
/*  =====================================================================
 *  clone - clone client API stack (multithreaded)
 *  ===================================================================== */

#include "clone.h"

//  If no server replies within this time, abandon request
#define GLOBAL_TIMEOUT  4000    //  msec

//  =====================================================================
//  Synchronous part, works in our application thread

//  ---------------------------------------------------------------------
//  Structure of our class

struct _clone_t {
    zctx_t *ctx;                //  Our context wrapper
    void *pipe;                 //  Pipe through to clone agent
};

//  This is the thread that handles our real clone class
static void clone_agent (void *args, zctx_t *ctx, void *pipe);

Example 5-61 presents the constructor and destructor for the clone class. Note that we
create a context specifically for the pipe that connects our frontend to the backend agent.

Example 5-61. Clone class (clone.c): constructor and destructor
clone_t *
clone_new (void)
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{
    clone_t
        *self;

    self = (clone_t *) zmalloc (sizeof (clone_t));
    self->ctx = zctx_new ();
    self->pipe = zthread_fork (self->ctx, clone_agent, NULL);
    return self;
}

void
clone_destroy (clone_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        clone_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}

The subtree method in Example 5-62 specifies a subtree for snapshots and updates,
which we must do before connecting to a server as the subtree specification is sent as
the first command to the server. This method sends a [SUBTREE][subtree] command
to the agent.

Example 5-62. Clone class (clone.c): subtree method
void clone_subtree (clone_t *self, char *subtree)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "SUBTREE");
    zmsg_addstr (msg, subtree);
    zmsg_send (&msg, self->pipe);
}

The connect method (Example 5-63) connects to a new server endpoint. We can con‐
nect to at most two servers. This method sends a [CONNECT][endpoint][service]
command to the agent.

Example 5-63. Clone class (clone.c): connect method
void
clone_connect (clone_t *self, char *address, char *service)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, address);
    zmsg_addstr (msg, service);
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    zmsg_send (&msg, self->pipe);
}

The set method (Example 5-64) sets a new value in the shared hashmap. It sends a
[SET][key][value][ttl] command through to the agent, which does the actual work.

Example 5-64. Clone class (clone.c): set method
void
clone_set (clone_t *self, char *key, char *value, int ttl)
{
    char ttlstr [10];
    sprintf (ttlstr, "%d", ttl);

    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "SET");
    zmsg_addstr (msg, key);
    zmsg_addstr (msg, value);
    zmsg_addstr (msg, ttlstr);
    zmsg_send (&msg, self->pipe);
}

The get method (Example 5-65) looks up a value in the distributed hash table. It sends
a [GET][key] command to the agent and waits for a value response. If there is no value
available, this method will eventually return NULL.

Example 5-65. Clone class (clone.c): get method
char *
clone_get (clone_t *self, char *key)
{
    assert (self);
    assert (key);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "GET");
    zmsg_addstr (msg, key);
    zmsg_send (&msg, self->pipe);

    zmsg_t *reply = zmsg_recv (self->pipe);
    if (reply) {
        char *value = zmsg_popstr (reply);
        zmsg_destroy (&reply);
        return value;
    }
    return NULL;
}

The backend agent manages a set of servers, which we implement using our simple class
model, as shown in Example 5-66.
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Example 5-66. Clone class (clone.c): working with servers
typedef struct {
    char *address;              //  Server address
    int port;                   //  Server port
    void *snapshot;             //  Snapshot socket
    void *subscriber;           //  Incoming updates
    uint64_t expiry;            //  When server expires
    uint requests;              //  How many snapshot requests made?
} server_t;

static server_t *
server_new (zctx_t *ctx, char *address, int port, char *subtree)
{
    server_t *self = (server_t *) zmalloc (sizeof (server_t));

    zclock_log ("I: adding server %s:%d...", address, port);
    self->address = strdup (address);
    self->port = port;

    self->snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (self->snapshot, "%s:%d", address, port);
    self->subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsocket_connect (self->subscriber, "%s:%d", address, port + 1);
    zsockopt_set_subscribe (self->subscriber, subtree);
    return self;
}

static void
server_destroy (server_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        server_t *self = *self_p;
        free (self->address);
        free (self);
        *self_p = NULL;
    }
}

Example 5-67 shows the implementation of the backend agent itself.

Example 5-67. Clone class (clone.c): backend agent class
//  Number of servers we will talk to
#define SERVER_MAX      2

//  Server considered dead if silent for this long
#define SERVER_TTL      5000    //  msec

//  States we can be in
#define STATE_INITIAL       0   //  Before asking server for state
#define STATE_SYNCING       1   //  Getting state from server
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#define STATE_ACTIVE        2   //  Getting new updates from server

typedef struct {
    zctx_t *ctx;                //  Context wrapper
    void *pipe;                 //  Pipe back to application
    zhash_t *kvmap;             //  Actual key/value table
    char *subtree;              //  Subtree specification, if any
    server_t *server [SERVER_MAX];
    uint nbr_servers;           //  0 to SERVER_MAX
    uint state;                 //  Current state
    uint cur_server;            //  If active, server 0 or 1
    int64_t sequence;           //  Last kvmsg processed
    void *publisher;            //  Outgoing updates
} agent_t;

static agent_t *
agent_new (zctx_t *ctx, void *pipe)
{
    agent_t *self = (agent_t *) zmalloc (sizeof (agent_t));
    self->ctx = ctx;
    self->pipe = pipe;
    self->kvmap = zhash_new ();
    self->subtree = strdup ("");
    self->state = STATE_INITIAL;
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    return self;
}

static void
agent_destroy (agent_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        agent_t *self = *self_p;
        int server_nbr;
        for (server_nbr = 0; server_nbr < self->nbr_servers; server_nbr++)
            server_destroy (&self->server [server_nbr]);
        zhash_destroy (&self->kvmap);
        free (self->subtree);
        free (self);
        *self_p = NULL;
    }
}

The code in Example 5-68 handles the different control messages from the frontend—
SUBTREE, CONNECT, SET, and GET:

Example 5-68. Clone class (clone.c): handling a control message
static int
agent_control_message (agent_t *self)
{
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    zmsg_t *msg = zmsg_recv (self->pipe);
    char *command = zmsg_popstr (msg);
    if (command == NULL)
        return -1;      //  Interrupted

    if (streq (command, "SUBTREE")) {
        free (self->subtree);
        self->subtree = zmsg_popstr (msg);
    }
    else
    if (streq (command, "CONNECT")) {
        char *address = zmsg_popstr (msg);
        char *service = zmsg_popstr (msg);
        if (self->nbr_servers < SERVER_MAX) {
            self->server [self->nbr_servers++] = server_new (
                self->ctx, address, atoi (service), self->subtree);
            //  We broadcast updates to all known servers
            zsocket_connect (self->publisher, "%s:%d",
                address, atoi (service) + 2);
        }
        else
            zclock_log ("E: too many servers (max. %d)", SERVER_MAX);
        free (address);
        free (service);
    }
    else

When we set a property, we push the new key-value pair onto all our connected servers,
as illustrated in Example 5-69.

Example 5-69. Clone class (clone.c): set and get commands
        char *key = zmsg_popstr (msg);
        char *value = zmsg_popstr (msg);
        char *ttl = zmsg_popstr (msg);
        zhash_update (self->kvmap, key, (byte *) value);
        zhash_freefn (self->kvmap, key, free);

        //  Send key-value pair on to server
        kvmsg_t *kvmsg = kvmsg_new (0);
        kvmsg_set_key  (kvmsg, key);
        kvmsg_set_uuid (kvmsg);
        kvmsg_fmt_body (kvmsg, "%s", value);
        kvmsg_set_prop (kvmsg, "ttl", ttl);
        kvmsg_send     (kvmsg, self->publisher);
        kvmsg_destroy (&kvmsg);
        free (ttl);
        free (key);             //  Value is owned by hash table
    }
    else
    if (streq (command, "GET")) {
        char *key = zmsg_popstr (msg);

318 | Chapter 5: Advanced Publish-Subscribe Patterns



        char *value = zhash_lookup (self->kvmap, key);
        if (value)
            zstr_send (self->pipe, value);
        else
            zstr_send (self->pipe, "");
        free (key);
        free (value);
    }
    free (command);
    zmsg_destroy (&msg);
    return 0;
}

The asynchronous agent (Example 5-70) manages a server pool and handles the request-
reply dialog when the application asks for it.

Example 5-70. Clone class (clone.c): backend agent
static void
clone_agent (void *args, zctx_t *ctx, void *pipe)
{
    agent_t *self = agent_new (ctx, pipe);

    while (true) {
        zmq_pollitem_t poll_set [] = {
            { pipe, 0, ZMQ_POLLIN, 0 },
            { 0,    0, ZMQ_POLLIN, 0 }
        };
        int poll_timer = -1;
        int poll_size = 2;
        server_t *server = self->server [self->cur_server];
        switch (self->state) {
            case STATE_INITIAL:
                //  In this state we ask the server for a snapshot,
                //  if we have a server to talk to...
                if (self->nbr_servers > 0) {
                    zclock_log ("I: waiting for server at %s:%d...",
                        server->address, server->port);
                    if (server->requests < 2) {
                        zstr_sendm (server->snapshot, "ICANHAZ?");
                        zstr_send  (server->snapshot, self->subtree);
                        server->requests++;
                    }
                    server->expiry = zclock_time () + SERVER_TTL;
                    self->state = STATE_SYNCING;
                    poll_set [1].socket = server->snapshot;
                }
                else
                    poll_size = 1;
                break;
                
            case STATE_SYNCING:
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                //  In this state we read from the snapshot and we expect
                //  the server to respond, else we fail over
                poll_set [1].socket = server->snapshot;
                break;
                
            case STATE_ACTIVE:
                //  In this state we read from a subscriber and we expect
                //  the server to give hugz, else we fail over
                poll_set [1].socket = server->subscriber;
                break;
        }
        if (server) {
            poll_timer = (server->expiry - zclock_time ())
                       * ZMQ_POLL_MSEC;
            if (poll_timer < 0)
                poll_timer = 0;
        }

We’re now ready to process incoming messages, as shown in Example 5-71. If nothing
at all comes from our server within the timeout, that means the server is dead.

Example 5-71. Clone class (clone.c): client poll loop
        int rc = zmq_poll (poll_set, poll_size, poll_timer);
        if (rc == -1)
            break;              //  Context has been shut down

        if (poll_set [0].revents & ZMQ_POLLIN) {
            if (agent_control_message (self))
                break;          //  Interrupted
        }
        else
        if (poll_set [1].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (poll_set [1].socket);
            if (!kvmsg)
                break;          //  Interrupted

            //  Anything from server resets its expiration time
            server->expiry = zclock_time () + SERVER_TTL;
            if (self->state == STATE_SYNCING) {
                //  Store in snapshot until we're finished
                server->requests = 0;
                if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
                    self->sequence = kvmsg_sequence (kvmsg);
                    self->state = STATE_ACTIVE;
                    zclock_log ("I: received from %s:%d snapshot=%d",
                        server->address, server->port,
                        (int) self->sequence);
                    kvmsg_destroy (&kvmsg);
                }
                else
                    kvmsg_store (&kvmsg, self->kvmap);
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            }
            else
            if (self->state == STATE_ACTIVE) {
                //  Discard out-of-sequence updates, including hugz
                if (kvmsg_sequence (kvmsg) > self->sequence) {
                    self->sequence = kvmsg_sequence (kvmsg);
                    kvmsg_store (&kvmsg, self->kvmap);
                    zclock_log ("I: received from %s:%d update=%d",
                        server->address, server->port,
                        (int) self->sequence);
                }
                else
                    kvmsg_destroy (&kvmsg);
            }
        }
        else {
            //  Server has died, fail over to next
            zclock_log ("I: server at %s:%d didn't give hugz",
                server->address, server->port);
            self->cur_server = (self->cur_server + 1) % self->nbr_servers;
            self->state = STATE_INITIAL;
        }
    }
    agent_destroy (&self);
}
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PART II

Software Engineering Using ØMQ

The second part of this book is about software engineering using ØMQ. I’ll introduce
a set of software development techniques and demonstrate them with working exam‐
ples, starting with ØMQ itself and ending with a general-purpose framework for dis‐
tributed applications. These techniques are independent of license, though open source
amplifies them.





CHAPTER 6

The ØMQ Community

People sometimes ask me what’s so special about ØMQ. My standard answer is true:
that ØMQ is arguably the best answer we have to the vexing question, “How do we make
the distributed software that the 21st century demands?” But more than that, ØMQ is
special because of its community. This is ultimately what separates the wolves from the
sheep.

There are three main open source development patterns. The first is the large firm
dumping code to break the market for others. This is the Apache Foundation model.
The second is tiny teams or small firms building their dreams. This is the most common
open source model, which can be very successful commercially. The last is aggressive
and diverse communities that swarm over a problem landscape. This is the Linux model,
and the one to which we aspire with ØMQ.

It’s hard to overemphasize the power and persistence of a working open source com‐
munity. There really does not seem to be a better way of making software for the long
term. Not only does the community choose the best problems to solve, but it solves
them minimally, carefully, and then looks after these answers for years—perhaps
decades—until they’re no longer relevant. Then it quietly puts them away.

To really benefit from ØMQ, you need to understand the community. At some point
down the road, you’ll want to submit a patch, an issue, or an add-on. You might want
to ask someone for help. You will probably want to bet a part of your business on ØMQ,
and when I tell you that the community is much, much more important than the com‐
pany that backs the product—even though I’m CEO of that company—this should be
significant.

In this chapter, I’m going to look at our community from several angles. I’ll conclude
by explaining in detail our contract for collaboration, which we call “C4”. You should
find the discussion useful for your own work. We’ve also adapted the ØMQ C4 process
for closed source projects with good success.
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We’ll cover:

• The rough structure of ØMQ as a set of projects
• What “software architecture” is really about
• Why we use the LGPL and not the BSD license
• How we designed and grew the ØMQ community
• The business that backs ØMQ
• Who owns the ØMQ source code
• How to make and submit a patch to ØMQ
• Who controls what patches actually go into ØMQ
• How we guarantee compatibility with old code
• Why we don’t use public Git branches
• Who decides on the ØMQ roadmap
• A worked example of a change to libzmq

Architecture of the ØMQ Community
You know that ØMQ is an LGPL-licensed project. In fact, it’s a collection of projects
built around the core library, libzmq. I’ll visualize these projects as an expanding galaxy:

• At the core is libzmq. It’s written in C++, with a low-level C API. The code is nasty,
mainly because it’s highly optimized but also because it’s written in C++, a language
that lends itself to subtle and deep nastiness. Martin Sustrik originally wrote the
bulk of this code. Today, dozens of people maintain different parts of it.

• Around libzmq there are about 50 bindings. These are individual projects that create
higher-level APIs for ØMQ, or at least map the low-level API into other languages.
The bindings vary in quality from experimental to utterly awesome. Probably the
most impressive binding is PyZMQ, which was one of the first community projects
built on top of ØMQ. If you are a binding author, you should really study PyZMQ
and aspire to making your code and community as great as possible.

• A lot of languages have multiple bindings (Erlang, Ruby, C#, at least), written by
different people over time or taking varying approaches. We don’t regulate these in
any way. There are no “official” bindings. You vote by using one or the other, con‐
tributing to it, or ignoring it.

• There are a series of reimplementations of libzmq, starting with JeroMQ, a full Java
translation of the library, which is now the basis for NetMQ, a C# stack. These native
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stacks offer similar or identical APIs and speak the same protocol (ZMTP) as
libzmq.

• On top of the bindings are a lot of projects that use ØMQ or build on it. See the
“Labs” page on the wiki for a long list of projects and proto-projects that use ØMQ
in some way. There are frameworks, web servers like Mongrel2, brokers like Ma‐
jordomo, and enterprise open source tools like Storm.

libzmq, most of the bindings, and some of the outer projects sit in the ØMQ community
“organization” on GitHub. This organization is “run” by a group consisting of the most
senior binding authors. There’s actually very little to run, as it’s almost all self-managing
and there’s zero conflict these days.

iMatix, my firm, plays a specific role in the community. We own the trademarks and
enforce them discreetly in order to make sure that if you download a package calling
itself “ZeroMQ,” you can trust what you are getting. People have on rare occasion tried
to hijack the name, maybe believing that “free software” means there is no property at
stake and no one willing to defend it. One thing you’ll understand from this chapter is
how seriously we take the process behind our software (and I mean “us” as a community,
not a company). iMatix backs the community by enforcing that process on anything
calling itself “ZeroMQ” or “ØMQ.” We also put money and time into the software and
packaging, for reasons I’ll explain later.

It is not a charity exercise. ØMQ is a for-profit project, and a very profitable one. The
profits are widely distributed among all those who invest in it. It’s really that simple:
take the time to become an expert in ØMQ, or build something useful on top of ØMQ,
and you’ll find your value as an individual, or team, or company increasing. iMatix
enjoys the same benefits as everyone else in the community. It’s win-win for everyone
except our competitors, who find themselves facing a threat they can’t beat and can’t
really escape. ØMQ dominates the future world of massively distributed software.

My firm doesn’t just have the community’s back—we also built the community. This
was deliberate work. In the original ØMQ white paper from 2007 there were two
projects. One was technical, how to make a better messaging system. The second was
how to build a community that could take the software through to dominant success.
Software dies, but community survives.

How to Make Really Large Architectures
There are, it has been said (at least by people reading this sentence out loud), two ways
to make really large-scale software. Option One is to throw massive amounts of money
and problems at empires of smart people, and hope that what emerges is not yet another
career killer. If you are building on a lot of experience, have kept your teams solid and
are not aiming for technical brilliance, and are furthermore incredibly lucky, it works.
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But gambling with hundreds of millions of others’ money isn’t for everyone. For the rest
of us who want to build large-scale software, there’s Option Two, which is open source,
and more specifically, free software. If you’re asking how the choice of software license
is relevant to the scale of the software you build, that’s the right question.

The brilliant and visionary Eben Moglen once said, roughly, that a free software license
is the contract on which a community builds. When I heard this, about 10 years ago,
the following idea came too: Can we deliberately grow free software communities?

Ten years later, the answer is “yes,” and there is almost a science to it. I say “almost”
because we don’t yet have enough evidence of people doing this deliberately with a
documented, reproducible process. It is what I’m trying to do with Social Architec‐
ture. ØMQ came after Wikidot, after the Digital Standards Organization (Digistan),
and after the Foundation for a Free Information Infrastructure (aka the FFII, an NGO
that fights against software patents). This all came after a lot of less successful community
projects like Xitami and Libero. My main takeaway from a long career of working on
projects of every conceivable format is: if you want to build truly large-scale and long-
lasting software, aim to build a free software community.

Psychology of Software Architecture
Dirkjan Ochtman pointed me to Wikipedia’s definition of software architecture as “the
set of structures needed to reason about the system, which comprise software elements,
relations among them, and properties of both.” For me, this vapid and circular jargon
is a good example of how miserably little we understand what actually makes a successful
large-scale software architecture.

Architecture is the art and science of making large artificial structures for human use.
If there is one thing I’ve learned and applied successfully in 30 years of making larger
and larger software systems, it is this: software is about people. Large structures in them‐
selves are meaningless. It’s how they function for human use that matters. And in soft‐
ware, human use starts with the programmers who make the software itself.

The core problems in software architecture are driven by human psychology, not tech‐
nology. There are many ways our psychology affects our work. I could point to the way
teams seem to get stupider as they get larger or when they have to work across larger
distances. Does that mean the smaller the team, the more effective it is? How then does
a large global community like ØMQ manage to work successfully?

The ØMQ community wasn’t accidental. It was a deliberate design, my contribution to
the early days when the code came out of a cellar in Bratislava. The design was based
on my pet science of “Social Architecture”, which Wikipedia defines as “the conscious
design of an environment that encourages a desired range of social behaviors leading
towards some goal or set of goals.” My definition is: “the process, and the product, of
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planning, designing, and growing an online community” by analogy with traditional
architecture.

One of the tenets of Social Architecture is that how we organize is more significant than
who we are. The same group, organized differently, can produce wholly different results.
We are like peers in a ØMQ network, and our communication patterns have a dramatic
impact on our performance. Ordinary people, well connected, can far outperform a
team of experts using poor patterns. If you’re the architect of a larger ØMQ application,
you’re going to have to help others find the right patterns for working together. Do this
right, and your project can succeed. Do it wrong, and your project will fail.

The two most important psychological elements are that we’re really bad at under‐
standing complexity and that we are really good at working together to divide and
conquer large problems. We’re highly social apes, and kind of smart, but only in the
right kind of crowd.

So, here is my short list of the Psychological Elements of Software Architecture:
Stupidity

Our mental bandwidth is limited, so we’re all stupid at some point. The architecture
has to be simple to understand. This is the number one rule: simplicity beats func‐
tionality, every single time. If you can’t understand an architecture on a cold gray
Monday morning before coffee, it is too complex.

Selfishness
We act only out of self-interest, so the architecture must create space and oppor‐
tunity for selfish acts that benefit the whole. Selfishness is often indirect and subtle.
For example, I’ll spend hours helping someone else understand something because
that could be worth days to me later.

Laziness
We make lots of assumptions, many of which are wrong. We are happiest when we
can spend the least effort to get a result or test an assumption quickly, so the ar‐
chitecture has to make this possible. Specifically, that means it must be simple.

Jealousy
We’re jealous of others, which means we’ll overcome our stupidity and laziness to
prove others wrong and beat them in competition. The architecture thus has to
create space for public competition based on fair rules that anyone can understand.

Fear
We’re unwilling to take risks, especially if they might make us look stupid. Fear of
failure is a major reason people conform and follow the group in mass stupidity.
The architecture should make silent experimentation easy and cheap, giving people
opportunities for success without punishing failure.
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Reciprocity
We’ll pay extra in terms of hard work, even money, to punish cheats and enforce
fair rules. The architecture should be heavily rule-based, telling people how to work
together, but not what to work on.

Conformity
We’re happiest to conform, out of fear and laziness, which means if the patterns are
good, clearly explained and documented, and fairly enforced, we’ll naturally choose
the right path every time.

Pride
We’re intensely aware of our social status, and we’ll work hard to avoid looking
stupid or incompetent in public. The architecture has to make sure every piece we
make has our name on it, so we’ll have sleepless nights stressing about what others
will say about our work.

Greed
We’re ultimately economic animals (see selfishness), so the architecture has to give
us economic incentive to invest in making it happen. Maybe it’s polishing our rep‐
utation as experts, maybe it’s literally making money from contributing some skill
or component. It doesn’t matter what it is, but there must be economic incentive.
Think of architecture as a marketplace, not an engineering design.

These strategies work not only on a large scale but also on a small scale, within an
organization or team.

The Contract
Here is a story. It happened to the eldest brother-in-law of the cousin of a friend of mine’s
colleague at work. His name was, and still is, Patrick.

Patrick was a computer scientist with a PhD in advanced network topologies. He spent
two years and his savings building a new product, and chose the BSD license because
he believed that would get him more adoption. He worked in his attic, at great personal
cost, and proudly published his work. People applauded, for it was truly fantastic, and
his mailing lists were soon abuzz with activity and patches and happy chatter. Many
companies told him how they were saving millions using his work. Some of them even
paid him for consultancy and training. He was invited to speak at conferences and
started collecting badges with his name on them. He started a small business, hired a
friend to work with him, and dreamed of making it big.

Then one day, someone pointed him to a new project, GPL-licensed, which had forked
his work and was improving on it. He was irritated and upset, and asked how people—
fellow open sourcers, no less!—would so shamelessly steal his code. There were long
arguments on the list about whether it was even legal to relicense the BSD code as GPL
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code. Turned out, it was. He tried to ignore the new project, but then he soon realized
that new patches coming from that project couldn’t even be merged back into his work!

Worse, the GPL project got popular and some of his core contributors made first small,
and then larger patches to it. Again, he couldn’t use those changes, and he felt aban‐
doned. Patrick went into a depression, his girlfriend left him for an international cur‐
rency dealer called, weirdly, Patrice, and he stopped all work on the project. He felt
betrayed, and utterly miserable. He fired his friend, who took it rather badly and told
everyone that Patrick was a closet banjo player. Finally, Patrick took a job as a project
manager for a cloud company, and by the age of 40, he had stopped programming even
for fun.

Poor Patrick. I almost felt sorry for him. Then I asked him, “Why didn’t you choose the
GPL?” “Because it’s a restrictive viral license,” he replied. I told him, “You may have a
PhD, and you maybe the eldest brother-in-law of the cousin of a friend of my colleague,
but you are an idiot and Monique was smart to leave you. You published your work
inviting people to please steal your code as long as they kept this ‘please steal my code’
statement in the resulting work, and when people did exactly that, you got upset. Worse,
you were a hypocrite because when they did it in secret, you were happy, but when they
did it openly, you felt betrayed.”

Seeing your hard work captured by a smarter team and then used against you is enor‐
mously painful, so why even make that possible? Every proprietary project that uses
BSD code is capturing it. A public GPL fork is perhaps more humiliating, but it’s fully
self-inflicted.

BSD is like food. It literally (and I mean that metaphorically) whispers “eat me” in the
little voice one imagines a cube of cheese might use when it’s sitting next to an empty
bottle of the best beer in the world, which is of course Orval, brewed by an ancient and
almost extinct order of silent Belgian monks called Les Gars La-Bas Qui Brassents
l’Orval. The BSD license, like its near clone MIT/X11, was designed specifically by a
university (Berkeley) with no profit motive, to leak work and effort. It is a way to push
subsidized technology at below its cost price, a dumping of underpriced code in the
hope that it will break the market for others. BSD is an excellent strategic tool, but only
if you’re a large, well-funded institution that can afford to use Option One. The Apache
license is BSD in a suit.

For us small businesses who aim our investments like precious bullets, leaking work
and effort is unacceptable. Breaking the market is great, but we cannot afford to subsi‐
dize our competitors. The BSD networking stack ended up putting Windows on the
Internet. We cannot afford battles with those with whom we should naturally be allies.
We cannot afford to make fundamental business errors because in the end, that means
we have to fire people.
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It comes down to behavioral economics and game theory. The license we choose modifies
the economics of those who use our work. In the software industry there are friends, foes,
and food. BSD makes most people see us as lunch. Closed source makes most people
see us as enemies (do you like paying people for software?). GPL, however, makes most
people, with the exception of the Patricks of the world, our allies. Any fork of ØMQ is
license compatible with ØMQ, to the point where we encourage forks as a valuable tool
for experimentation. Yes, it can be weird to see someone try and run off with the ball,
but here’s the secret: I can get it back any time I want.

The Process
If you’ve accepted my thesis up to now, great! Now, I’ll explain the rough process by
which we actually build an open source community. This was how we built (or grew, or
gently steered) the ØMQ community into existence.

Your goal as leader of a community is to motivate people to get out there and explore;
to ensure they can do so safely and without disturbing others; to reward them when
they make successful discoveries; and to ensure they share their knowledge with ev‐
eryone else (and not because we ask them, not because they feel generous, but because
it’s The Law).

It is an iterative process. You make a small product, at your own cost, but in public view.
You then build a small community around that product. If you have a small but real hit,
the community then helps design and build the next version, and grows larger. And
then that community builds the next version, and so on. It’s evident that you remain
part of the community, maybe even a majority contributor, but the more control you
try to assert over the material results, the less people will want to participate. Plan your
own retirement well before someone decides you are their next problem.

Crazy, Beautiful, and Easy
You need a goal that’s crazy and simple enough to get people out of bed in the morning.
Your community has to attract the very best people, and that demands something spe‐
cial. With ØMQ, we said we were going to make “the Fastest. Messaging. Ever,” which
qualifies as a good motivator. If we’d said we were going to make “a smart transport
layer that’ll connect your moving pieces cheaply and flexibly across your enterprise,”
we’d have failed.

Then your work must be beautiful, immediately useful, and attractive. Your contributors
are users who want to explore just a little beyond where they are now. Make it simple,
elegant, and brutally clean. The experience when people run or use your work should
be an emotional one. They should feel something, and if you’ve accurately solved even
just one big problem that until then they didn’t quite realize they faced, you’ll have a
small part of their soul.
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It must also be easy to understand, use, and join. Too many projects have barriers to
access: put yourself in the other person’s mind and see all the reasons they come to your
site, thinking “Um, interesting project, but...” and then leave. You want them to stay, and
try it, just once. Use GitHub and put the issue tracker right there.

If you do these things well, your community will be smart, but more importantly, it will
be intellectually and geographically diverse. This is really important. A group of like-
minded experts cannot explore the problem landscape well. They tend to make big
mistakes. Diversity beats education any time.

Stranger, Meet Stranger
How much up-front agreement do two people need to work together on something? In
most organizations, a lot. But you can bring this cost down to near zero, and then people
can collaborate without having ever met, done a phone conference, or had a meeting
or business trip to discuss Roles and Responsibilities over way too many bottles of cheap
Korean rice wine.

You need well-written rules that are designed by cynical people like me to force strangers
into mutually beneficial collaboration instead of conflict. The GPL is a good start. Git‐
Hub and its fork/merge strategy is a good follow-up. And then you want something like
our C4 rulebook to control how work actually happens.

C4 (which I now use for every new open source project) has detailed and tested answers
to a lot of common mistakes people make, such as the sin of working offline in a corner
with others “because it’s faster.” Transparency is essential to get trust, which is essential
to get scale. By forcing every single change through a single transparent process, you
build real trust in the results.

Another cardinal sin that many open source developers make is to place themselves
above others. “I founded this project, thus my intellect is superior to that of others.” It’s
not just immodest and rude, and usually inaccurate; it’s also poor business. The rules
must apply equally to everyone, without distinction. You are part of the community.
Your job, as founder of a project, is not to impose your vision of the product on others,
but to make sure the rules are good, honest, and enforced.

Infinite Property
One of the saddest myths of the knowledge business is that ideas are a sensible form of
property. It’s medieval nonsense that should have been junked along with slavery, but
sadly it’s still making too many powerful people too much money.

Ideas are cheap. What does work sensibly as property is the hard work we do in building
a market. “You eat what you kill” is the right model for encouraging people to work
hard. Whether it’s moral authority over a project, money from consulting, or the sale
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of a trademark to some large, rich firm: if you make it, you own it. But what you really
own is “footfall,” participants in your project, which ultimately defines your power.

To do this requires infinite free space. Thankfully, GitHub solved this problem for us,
for which I will die a grateful person (there are many reasons to be grateful in life, which
I won’t list here because we only have a hundred or so pages left, but this is one of them).

You cannot scale a single project with many owners like you can scale a collection of
many small projects, each with fewer owners. When we embrace forks, a person can
become an “owner” with a single click. Now they just have to convince others to join by
demonstrating their unique value.

So, in ØMQ, we aimed to make it easy to write bindings on top of the core library, and
we stopped trying to make those bindings ourselves. This created space for others to
make them, become their owners, and get that credit.

Care and Feeding
I wish a community could be 100% self-steering, and perhaps one day this will work,
but today it’s not the case. We’re very close with ØMQ, but from my experience a com‐
munity needs four types of care and feeding:

• First, simply because most people are too nice, we need some kind of symbolic
leadership or owners who provide ultimate authority in case of conflict. Usually it’s
the founders of the community. I’ve seen it work with self-elected groups of “elders,”
but old men like to talk a lot. I’ve seen communities split over the question of who’s
in charge,” and setting up legal entities with boards and such seems to make argu‐
ments over control worse, not better—maybe because there seems to be more to
fight over. One of the real benefits of free software is that it’s always remixable, so
instead of fighting over a pie, one simply forks the pie.

• Second, communities need living rules, and thus they need a lawyer able to for‐
mulate and write these down. Rules are critical. When done right, they remove
friction. When done wrong, or neglected, we see real friction and arguments that
can drive away the nice majority, leaving the argumentative core in charge of the
burning house. One thing I’ve tried to do with the ØMQ and previous communities
is create reusable rules, which perhaps means we don’t need lawyers as much.

• Thirdly, communities need some kind of financial backing. This is the jagged rock
that breaks most ships. If you starve a community, it becomes more creative but the
core contributors burn out. If you pour too much money into it, you attract the
professionals, who never say “no,” and the community loses its diversity and crea‐
tivity. If you create a fund for people to share, they will fight (bitterly) over it. With
ØMQ, we (iMatix) spend our time and money on marketing and packaging (like
this book), and the basic care, like bug fixes, releases, and websites.
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• Lastly, sales and commercial mediation are important. There is a natural market
between expert contributors and customers, but both are somewhat incompetent
at talking to each other. Customers assume that support is free or very cheap because
the software is free. Contributors are shy about asking a fair rate for their work. It
makes for a difficult market. A growing part of my work (and my firm’s profits) is
simply connecting ØMQ users who want help with experts from the community
able to provide it, and ensuring both sides are happy with the results.

I’ve seen communities of brilliant people with noble goals die because the founders got
some or all of these four things wrong. The core problem is that you can’t expect con‐
sistently great leadership from any one company, person, or group. What works today
often won’t work tomorrow, yet structures become more solid, not more flexible, over
time.

The best answer I can find is a mix of two things. The first is the GPL with its guarantee
of remixability. No matter how bad the authority is, no matter how much it tries to
privatize and capture the community’s work, if it’s GPL licensed, that work can walk
away and find a better authority. Before you say, “all open source offers this,” think it
through. I can kill a BSD-licensed project by hiring the core contributors and not re‐
leasing any new patches. But even with a billion dollars to spend, I cannot kill a GPL-
licensed project. The second is the philosophical anarchist model of authority, which is
that we choose it, it does not own us.

The ØMQ Process: C4
When we say ØMQ, we sometimes mean libzmq, the core library. In early 2012, we
synthesized the libzmq process into a formal protocol for collaboration that we called
the Collective Code Construction Contract, or C4. You can see this as a layer above the
GPL. In fact, libzmq doesn’t quite stick to C4, because for historic reasons we use Jira
instead of the GitHub issue tracker. Apart from that, these are our rules, and I’ll explain
the reasoning behind each one.

C4 is an evolution of the GitHub Fork + Pull Model. You may get the feeling I’m a fan
of Git and GitHub. This would be accurate: these two tools have made such a positive
impact on our work over the last years, especially when it comes to building community.

Language
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

By starting with the RFC 2119 language, the C4 text makes very clear its intention to
act as a protocol rather than a randomly written set of recommendations. A protocol is
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a contract between parties that defines the rights and obligations of each party. These
can be peers in a network, or they can be strangers working in the same project.

I think C4 is the first time anyone has attempted to codify a community’s rulebook as
a formal and reusable protocol spec. Previously, our rules were spread out over several
wiki pages, and they were quite specific to libzmq in many ways. But experience teaches
us that the more formal, accurate, and reusable the rules are, the easier it is for strangers
to collaborate up-front. And less friction means a more scalable community. At the time
of C4, we also had some disagreement in the libzmq project over precisely what process
we were using. Not everyone felt bound by the same rules. Let’s just say some people
felt they had a special status, which created friction with the rest of the community.
Codification made things clear.

It’s easy to use C4: just host your project on GitHub, get one other person to join, and
open the floor to pull requests. In your README, put a link to C4—that’s it. We’ve done
this in quite a few projects and it does seem to work. I’ve been pleasantly surprised a
few times just applying these rules to my own work, like CZMQ. None of us are so
amazing that we can work without others.

Goals
C4 is meant to provide a reusable optimal collaboration model for open source software
projects.

The short-term reason for writing C4 was to end arguments over the libzmq contribu‐
tion process. The dissenters went off elsewhere. The ØMQ community blossomed
smoothly and easily, as I’d predicted. Most people were surprised, but gratified. There’s
been no real criticism of C4 except with regard to its branching policy, which I’ll come
to later as it deserves its own discussion.

There’s a reason I’m reviewing history here: as founder of a community, you are asking
people to invest in your property, trademark, and branding. In return, and this is what
we do with ØMQ, you can use that branding to set a bar for quality. When you download
a product labeled “ØMQ,” you know that it’s been produced to certain standards. It’s a
basic rule of quality: write down your process, as otherwise you cannot improve it. Our
processes aren’t perfect, nor can they ever be. But any flaw in them can be fixed, and
tested.

Making C4 reusable is therefore really important. To learn more about the best possible
process, we need to get results from the widest possible range of projects.

It has these specific goals:
To maximize the scale of the community around a project, by reducing the friction for
new Contributors and creating a scaled participation model with strong positive feed‐
backs;
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The number one goal is maximizing the size and health of the community—not tech‐
nical quality, not profits, not performance, not market share. The goal is simply in‐
creasing the number of people who contribute to the project. The science here is simple:
the larger the community, the more accurate the results.

To relieve dependencies on key individuals by separating different skill sets so that there
is a larger pool of competence in any required domain;

Perhaps the worst problem we faced in libzmq was dependence on people who could
understand the code, manage GitHub branches, and make clean releases—all at the
same time. It’s like looking for athletes who can run marathons and sprint, swim, and
also lift weights. We humans are really good at specialization. Asking us to be really
good at two contradictory things reduces the number of candidates sharply, which is a
Bad Thing for any project. We had this problem severely in libzmq in 2009 or so, and
we fixed it by splitting the role of maintainer into two: one person makes patches and
another makes releases.

To allow the project to develop faster and more accurately, by increasing the diversity of
the decision making process;

This is theory—not fully proven, but not falsified. The greater the diversity of the com‐
munity and the number of people who can weigh in on discussions without fear of being
criticized or dismissed, the faster and more accurately the software develops. Speed is
quite subjective here. Going very fast in the wrong direction is not just useless, it’s
actively damaging (and we suffered a lot of that in libzmq before we switched to C4).

To support the natural life-cycle of project versions from experimental through to stable,
by allowing safe experimentation, rapid failure, and isolation of stable code;

To be honest, this goal seems to be fading into irrelevance. It’s quite an interesting effect
of the process: the Git master is almost always perfectly stable. This has to do with the
size of changes and their latency—i.e., the time between someone writing the code and
someone actually using it fully. However, people still expect “stable” releases, so we’ll
keep this goal there for a while.

To reduce the internal complexity of project repositories, thus making it easier for Con‐
tributors to participate and reducing the scope for error;

Curious observation: people who thrive in complex situations like to create complexity
because it keeps their value high. It’s the Cobra Effect (Google it). Git made branches
easy and left us with the all-too-common statement, “Git is easy once you understand
that a Git branch is just a folded five-dimensional lepton space that has a detached
history with no intervening cache.” Developers should not be made to feel stupid by
their tools. I’ve seen too many top-class developers confused by repository structures
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to accept conventional wisdom on Git branches. We’ll come back to dispose of Git
branches shortly, dear reader.

To enforce collective ownership of the project, which increases economic incentive to
Contributors and reduces the risk of hijack by hostile entities.

Ultimately, we’re economic creatures, and the sense that “we own this, and our work
can never be used against us” makes it much easier for people to invest in an open source
project like ØMQ. And it can’t be just a feeling, it has to be real. There are a number of
aspects to making collective ownership work; we’ll see these one by one as we go through
C4.

Preliminaries
The project SHALL use the Git distributed revision control system.

Git has its faults. Its command-line API is horribly inconsistent, and it has a complex,
messy internal model that it shoves in your face at the slightest provocation. But despite
doing its best to make its users feel stupid, Git does its job really, really well. More
pragmatically, I’ve found that if you stay away from certain areas (branches!), people
learn Git rapidly and don’t make many mistakes. That works for me.

The project SHALL be hosted on github.com or equivalent, herein called the “Platform”.

I’m sure one day some large firm will buy GitHub and break it, and another platform
will rise in its place. GitHub serves up a near-perfect set of minimal, fast, simple tools.
I’ve thrown hundreds of people at it, and they all stick like flies in a dish of honey.

The project SHALL use the Platform issue tracker.

We made the mistake in libzmq of switching to Jira because we hadn’t learned yet how
to properly use the GitHub issue tracker. Jira is a great example of how to turn something
useful into a complex mess because the business depends on selling more “features.” But
even without criticizing Jira, keeping the issue tracker on the same platform means one
less UI to learn, one less login, and smooth integration between issues and patches.

The project SHOULD have clearly documented guidelines for code style.

This is a protocol plug-in: insert code style guidelines here. If you don’t document the
code style you use, you have no basis except prejudice to reject patches.

A “Contributor” is a person who wishes to provide a patch, being a set of commits that
solve some clearly identified problem.
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A “Maintainer” is a person who merges patches to the project. Maintainers are not de‐
velopers; their job is to enforce process.

Now we move on to definitions of the parties, and the splitting of roles that saved us
from the sin of structural dependency on rare individuals. This worked well in
libzmq, but as you will see it depends on the rest of the process. C4 isn’t a buffet; you
will need the whole process (or something very like it), or it won’t hold together.

Contributors SHALL NOT have commit access to the repository unless they are also
Maintainers.
Maintainers SHALL have commit access to the repository.

What we wanted to avoid was people pushing their changes directly to master. This was
the biggest source of trouble in libzmq historically: large masses of raw code that took
months or years to fully stabilize. We eventually followed other ØMQ projects like
PyZMQ in using pull requests. We even went further, and stipulated that all changes
had to follow the same path—no exceptions for “special people.”

Everyone, without distinction or discrimination, SHALL have an equal right to become
a Contributor under the terms of this contract.

We had to state this explicitly. It used to be that the libzmq maintainers would reject
patches simply because they didn’t like them. Now, that may sound reasonable to the
author of a library (though libzmq was not written by any one person), but let’s re‐
member our goal of creating a work that is owned by as many people as possible. Saying
“I don’t like your patch so I’m going to reject it” is equivalent to saying, “I claim to own
this and I think I’m better than you, and I don’t trust you.” Those are toxic messages to
give to others who are thinking of becoming your co-investors.

I think this fight between individual expertise and collective intelligence plays out in
other areas. It defined Wikipedia, and still does, a decade after that work surpassed
anything built by small groups of experts. For me, we make software by synthesizing
knowledge, much as we make Wikipedia articles.

Licensing and Ownership
The project SHALL use the GPLv3 or a variant thereof (LGPL, AGPL).

I’ve already explained how full remixability creates better scale and why the GPL and
its variants seem the optimal contract for remixable software. If you’re a large business
aiming to dump code on the market, you won’t want C4, but then you won’t really care
about community either.
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All contributions to the project source code (“patches”) SHALL use the same license as
the project.

This removes the need for any specific license or contribution agreement for patches.
You fork the GPL code, you publish your remixed version on GitHub, and you or anyone
else can then submit that as a patch to the original code. BSD doesn’t allow this. Any
work that contains BSD code may also contain unlicensed proprietary code, so you need
explicit action from the author of the code before you can remix it.

All patches are owned by their authors. There SHALL NOT be any copyright assignment
process.

Here we come to the key reason people trust their investments in ØMQ: it’s logistically
impossible to buy the copyrights to create a closed-source competitor to ØMQ. iMatix
can’t do this either. And the more people that send patches, the harder it becomes. ØMQ
isn’t just free and open today—this specific rule means it will remain so forever. Note
that this is not the case in all GPL projects, many of which still ask for copyright transfer
back to the maintainers.

The project SHALL be owned collectively by all its Contributors.

This is perhaps redundant, but worth saying: if everyone owns their patches, then the
resulting whole is also owned by every contributor. There’s no legal concept of owning
lines of code: the “work” is at least a source file.

Each Contributor SHALL be responsible for identifying themselves in the project Con‐
tributor list.

In other words, the maintainers are not karma accountants. Anyone who wants credit
has to claim it themselves.

Patch Requirements
In this section, we define the obligations of the contributor: specifically, what constitutes
a “valid” patch, so that maintainers have rules they can use to accept or reject patches.

Maintainers and Contributors MUST have a Platform account and SHOULD use their
real names or a well-known alias.

In the worst-case scenario, where someone has submitted toxic code (patented, or
owned by someone else), we need to be able to trace who and when, so we can remove
the code. Asking for real names or a well-known alias is a theoretical strategy for re‐
ducing the risk of bogus patches. We don’t know if this actually works because we haven’t
had the problem yet.
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A patch SHOULD be a minimal and accurate answer to exactly one identified and agreed
problem.

This implements the Simplicity Oriented Design process that I’ll come to later in this
chapter. One clear problem, one minimal solution: apply, test, and repeat.

A patch MUST adhere to the code style guidelines of the project if these are defined.

This is just sanity. I’ve spent time cleaning up other peoples’ patches because they insisted
on putting the “else” beside the “if ” instead of just below, as Nature intended. Consistent
code is healthier.

A patch MUST adhere to the “Evolution of Public Contracts” guidelines defined below.

Ah, the pain, the pain. I’m not speaking of the time at age eight when I stepped on a
plank with a 4-inch nail protruding from it. That was relatively OK. I’m speaking of
2010–2011, when we had multiple parallel releases of ØMQ, each with different incom‐
patible APIs or wire protocols. It was an exercise in bad rules pointlessly enforced. The
rule was, “If you change the API or protocol, you SHALL create a new major version.”
Give me the nail through the foot; that hurt less.

One of the big changes we made with C4 was simply to ban, outright, this kind of
sanctioned sabotage. Amazingly, it’s not even hard. We just don’t allow the breaking of
existing public contracts, period, unless everyone agrees, in which case no period. As
Linus Torvalds famously put it on December 23, 2012: “WE DO NOT BREAK USER‐
SPACE!”

A patch SHALL NOT include non-trivial code from other projects unless the Contributor
is the original author of that code.

This rule has two effects. The first is that it forces people to make minimal solutions
because they cannot simply import swathes of existing code. In the cases where I’ve seen
this happen to projects, it’s always bad unless the imported code is very cleanly separated.
The second effect is that it avoids license arguments. You write the patch, you are allowed
to publish it as LGPL, and we can merge it back in. But you find a 200-line code fragment
on the Web and try to paste that, and we’ll refuse.

A patch MUST compile cleanly on at least the most important target platforms.

This is probably asking a lot because most contributors have only one platform on which
to work.

A “Correct Patch” is one that satisfies the above requirements.

Just in case it wasn’t clear, we’re back to legalese and definitions.
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Development Process
In this section, we aim to describe the actual development process, step-by-step.

Change on the project SHALL be governed by the pattern of accurately identifying prob‐
lems and applying minimal, accurate solutions to these problems.

This is an unapologetic ramming through of 30 years’ software design experience. It’s a
profoundly simple approach to design: make minimal, accurate solutions to real prob‐
lems. Nothing more or less. Note the stress on “accuracy,” a rare but essential ingredient.
In ØMQ, we don’t have feature requests. Treating new features the same as bugs confuses
newbies. But this process works, and not just in open source. Enunciating the problem
we’re trying to solve, with every single change, is key to deciding whether the change is
worth making or not.

To initiate changes, a user SHALL log an issue on the project Platform issue tracker.

This is meant to stop us from going offline and working in a ghetto, either by ourselves
or with others. Although we tend to accept pull requests that have clear argumentation,
this rule lets us say “stop” to confused or too-large patches.

The user SHOULD write the issue by describing the problem they face or observe.

“Problem: we need feature X. Solution: make it” is not a good issue. “Problem: user
cannot do common tasks A or B except by using a complex workaround. Solution: make
feature X” is a decent explanation. Because everyone I’ve ever worked with has needed
to learn this, it seems worth restating: document the real problem first, and the solution
second.

The user SHOULD seek consensus on the accuracy of their observation, and the value
of solving the problem.

Because many apparent problems are illusionary, by stating the problem explicitly we
give others a chance to correct our logic. “You’re only using A and B a lot because
function C is unreliable. Solution: make function C work properly.”

Users SHALL NOT log feature requests, ideas, suggestions, or any solutions to problems
that are not explicitly documented and provable.

There are several reasons for not logging ideas, suggestions, or feature requests. In our
experience, these just accumulate in the issue tracker until someone deletes them. But
more profoundly, when we treat all changes as problem solutions, we can prioritize
trivially. Either the problem is real and someone wants to solve it now, or it’s not on the
table. Thus, wish lists are off the table.
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Thus, the release history of the project SHALL be a list of meaningful issues logged and
solved.

I’d love the GitHub issue tracker to simply list all the issues we solved in each release.
Today, we still have to write that by hand. If one puts the issue number in each commit,
and if one uses the GitHub issue tracker—which we sadly don’t yet do for ØMQ—this
release history is easier to produce mechanically.

To work on an issue, a Contributor SHALL fork the project repository and then work on
their forked repository.

Here we explain the GitHub fork + pull request model so that newcomers only have to
learn one process (C4) in order to contribute.

To submit a patch, a Contributor SHALL create a Platform pull request back to the project.

GitHub has made this so simple that we don’t need to learn Git commands to do it, for
which I’m deeply grateful. Sometimes, I’ll tell people whom I don’t particularly like that
command-line Git is awesome and all they need to do is learn Git’s internal model in
detail before trying to use it on real work. When I see them several months later, they
look... different.

A Contributor SHALL NOT commit changes directly to the project.

Anyone who submits a patch is a contributor, and all contributors follow the same rules.
No special privileges to the original authors, because otherwise we’re not building a
community, only boosting our egos.

To discuss a patch, people MAY comment on the Platform pull request, on the commit,
or elsewhere.

Randomly distributed discussions may be confusing if you’re walking up for the first
time, but GitHub solves this for all current participants by sending emails to those who
need to follow what’s going on. We had the same experience and the same solution in
Wikidot, and it works. There’s no evidence that discussing in different places has any
negative effect.

To accept or reject a patch, a Maintainer SHALL use the Platform interface.

Working via the GitHub web user interface means pull requests are logged as issues,
with workflow and discussion. I’m sure there are more complex ways to work. Com‐
plexity is easy; it’s simplicity that’s incredibly hard.

Maintainers SHALL NOT accept their own patches.
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There was a rule we defined in the FFII years ago to stop people burning out: no less
than two people on any project. One-person projects tend to end in tears, or at least
bitter silence. We have quite a lot of data on burnout, why it happens, and how to prevent
it (even cure it). I’ll explore this later in the chapter, because if you work with or on open
source projects you need to be aware of the risks. The “no merging your own patch”
rule has two goals. First, if you want your project to be C4-certified, you have to get at
least one other person to help. If no one wants to help you, perhaps you need to rethink
your project. Second, having a control for every patch makes it much more satisfying,
keeps us more focused, and stops us breaking the rules because we’re in a hurry, or just
feeling lazy.

Maintainers SHALL NOT make value judgments on correct patches.

We already said this, but it’s worth repeating: the role of maintainer is not to judge a
patch’s substance, only its technical quality. The substantive worth of a patch only
emerges over time: people use it and like it, or they do not. And if no one is using a
patch, eventually it’ll annoy someone else, who will remove it, and no one will complain.

Maintainers SHALL merge correct patches rapidly.

There is a criterion I call change latency, which is the round-trip time from identifying
a problem to testing a solution. The faster the better. If maintainers cannot respond to
pull requests as rapidly as people expect, they’re not doing their jobs (or they need more
hands).

The Contributor MAY tag an issue as “Ready” after making a pull request for the issue.

By default, GitHub offers the usual variety of issues, but with C4 we don’t use them.
Instead, we need just two labels, “Urgent” and “Ready.” A contributor who wants another
user to test an issue can label it as “Ready.”

The user who created an issue SHOULD close the issue after checking the patch is suc‐
cessful.

When one person opens an issue and another works on it, it’s best to allow the original
person to close the issue. That acts as a double-check that the issue was properly resolved.

Maintainers SHOULD ask for improvements to incorrect patches and SHOULD reject
incorrect patches if the Contributor does not respond constructively.

Initially, I felt it was worth merging all patches, no matter how poor. There’s an element
of trolling involved: accepting even obviously bogus patches could, I felt, pull in more
contributors. But people were uncomfortable with this, so we defined the “correct patch”
rules, and the maintainer’s role in checking for quality. On the negative side, I think we
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didn’t take some interesting risks that could have paid off with more participants. On
the positive side, this has led to the ØMQ master (and that of all projects that use C4)
being practically production quality, practically all the time.

Any Contributor who has value judgments on a correct patch SHOULD express these
via their own patches.

In essence, the goal here is to allow users to try patches rather than to spend time arguing
pros and cons. As easy as it is to make a patch, it’s as easy to revert it with another patch.
You might think this would lead to “patch wars,” but that hasn’t happened. We’ve had
only a handful of cases in libzmq where patches by one contributor were killed by
another person who felt the experimentation wasn’t going in the right direction. This
approach is easier than seeking up-front consensus.

Maintainers MAY commit changes to non-source documentation directly to the project.

This exit allows maintainers who are making release notes to push those without having
to create an issue, which would then affect the release notes, leading to stress on the
space-time fabric and possibly involuntary rerouting backwards in the fourth dimen‐
sion to before the invention of cold beer. Shudder. It is simpler to agree that release notes
aren’t changes to the software.

Creating Stable Releases
We want some guarantee of stability for a production system. In the past, this meant
taking unstable code and then over months hammering out the bugs and faults until it
was safe to trust. iMatix’s job, for years, has been to do this to libzmq, turning raw code
into packages by allowing only bug fixes and no new code into a “stabilization branch.”
It’s surprisingly not as thankless as it sounds.

Since we went full speed with C4, we’ve found that the Git master of libzmq is mostly
perfect, most of the time. This frees our time to do more interesting things, such as
building new open source layers on top of libzmq. However, people still want that guar‐
antee: many users will simply not install except from an “official” release. So, a stable
release today involves two things: first, a snapshot of the master taken at a time when
there have been no new changes for a while and there are no dramatic open bugs; and
second, a way to fine-tune that snapshot to fix the critical issues remaining in it.

This is the process we explain in this section.

The project SHALL have one branch (“master”) that always holds the latest in-progress
version and SHOULD always build.

This is redundant because every patch always builds, but it’s worth restating. If the
master doesn’t build (and pass its tests), someone needs waking up.
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The project SHALL NOT use topic branches for any reason. Personal forks MAY use
topic branches.

I’ll come to branches soon. In short (or “tl;dr,” as they say on the webs), branches make
the repository too complex and fragile, and they require up-front agreement, all of which
are expensive and avoidable.

To make a stable release someone SHALL fork the repository by copying it and thus
become maintainer of this repository.
Forking a project for stabilization MAY be done unilaterally and without agreement of
project maintainers.

It’s free software. No one has a monopoly on it. If you think the maintainers aren’t
producing stable releases right, fork the repository and do it yourself. Forking isn’t a
failure, it’s an essential tool for competition. You can’t do this with branches, which
means a branch-based release policy gives the project maintainers a monopoly. And
that’s bad because they’ll become lazier and more arrogant than if real competition is
nipping at their heels.

Maintainers of the stabilization project SHALL maintain it through pull requests which
MAY cherry-pick patches from the forked project.

Perhaps the C4 process should just say that stabilization projects have maintainers and
contributors, like any project. That’s all this rule means.

A patch to a repository declared “stable” SHALL be accompanied by a reproducible test
case.

Beware of a one-size-fits-all process. New code does not require the same paranoia as
code that people are trusting for production use. In the normal development process,
we did not mention test cases. There’s a reason for this. While I love testable patches,
many changes aren’t easily (or at all) testable. However, to stabilize a code base you want
to fix serious bugs, and you want to be 100% sure every change is accurate. This means
before and after tests for every change.

A stabilization repository SHOULD progress through these phases: “unstable”, “candi‐
date”, “stable”, and then “legacy”. That is, the default behavior of stabilization repositories
is to die.

This may be too detailed. The key point here is that these forked stabilization repositories
all die in the end, as the master continues to evolve and be forked off for production
releases.
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Evolution of Public Contracts
By “public contracts,” I mean APIs and protocols. Up until the end of 2011, libzmq’s
naturally happy state was marred by broken promises and broken contracts. We stopped
making promises (aka “road maps”) for libzmq completely, and our dominant theory
of change is now that it emerges carefully and accurately over time. At a 2012 Chicago
meetup, Garrett Smith and Chuck Remes called this the “drunken stumble to greatness,”
which is how I think of it now.

We stopped breaking public contracts simply by banning the practice. Before then it
had been “OK” (as in, we did it and everyone complained bitterly, and we ignored them)
to break the API or protocol so long as we changed the major version number. Sounds
fine, until you get ØMQ version 2.0, 3.0, and 4.0 all in development at the same time,
and not speaking to each other.

All Public Contracts (APIs or protocols) SHOULD be documented.

You’d think this was a given for professional software engineers, but no, it’s not. So, it’s
a rule. You want C4 certification for your project, you make sure your public contracts
are documented. No “It’s specified in the code” excuses. Code is not a contract. (Yes, I
intend at some point to create a C4 certification process to act as a quality indicator for
open source projects.)

All Public Contracts SHALL use Semantic Versioning.

This rule is mainly here because people asked for it. I’ve no real love for it, as semantic
versioning is what led to the so-called “Why does ØMQ not speak to itself?!” debacle.
I’ve never seen the problem that this solved. Something about runtime validation of
library versions, or some-such.

All Public Contracts SHOULD have space for extensibility and experimentation.

Now, the real thing is that public contracts do change. It’s not about not changing them;
it’s about changing them safely. This means educating (especially protocol) designers
to create that space up-front.

A patch that modifies a Public Contract SHOULD not break existing applications unless
there is prior consensus on the value of doing this.

Sometimes the patch is fixing a bad API that no one is using. It’s a freedom we need,
but it should be based on consensus, not one person’s dogma. However, making random
changes “just because” is not good. In ØMQ v3.x, did we benefit from renaming ZMQ_NO
BLOCK to ZMQ_DONTWAIT? Sure, it’s closer to the POSIX socket recv() call, but is that
worth breaking thousands of applications? No one ever reported it as an issue. To mis‐
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quote Richard Stallman: “Your freedom to create an ideal world stops one inch from
my application.”

A patch that introduces new features to a Public Contract SHOULD do so using new
names.

We had the experience in ØMQ once or twice of new features using old names (or worse,
using names that were still in use elsewhere). ØMQ v3.0 had a newly introduced
“ROUTER” socket that was totally different from the existing ROUTER socket in ØMQ
v2.x. Dear lord, you should be face-palming, why? The reason: apparently, even smart
people sometimes need regulation to stop them doing silly things.

Old names SHOULD be deprecated in a systematic fashion by marking new names as
“experimental” until they are stable, then marking the old names as “deprecated”.

This life-cycle notation has the great benefit of actually telling users what is going on,
with a consistent direction. “Experimental” means “we have introduced this and intend
to make it stable if it works.” It does not mean, “we have introduced this and will remove
it at any time if we feel like it.” One assumes that code that survives more than one patch
cycle is meant to be there. “Deprecated” means “we have replaced this and intend to
remove it.”

When sufficient time has passed, old deprecated names SHOULD be marked “legacy”
and eventually removed.

In theory, this gives applications time to move on to stable new contracts without risk.
You can upgrade first, make sure things work, and then, over time, fix things up to
remove dependencies on deprecated and legacy APIs and protocols.

Old names SHALL NOT be reused by new features.

Ah, yes, the joy when ØMQ v3.x renamed the most-used API functions (zmq_send()
and zmq_recv()) and then recycled the old names for new methods that were utterly
incompatible (and which I suspect few people actually use). You should be slapping
yourself in confusion again, but really, this is what happened, and I was as guilty as
anyone. After all, we did change the version number! The only benefit of that experience
was to get this rule.

When old names are removed, their implementations MUST provoke an exception (as‐
sertion) if used by applications.

I’ve not tested this rule to be certain it makes sense. Perhaps what it means is “if you
can’t provoke a compile error because the API is dynamic, provoke an assertion.”
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C4 is not perfect. Few things are. The process for changing it (Digistan’s COSS) is a little
outdated now: it relies on a single-editor workflow with the ability to fork, but not merge.
This seems to work, but it could be better to use C4 for protocols like C4.

A Real-Life Example
In the “XPUB subscription notifications” email thread, Dan Goes asks how to make a
publisher that knows when a new client subscribes and sends out previous matching
messages. It’s a standard pub-sub technique called “last value caching.” Over a one-way
transport like pgm (where subscribers literally send no packets back to publishers), this
can’t be done. But over TCP, it can, if we use an XPUB socket and if that socket didn’t
cleverly filter out duplicate subscriptions to reduce upstream traffic.

Though I’m not an expert contributor to libzmq, this seemed like a fun problem to solve.
How hard could it be? I started by forking the libzmq repository to my own GitHub
account, and then cloned it to my laptop, where I built it:

Git clone git@github.com:hintjens/libzmq.git
cd libzmq
./autogen.sh
./configure
make

Because the libzmq code is neat and well organized, it was quite easy to find the main
files to change (xpub.cpp and xpub.hpp). Each socket type has its own source file and
class. They inherit from socket_base.cpp, which has this hook for socket-specific
options:

//  First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL)
    return rc;

//  If the socket type doesn't support the option, pass it to
//  the generic option parser
return options.setsockopt (option_, optval_, optvallen_);

Then I checked where the XPUB socket filters out duplicate subscriptions, in its
xread_activated() method:

bool unique;
if (*data == 0)
    unique = subscriptions.rm (data + 1, size - 1, pipe_);
else
    unique = subscriptions.add (data + 1, size - 1, pipe_);

//  If the subscription is not a duplicate, store it so that it can be
//  passed to used on next recv call
if (unique && options.type != ZMQ_PUB)
    pending.push_back (blob_t (data, size));
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At this stage, I wasn’t too concerned with the details of how subscriptions.rm() and
subscriptions.()add work. The code seems obvious, except that “subscription” also
includes unsubscription, which confused me for a few seconds. If there’s anything else
weird in the rm and add methods, that’s a separate issue to fix later. Now it was time to
make an issue for this change. I headed over to the https://zeromq.jira.com site, logged
in, and created a new entry.

Jira kindly offered me the traditional choice between “bug” and “new feature,” and I
spent 30 seconds wondering where this counterproductive historical distinction came
from. Presumably, the “we’ll fix bugs for free but you pay for new features” commercial
proposal, which stems from the “you tell us what you want and we’ll make it for $X”
model of software development, and which generally leads to “we spent three times $X
and we got what?!” email Fists of Fury.

Putting such thoughts aside, I created an issue, #443, and described the problem and a
plausible solution:

Problem: XPUB socket filters out duplicate subscriptions (deliberate design). However
this makes it impossible to do subscription-based intelligence. See http://
lists.zeromq.org/pipermail/zeromq-dev/2012-October/018838.html for a use case.
Solution: make this behavior configurable with a socket option.

Then it was naming time. The API sits in include/zmq.h, so this is where I added the
option name. When you invent a concept in an API or anywhere, please take a moment
to choose a name that is explicit and short and obvious. Don’t fall back on generic names
that require additional context to understand. You have one chance to tell the reader
what your concept is and does. A name like ZMQ_SUBSCRIPTION_FORWARDING_FLAG is
terrible. It technically kind of aims in the right direction, but it’s miserably long and
obscure. I chose ZMQ_XPUB_VERBOSE: short and explicit, and clearly an on/off switch,
with “off ” being the default setting.

Next, it was time to add a private property to the xpub class definition in xpub.hpp:
// If true, send all subscription messages upstream, not just
// unique ones
bool verbose;

and then lift some code from router.cpp to implement the xsetsockopt() method.
Finally, I changed the xread_activated() method to use this new option, and while I
was at it, I made that test on socket type more explicit too:

//  If the subscription is not a duplicate, store it so that it can be
//  passed to be used on next recv call
if (options.type == ZMQ_XPUB && (unique || verbose))
    pending.push_back (blob_t (data, size));

It built nicely the first time. This made me a little suspicious, but being lazy and jet-
lagged, I didn’t immediately make a test case to actually try out the change. The process

350 | Chapter 6: The ØMQ Community

https://zeromq.jira.com/browse/LIBZMQ-443


doesn’t demand that, even if usually I’d do it just to catch that inevitable 10% of mistakes
we all make. I did, however, document this new option on the doc/zmq_setsockopt.txt
man page. In the worst case, I added a patch that wasn’t really useful. But I certainly
didn’t break anything.

I didn’t implement a matching zmq_getsockopt() method, because “minimal” means
what it says. There’s no obvious use case for getting the value of an option that you
presumably just set in code. Symmetry isn’t a valid reason to double the size of a patch.
I did have to document the new option, because the process says, “All Public Contracts
SHOULD be documented.”

Committing the code, I pushed the patch to my forked repository (the “origin”):
Git commit -a -m "Fixed issue #443"
Git push origin master

Switching to the GitHub web interface, I went to my libzmq fork and pressed the big
“Pull Request” button at the top. GitHub asked me for a title, so I entered “Added
ZMQ_XPUB_VERBOSE option.” I’m not sure why it asks this as I made a neat commit
message, but hey, let’s go with the flow here.

This made a nice little pull request with two commits: the one I’d made a month ago on
the release notes, to prepare for the 3.2.1 release (a month passes so quickly when you
spend most of it in airports), and my fix for issue #443 (37 new lines of code). GitHub
lets you continue to make commits after you’ve kicked off a pull request. They get queued
up and merged in one go. That simplifies things, but the maintainer may refuse the
whole bundle based on one patch that doesn’t look valid.

Because Dan was waiting (at least in my highly optimistic imagination) for this fix, I
then went back to the zeromq-dev list and told him I’d made the patch, with a link to
the commit. The faster I get feedback, the better. It was 1 a.m. in South Korea as I made
this patch, so early evening in Europe, and morning in the States. You learn to count
time zones when you work with people across the world. Ian was in a conference, Mikko
was getting on a plane, and Chuck was probably in the office, but three hours later, Ian
merged the pull request.

After Ian merged the pull request, I resynchronized my fork with the upstream libzmq
repository. First, I added a “remote” that tells Git where this repository sits (just once,
in the directory where I’m working):

Git remote add upstream git://github.com/zeromq/libzmq.git

Then I pulled changes back from the upstream master and checked the Git log to verify:
Git pull --rebase upstream master
Git log

And that is pretty much it, in terms of how much Git one needs to learn and use to
contribute patches to libzmq. Six Git commands and some clicking on web pages. Most
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importantly to me as a naturally lazy, stupid, and easily confused developer, I don’t have
to learn Git’s internal models, and I never have to do anything involving those infernal
engines of structural complexity we call “Git branches.” Next up, the attempted assas‐
sination of those Git branches. Let’s live dangerously!

Git Branches Considered Harmful
One of Git’s most popular features is its branches. Almost all projects that use Git use
branches, and the selection of the “best” branching strategy is like a rite of passage for
an open source project. Vincent Driessen’s Git-flow is maybe the best known. It has base
branches (master, develop), feature branches, release branches, hotfix branches, and
support branches. Many teams have adopted Git-flow, which even has Git extensions to
support it. I’m a great believer in popular wisdom, but sometimes you have to recognize
mass delusion for what it is.

Here is a section of C4 that might have shocked you when you first read it:

The project SHALL NOT use topic branches for any reason. Personal forks MAY use
topic branches.

To be clear, it’s public branches in shared repositories that I’m talking about. Using
branches for private work, such as to work on different issues, appears to work well
enough, though it’s more complexity than I personally enjoy. To channel Stallman again:
“Your freedom to create complexity ends one inch from our shared workspace.”

Like the rest of C4, the rules on branches are not accidental. They came from our ex‐
perience making ØMQ, starting when Martin Sustrik and I rethought how to make
stable releases. We both love and appreciate simplicity (some people seem to have a
remarkable tolerance for complexity). We chatted for a while... I asked him, “I’m going
to start making a stable release, would it be OK for me to make a branch in the Git you’re
working in?” Martin didn’t like the idea. “OK, if I fork the repository, I can move patches
from your repo to that one.” That felt much better to both of us.

The response from many in the ØMQ community was shock and horror. People felt we
were being lazy and making contributors work harder to find the “right” repository.
Still, this seemed simple, and indeed it worked smoothly. The best part was that we each
worked as we wanted to, and whereas before the ØMQ repository had felt horribly
complex (and it wasn’t even anything like Git-flow), this felt simple. And it worked. The
only downside was that we lost a single unified history. Now, perhaps historians will
feel robbed, but I honestly can’t see that the historical minutiae of who changed what
and when, including every branch and experiment, are worth any significant pain or
friction.

People have gotten used to the “multiple repositories” approach in ØMQ, and we’ve
started using it in other projects quite successfully. My own opinion is that history will
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judge Git branches and patterns like Git-flow as a complex solution to imaginary prob‐
lems inherited from the days of Subversion and monolithic repositories.

More profoundly, and perhaps this is why the majority seems to be “wrong”: I think the
“branches versus forks” argument is really a deeper “design versus evolve” argument
about how to make software optimally. I’ll address that deeper argument in the next
section. For now, I’ll try to be scientific about my irrational hatred of branches by looking
at a number of criteria and comparing branches and forks in each one.

Simplicity Versus Complexity
The simpler, the better.

There is no inherent reason why branches are more complex than forks. However, Git-
flow uses five types of branch, whereas C4 uses two types of fork (development and
stable) and one branch (master). Circumstantial evidence thus indicates that branches
lead to more complexity than forks. For new users, it is definitely—and we’ve measured
this in practice—easier to learn to work with many repositories and no branches except
master.

Change Latency
The smaller and more rapid the delivery, the better.

Development branches seem to correlate strongly with large, slow, risky deliveries.
“Sorry, I have to merge this branch before we can test the new version” signals a break‐
down in process. It’s certainly not how C4 works, which is by focusing tightly on indi‐
vidual problems and their minimal solutions. Allowing branches in development raises
change latency. Forks have a different outcome: it’s up to the forker to ensure that his
changes merge cleanly, and to keep them simple so they won’t be rejected.

Learning Curve
The smoother the learning curve, the better.

Evidence definitely shows that learning to use Git branches is complex. For some people,
this is OK. For most developers, every cycle spent learning Git is a cycle lost on more
productive things. I’ve been told several times, by different people that I do not like
branches because I “never properly learned Git.” That is fair, but it is a criticism of the
tool, not the human.

Cost of Failure
The lower the cost of failure, the better.
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Branches demand more perfection from developers, since mistakes potentially affect
others. This raises the cost of failure. Forks make failure extremely cheap because lit‐
erally nothing that happens in a fork can affect others not using that fork.

Up-Front Coordination
The less need for up-front coordination, the better.

You can do a hostile fork. You cannot do a hostile branch. Branches depend on up-front
coordination, which is expensive and fragile. One person can veto the desires of a whole
group. For example, in the ØMQ community we were unable to agree on a Git branching
model for a year. We solved that by using forking instead. The problem went away.

Scalability
The more you can scale a project, the better.

The strong assumption in all branch strategies is that the repository is the project. But
there is a limit to how many people you can get in agreement to work together in one
repository. As I explained, the cost of up-front coordination can become fatal. A more
realistic project scales by allowing anyone to start their own repositories, and ensuring
these can work together. A project like ØMQ has dozens of repositories. Forking looks
more scalable than branching.

Surprise and Expectations
The less surprising, the better.

People expect branches and find forks to be uncommon and thus confusing. This is the
one aspect where branches win. If you use branches, a single patch will have the same
commit hash tag, whereas across forks the patch will have different hash tags. That
makes it harder to track patches as they cross forks, true. But seriously, having to track
hexadecimal hash tags is not a feature. It’s a bug. Sometimes better ways of working are
just surprising at first.

Economics of Participation
The more tangible the rewards, the better.

People like to own their work and get credit for it. This is much easier with forks than
with branches. Forks create more competition, in a healthy way, while branches suppress
competition and force people to collaborate and share credit. This may sound positive,
but in my experience it demotivates people. A branch isn’t a product you can “own,”
whereas a fork can be.
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Robustness in Conflict
The more a model can survive conflict, the better.

Like it or not, people fight over ego, status, beliefs, and theories of the world. Challenge
is a necessary part of science. If your organizational model depends on agreement, you
won’t survive the first real fight. Branches do not survive real arguments and fights,
whereas forks can be hostile and still benefit all parties. And this is indeed how free
software works.

Guarantees of Isolation
The stronger the isolation between production code and experiment, the better.

People make mistakes. I’ve seen experimental code pushed to mainline production by
error. I’ve seen people make bad panic changes under stress. But the real fault is in
allowing two entirely separate generations of product to exist in the same protected
space. If you can push to random-branch-x, you can push to master. Branches do not
guarantee isolation of production-critical code. Forks do.

Visibility
The more visible our work, the better.

Forks have watchers, issues, a README, and a wiki. Branches have none of these. People
try forks, build them, break them, patch them. Branches sit there until someone re‐
members to work on them. Forks have downloads and tarballs. Branches do not. When
we look for self-organization, the more visible and declarative the problems, the faster
and more accurately we can work.

Conclusions
In this section, I’ve listed a series of arguments, most of which came from fellow team
members. Here’s how it seems to break down: Git veterans insist that branches are the
way to work, whereas newcomers tend to feel intimidated when asked to navigate Git
branches. Git is not an easy tool to master. What we’ve discovered, accidentally, is that
when you stop using branches at all, Git becomes trivial to use. It literally comes down
to six commands (clone, remote, commit, log, push, and pull). Furthermore, a branch-
free process actually works; we’ve used it for a couple of years now with no visible
downside except surprise to the veterans, and growth of “single” projects over multiple
repositories.

If you can’t use forks, perhaps because your firm doesn’t trust GitHub’s private reposi‐
tories, then you can perhaps use topic branches, one per issue. However, you’ll still suffer
the costs of getting up-front consensus, low competitiveness, and risk of human error.
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Designing for Innovation
Let’s look at innovation, which Wikipedia defines as, “the development of new values
through solutions that meet new requirements, inarticulate needs, or old customer and
market needs in value adding new ways.” This really just means solving problems more
cheaply. It sounds straight-forward, but the history of collapsed tech giants proves that
it’s not. I’ll try to explain how teams so often get it wrong, and suggest a way for doing
innovation right.

The Tale of Two Bridges
Two old engineers were talking of their lives and boasting of their greatest projects. One
of the engineers explained how he had designed one of the greatest bridges ever made.

“We built it across a river gorge,” he told his friend. “It was wide and deep. We spent two
years studying the land and choosing designs and materials. We hired the best engineers
and spent another five years designing the bridge. We contracted the largest engineering
firms to build the structures, the towers, the tollbooths, and the roads that would connect
the bridge to the main highways. Dozens died during the construction. Under the road
level we had trains, and a special path for cyclists. That bridge represented years of my
life.”

The second man reflected for a while, then spoke. “One evening me and a friend got
drunk on vodka, and we threw a rope across a gorge,” he said. “Just a rope, tied to two
trees. There were two villages, one at each side. At first, people pulled packages across
that rope with a pulley and string. Then someone threw a second rope, and built a foot
walk. It was dangerous, but the kids loved it. A group of men then rebuilt that, made it
solid, and women started to cross, every day, with their produce. A market grew up on
one side of the bridge, and slowly that became a large town, since there was a lot of space
for houses. The rope bridge got replaced with a wooden bridge, to allow horses and
carts to cross. Then the town built a real stone bridge, with metal beams. Later, they
replaced the stone part with steel, and today there’s a suspension bridge standing in that
same spot.”

The first engineer was silent. “Funny thing,” he said, “my bridge was demolished about
10 years after we built it. Turns out it was built in the wrong place and no one wanted
to use it. Some guys had thrown a rope across the gorge, a few miles further downstream,
and that’s where everyone went.”

How ØMQ Lost Its Road Map
Presenting ØMQ at the Mix-IT conference in Lyon in early 2012, I was asked several
times for the “road map.” My answer was: there is no road map any longer. We had road
maps, and we deleted them. Instead of a few experts trying to lay out the next steps, we
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were allowing this to happen organically. The audience didn’t really like my answer. So
un-French.

However, the history of ØMQ makes it quite clear why road maps were problematic. In
the beginning, we had a small team making the library, with few contributors, and no
documented road map. As ØMQ grew more popular, and we switched to more con‐
tributors, users asked for road maps. So we collected our plans together and tried to
organize them into releases. Here, we wrote, is what will come in the next release.

As we rolled out releases, we hit the problem that it’s very easy to promise stuff, and
rather harder to make it as planned. For one thing, much of the work was voluntary,
and it’s not clear how you force volunteers to commit to a road map. But also, priorities
can shift dramatically over time. So we were making promises we could not keep, and
the real deliveries didn’t match the road maps.

The second problem was that by defining the road map, we in effect claimed territory,
making it harder for others to participate. People do prefer to contribute to changes
they believe were their idea. Writing down a list of things to do turns contribution into
a chore rather than an opportunity.

Finally, we saw changes in ØMQ that were quite traumatic (for example, incompatible
changes in APIs and protocols), and the road maps didn’t help with this, despite a lot
of discussion and effort to “do it right.” It was quite clear that we needed a different
approach for defining the change process.

Software engineers don’t like the notion that powerful, effective solutions can come into
existence without an intelligent designer actively thinking things through. And yet, no
one in that room in Lyon would have questioned evolution. A strange irony, and one I
wanted to explore further, as it underpins the direction the ØMQ community has taken
since the start of 2012.

In the dominant theory of innovation, brilliant individuals reflect on large problem sets
and then carefully and precisely create a solution. Sometimes they have “eureka” mo‐
ments where they “get” brilliantly simple answers to whole large problem sets. The
inventor and the process of invention are rare, precious, and can command a monopoly.
History is full of such heroic individuals. We owe them our modern world.

Looking more closely, however, you will see that the facts don’t match. History doesn’t
show lone inventors: it shows lucky people who steal or claim ownership of ideas that
are being worked on by many. It shows brilliant people striking lucky once, and then
spending decades on fruitless and pointless quests. The best known large-scale inven‐
tors, like Thomas Edison, were in fact just very good at managing systematic broad
research done by large teams. It’s like claiming that Steve Jobs invented every device
made by Apple. It is a nice myth, good for marketing, but utterly useless as practical
science.
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Recent history, much better documented and less easy to manipulate, shows this well.
The Internet is surely one of the most innovative and fast-moving areas of technology,
and one of the best documented. It has no inventor. Instead, it has a massive economy
of people who have carefully and progressively solved a long series of immediate prob‐
lems, documented their answers, and made those available to all. The innovative nature
of the Internet comes not from a small, select band of Einsteins. It comes from RFCs
anyone can use and improve, made by hundreds or thousands of smart, but not uniquely
smart, individuals. It comes from open source software anyone can use and improve. It
comes from sharing, scale of community, and the continuous accretion of good solu‐
tions and disposal of bad ones.

Here, thus, is an alternative theory of innovation:

1. There is an infinite problem/solution terrain.
2. This terrain changes over time according to external conditions.
3. We can only accurately perceive problems to which we are close.
4. We can rank the cost/benefit economics of problems using a market for solutions.
5. There is an optimal solution to any solvable problem.
6. We can approach this optimal solution heuristically and mechanically.
7. Our intelligence can make this process faster, but does not replace it.

There are a few corollaries to this:

• Individual creativity matters less than process. Smarter people may work faster, but
they may work in the wrong direction. It’s the collective vision of reality that keeps
us honest and relevant.

• We don’t need road maps if we have a good process. Functionality will emerge and
evolve over time as solutions compete for market share.

• We don’t invent solutions so much as discover them. All sympathies to the creative
soul. It’s just an information processing machine that likes to polish its own ego and
collect karma.

• Intelligence is a social effect, though it feels personal. A person cut off from others
eventually stops thinking. We can neither collect problems nor measure solutions
without other people.

• The size and diversity of the community is a key factor. Larger, more diverse com‐
munities collect more relevant problems, solve them more accurately, and do this
faster than a small expert group.
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So, when we trust the solitary experts, we see classic errors: focus on ideas, not problems;
focus on the wrong problems; misjudgments about the value of solving problems; not
using one’s own work; and many other misjudgments of the real market.

Can we turn the preceding theory into a reusable process? In late 2011, I started docu‐
menting C4 and similar contracts, and using them both in ØMQ and in closed-source
projects. The underlying process is something I call “Simplicity-Oriented Design,” or
SOD. This is a reproducible way of developing simple and elegant products. It organizes
people into flexible supply chains that are able to navigate a problem landscape rapidly
and cheaply. They do this by building, testing, and keeping or discarding minimal plau‐
sible solutions, called “patches.” Living products consist of long series of patches, applied
one atop the other.

SOD is relevant first because it’s how we evolve ØMQ. It’s also the basis for the design
process we will use in Chapter 7 to develop larger-scale ØMQ applications. Of course,
you can use any software architecture methodology with ØMQ.

To best understand how we ended up with SOD, let’s look at the alternatives.

Trash-Oriented Design
The most popular design process in large businesses seems to be Trash-Oriented De‐
sign, or TOD. TOD feeds off the belief that all we need to make money are great ideas.
It’s tenacious nonsense, but a powerful crutch for people who lack imagination. The
theory goes that ideas are rare, so the trick is to capture them. It’s like nonmusicians
being awed by a guitar player, not realizing that great talent is so cheap it literally plays
on the streets for coins.

The main output of TOD is expensive “ideation”: concepts, design documents, and
products that go straight into the trash can. It works as follows:

• The Creative People come up with long lists of “we could do X and Y.” I’ve seen
endlessly detailed lists of all the amazing things a product could do. We’ve all been
guilty of this. Once the creative work of idea generation has happened, it’s just a
matter of execution, of course.

• So, the managers and their consultants pass their brilliant ideas to designers, who
create acres of preciously refined design documents. The designers take the tens of
ideas the managers came up with, and turn them into hundreds of world-changing
designs.

• These designs get given to engineers, who scratch their heads and wonder who the
heck came up with such nonsense. They start to argue back, but the designs come
from up high, and really, it’s not up to engineers to argue with creative people and
expensive consultants.
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• So the engineers creep back to their cubicles, humiliated and threatened into build‐
ing the gigantic but oh-so-elegant junk heap. It is bone-breaking work because the
designs take no account of practical costs. Minor whims might take weeks of work
to build. As the project gets delayed, the managers bully the engineers into giving
up their evenings and weekends.

• Eventually, something resembling a working product makes it out of the door. It’s
creaky and fragile, complex and ugly. The designers curse the engineers for their
incompetence and pay more consultants to put lipstick onto the pig, and slowly the
product starts to look a little nicer.

• By this time, the managers have started to try to sell the product and they find,
shockingly, that no one wants it. Undaunted, they courageously build million-dollar
websites and ad campaigns to explain to the public why they absolutely need this
product. They do deals with other businesses to force the product on the lazy, stupid,
and ungrateful market.

• After 12 months of intense marketing, the product still isn’t making profits. Worse,
it suffers dramatic failures and gets branded in the press as a disaster. The company
quietly shelves it, fires the consultants, buys a competing product from a small
startup, and rebrands that as its own version 2. Hundreds of millions of dollars end
up in the trash.

• Meanwhile, another visionary manager somewhere in the organization drinks a
little too much tequila with some marketing people and has a Brilliant Idea.

Trash-Oriented Design would be a caricature if it wasn’t so common. Something like
19 out of 20 market-ready products built by large firms are failures (yes, 87% of statistics
are made up on the spot). The remaining 1 in 20 probably only succeeds because the
competitors are so bad and the marketing is so aggressive.

The main lessons of TOD are quite straightforward, but hard to swallow. They are:

• Ideas are cheap. No exceptions. There are no brilliant ideas. Anyone who tries to
start a discussion with “Oooh, we can do this too!” should be beaten down with all
the passion one reserves for traveling evangelists. It is like sitting in a cafe at the
foot of a mountain, drinking a hot chocolate and telling others, “Hey, I have a great
idea, we can climb that mountain! And build a chalet on top! With two saunas! And
a garden! Hey, and we can make it solar powered! Dude, that’s awesome! What color
should we paint it? Green! No, blue! OK, go and make it, I’ll stay here and make
spreadsheets and graphics!”

• The starting point for a good design process is to collect real problems that confront
real people. The second step is to evaluate these problems with the basic question,
“How much is it worth to solve this problem?” Having done that, we can collect the
set of problems that are worth solving.
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• Good solutions to real problems will succeed as products. Their success will depend
on how good and cheap the solution is, and how important the problem is (and
sadly, how big the marketing budgets are). But their success will also depend on
how much they demand in effort to use—in other words, how simple they are.

Now, having slain the dragon of utter irrelevance, we attack the demon of complexity.

Complexity-Oriented Design
Really good engineering teams and small firms can usually build decent products. But
the vast majority of products still end up being too complex and less successful than
they might be. This is because specialist teams, even the best, often stubbornly apply a
process I call Complexity-Oriented Design, or COD, which works as follows:

• Management correctly identifies some interesting and difficult problem with eco‐
nomic value. In doing so, they already leapfrog over any TOD team.

• The team, with enthusiasm, starts to build prototypes and core layers. These work
as designed, and thus encouraged, the team goes off into intense design and
architecture discussions, coming up with elegant schemas that look beautiful and
solid.

• Management comes back and challenges the team with yet more difficult problems.
We tend to equate cost with value, so the harder and more expensive to solve the
problem is, the more the solution should be worth, in their minds.

• The team, being engineers and thus loving to build stuff, build stuff. They build
and build and build and end up with massive, perfectly designed complexity.

• The products go to market, and the market scratches its head and asks, “Seriously,
is this the best you can do?” People do use the products, especially if they aren’t
spending their own money in climbing the learning curve.

• Management gets positive feedback from its larger customers, who share the same
idea that high cost (in training and use) means high value, and so continues to push
the process.

• Meanwhile somewhere across the world, a small team is solving the same problem
using a better process, and a year later smashes the market to little pieces.

COD is characterized by a team obsessively solving the wrong problems in a form of
collective delusion. COD products tend to be large, ambitious, complex, and unpopular.
Much open source software is the output of COD processes. It is insanely hard for
engineers to stop extending a design to cover more potential problems. They argue,
“What if someone wants to do X?” but never ask themselves, “What is the real value of
solving X?”
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A good example of COD in practice is Bluetooth, a complex, over-designed set of pro‐
tocols that users hate. It continues to exist only because in a massively patented industry
there are no real alternatives. Bluetooth is perfectly secure, which is close to pointless
for a proximity protocol. At the same time, it lacks a standard API for developers,
meaning it’s really costly to use Bluetooth in applications.

On the #zeromq IRC channel, Wintre once wrote of how enraged he was many years
ago when he “found that XMMS 2 had a working plugin system but could not actually
play music.”

COD is a form of large-scale “rabbit-holing,” in which designers and engineers cannot
distance themselves from the technical details of their work. They add more and more
features, utterly misreading the economics of their work.

The main lessons of COD are also simple, but hard for experts to swallow. They are:

• Making stuff that you don’t immediately have a need for is pointless. It doesn’t matter
how talented or brilliant you are, if you just sit down and make stuff people are not
actually asking for, you are most likely wasting your time.

• Problems are not equal. Some are simple, and some are complex. Ironically, solving
the simpler problems often has more value to more people than solving the really
hard ones. If you allow engineers to just work on random things, they’ll mostly
focus on the most interesting but least worthwhile things.

• Engineers and designers love making stuff and decoration, and this inevitably leads
to complexity. It is crucial to have a “stop mechanism”: a way to set short, hard
deadlines that force people to make smaller, simpler answers to just the most crucial
problems.

Simplicity-Oriented Design
Finally, we come to the rare but precious Simplicity-Oriented Design, or SOD. This
process starts with a realization: we do not know what we have to make until after we
start making it. Coming up with ideas or large-scale designs isn’t just wasteful, it’s a
direct hindrance to designing the truly accurate solutions. The really juicy problems are
hidden like far valleys, and any activity except active scouting creates a fog that hides
those distant valleys. You need to keep mobile, pack light, and move fast.

SOD works as follows:

• We collect a set of interesting problems (by looking at how people use technology
or other products) and we line these up from simple to complex, looking for and
identifying patterns of use.
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• We take the simplest, most dramatic problem and we solve this with a minimal
plausible solution, or “patch.” Each patch solves exactly a genuine and agreed-upon
problem in a brutally minimal fashion.

• We apply one measure of quality to patches, namely, “Can this be done any more
simply while still solving the stated problem?” We can measure complexity in terms
of concepts and models that the user has to learn or guess in order to use the patch.
The fewer, the better. A perfect patch solves a problem with zero learning required
by the user.

• Our product development consists of a patch that solves the problem “we need a
proof of concept” and then evolves in an unbroken line to a mature series of prod‐
ucts, through hundreds or thousands of patches piled on top of each other.

• We do not do anything that is not a patch. We enforce this rule with formal processes
that demand that every activity or task is tied to a genuine and agreed-upon prob‐
lem, explicitly enunciated and documented.

• We build our projects into a supply chain where each project can provide problems
to its “suppliers” and receive patches in return. The supply chain creates the “stop
mechanism” because when people are impatiently waiting for an answer, we nec‐
essarily cut our work short.

• Individuals are free to work on any projects and provide patches at any place they
feel it’s worthwhile. No individuals “own” any project, except to enforce the formal
processes. A single project can have many variations, each a collection of different,
competing patches.

• Projects export formal and documented interfaces so that upstream (client) projects
are unaware of changes happening in supplier projects. Thus, multiple supplier
projects can compete for client projects, in effect creating a free and competitive
market.

• We tie our supply chain to real users and external clients, and we drive the whole
process by rapid cycles so that a problem received from outside users can be ana‐
lyzed, evaluated, and solved with a patch in a few hours.

• At every moment, from the very first patch, our product is shippable. This is es‐
sential, because a large proportion of patches will be wrong (10–30%), and only by
giving the product to users can we know which patches have become problems that
need solving.

SOD is a hill-climbing algorithm, a reliable way of finding optimal solutions to the most
significant problems in an unknown landscape. You don’t need to be a genius to use
SOD successfully, you just need to be able to see the difference between the fog of activity
and the progress toward new real problems.
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People have pointed out that hill-climbing algorithms have known limitations. One gets
stuck on local peaks, mainly. But this is nonetheless how life itself works: collecting tiny
incremental improvements over long periods of time. There is no intelligent designer.
We reduce the risk of local peaks by spreading out widely across the landscape, but it is
somewhat moot. The limitations aren’t optional, they are physical laws. The theory says,
this is how innovation really works, so it’s better to embrace it and work with it than to
try to work on the basis of magical thinking.

And in fact, once you see all innovation as more or less successful hill-climbing, you
realize why some teams and companies and products get stuck in a never-never land of
diminishing prospects. They simply don’t have the diversity and collective intelligence
to find better hills to climb. When Nokia killed its open source projects, it cut its own
throat.

A really good designer with a good team can use SOD to build world-class products,
rapidly and accurately. To get the most out of SOD, the designer has to use the product
continuously from day one, and develop his or her ability to smell out problems such
as inconsistency, surprising behavior, and other forms of friction. We naturally overlook
many annoyances, but a good designer picks these up and thinks about how to patch
them. Design is about removing friction in the use of a product.

In an open source setting, we do this work in public. There’s no “let’s open the code”
moment. Projects that do this are in my view missing the point of open source, which
is to engage your users in your exploration, and to build community around the seed
of the architecture.

Burnout
The ØMQ community has been and still is heavily dependent on pro bono individual
efforts. I’d like to think that everyone was compensated in some way for their contri‐
butions, and I believe that with ØMQ, contributing means gaining expertise in an ex‐
traordinarily valuable technology, which leads to improved professional options.

However, not all projects will be so lucky, and if you work with or in open source, you
should understand the risk of burnout that volunteers face. This applies to all pro bono
communities. In this section, I’ll explain what causes burnout, how to recognize it, how
to prevent it, and (if it happens) how to try to treat it. Disclaimer: I’m not a psychiatrist
and this section is based on my own experiences of working in pro bono contexts for
the last 20 years, including on free software projects and NGOs such as the FFII.

In a pro bono context, we’re expected to work without direct or obvious economic
incentive. That is, we sacrifice family life, professional advancement, free time, and
health in order to accomplish some goal we have decided to accomplish. In any project,
we need some kind of reward to make it worth continuing each day. In most pro bono
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projects the rewards are very indirect, superficially not economical at all. Mostly, we do
things because people say, “Hey, great!” Karma is a powerful motivator.

However, we are economic beings, and sooner or later, if a project costs us a great deal
and does not bring economic rewards of some kind (money, fame, a new job...), we start
to suffer. At a certain stage, it seems our subconscious simply gets disgusted and says,
“Enough is enough!” and refuses to go any further. If we try to force ourselves, we can
literally get sick.

This is what I call “burnout,” though the term is also used for other kinds of exhaustion.
Too much investment in a project with too little economic reward, for too long. We are
great at manipulating ourselves and others, and this is often part of the process that
leads to burnout. We tell ourselves that it’s for a good cause and that the other guy is
doing OK, so we should be able to as well.

When I got burned out on open source projects like Xitami, I remember clearly how I
felt. I simply stopped working on the project, refused to answer any more emails, and
told people to forget about it. You can tell when someone’s burned out. They go offline,
and everyone starts saying, “He’s acting strange... depressed, or tired....”

Diagnosis is simple. Have the victims worked a lot on a project that was not paying back
in any way? Did they make exceptional sacrifices? Did they lose or abandon their jobs
or studies to work on the project? If you’re answering “yes,” it’s burnout.

There are three simple tenets I’ve developed over the years to reduce the risk of burnout
in the teams I work with:

• No one is irreplaceable. Working solo on a critical or popular project—the concen‐
tration of responsibility on one person who cannot set her own limits—is probably
the main factor in burnout. It’s a management truism: if someone in your organi‐
zation is irreplaceable, get rid of him or her.

• We need day jobs to pay the bills. This can be hard, but it seems necessary. Getting
money from somewhere else makes it much easier to sustain a sacrificial project.

• People must be taught about burnout. This should be a basic course in colleges and
universities, as pro bono work becomes a more common way for young people to
experiment professionally.

When a person is working alone on a critical project, you know he is going blow his fuse
sooner or later. It’s actually fairly predictable: it will happen in something like 18–36
months, depending on the individuals and how much economic stress they face in their
private lives. I’ve not seen anyone burn out after half a year, nor last five years working
on an unrewarding project.
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There is a simple cure for burnout that works in at least some cases: get paid decently
for your work. However, this pretty much destroys the freedom of movement (across
that infinite problem landscape) that the volunteer enjoys.

Patterns for Success
I’ll end this code-free chapter with a series of patterns for success in software engineer‐
ing. They aim to capture the essence of what divides glorious success from tragic failure.
They were described as “religious maniacal dogma” by a manager, and “anything else
would be effing insane” by a colleague, in a single day. For me, they are science. But treat
the Lazy Perfectionist and others as tools to use, sharpen, and throw away if something
better comes along.

The Lazy Perfectionist
Never design anything that’s not a precise, minimal answer to a problem we can identify
and have to solve.

The Lazy Perfectionist spends his idle time observing others and identifying problems
that are worth solving. He looks for agreement on those problems, always asking, “What
is the real problem?” Then he moves, precisely and minimally, to build (or get others
to build) a usable answer to one problem. He uses, or gets others to use, those solutions.
And he repeats this until there are no problems left to solve, or time or money runs out.

The Benevolent Tyrant
The control of a large force is the same principle as the control of a few men: it is merely
a question of dividing up their numbers. — Sun Tzu

The Benevolent Tyrant divides large problems into smaller ones and throws them at
groups to focus on. He brokers contracts between these groups, in the form of APIs and
the “unprotocols” we’ll read about in the next chapter. The Benevolent Tyrant constructs
a supply chain that starts with problems and results in usable solutions. He is ruthless
about how the supply chain works, but does not tell people what to work on, or how to
do their work.

The Earth and Sky
The ideal team consists of two sides: one writing code, and one providing feedback.

The Earth and Sky work together as a whole, in close proximity, but they communicate
formally through issue tracking. Sky seeks out problems from others and from personal
use of the product and feeds these to Earth. Earth rapidly answers with testable solutions.
Earth and Sky can work through dozens of issues in a day. Sky talks to other users, and
Earth talks to other developers. Earth and Sky may be two people, or two small groups.
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The Open Door
The accuracy of knowledge comes from diversity.

The Open Door accepts contributions from almost anyone. She does not argue quality
or direction, instead allowing others to argue that and to get more engaged. She calcu‐
lates that even a troll will bring more diverse opinions to the group. She lets the group
form its opinion about what goes into stable code, and she enforces this opinion with
the help of a Benevolent Tyrant.

The Laughing Clown
Perfection precludes participation.

The Laughing Clown, often acting as the Happy Failure, makes no claim to high com‐
petence. Instead, his antics and bumbling attempts provoke others into rescuing him
from his own tragedy. Somehow, however, he always identifies the right problems to
solve. People are so busy proving him wrong, they don’t realize they’re doing valuable
work.

The Mindful General
Make no plans. Set goals, develop strategies and tactics.

The Mindful General operates in unknown territory, solving problems that are hidden
until they are nearby. Thus he makes no plans, but seeks opportunities, then exploits
them rapidly and accurately. He develops tactics and strategies in the field, and teaches
these to his men so they can move independently, and together.

The Social Engineer
If you know the enemy and know yourself, you need not fear the result of a hundred
battles. — Sun Tzu

The Social Engineer reads the hearts and minds of those she works with and for. She
asks of everyone, “What makes this person angry, insecure, argumentative, calm, hap‐
py?” She studies their moods and dispositions. With this knowledge she can encourage
those who are useful, and discourage those who are not. The Social Engineer never acts
on her own emotions.

The Constant Gardener
He will win whose army is animated by the same spirit throughout all its ranks. — Sun
Tzu

The Constant Gardener grows a process from a small seed, step-by-step, as more people
come into the project. He makes every change for a precise reason, with agreement from
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everyone. He never imposes a process from above, but lets others come to consensus,
and then he enforces that consensus. In this way, everyone owns the process together,
and by owning it, they are attached to it.

The Rolling Stone
After crossing a river, you should get far away from it. — Sun Tzu

The Rolling Stone accepts her own mortality and transience. She has no attachment to
her past work. She accepts that all that we make is destined for the trash can; it is just a
matter of time. With precise, minimal investments, she can move rapidly away from the
past and stay focused on the present and near future. Above all, she has no ego and no
pride to be hurt by the actions of others.

The Pirate Gang
Code, like all knowledge, works best as collective—not private—property.

The Pirate Gang organizes freely around problems. It accepts authority insofar as au‐
thority provides goals and resources. The Pirate Gang owns and shares all it makes:
every work is fully remixable by others in the Pirate Gang. The gang moves rapidly as
new problems emerge, and it is quick to abandon old solutions if those stop being
relevant. No persons or groups can monopolize any part of the supply chain.

The Flash Mob
Water shapes its course according to the nature of the ground over which it flows. — Sun
Tzu

The Flash Mob comes together in space and time as needed, then disperses as soon as
it can. Physical closeness is essential for high-bandwidth communications, but over time
it creates technical ghettos, where Earth gets separated from Sky. The Flash Mob tends
to collect a lot of frequent flier miles.

The Canary Watcher
Pain is not, generally, a Good Sign.

The Canary Watcher measures the quality of an organization by his own pain level, and
the observed pain levels of those with whom he works. He brings new participants into
existing organizations so they can express the raw pain of the innocent. He may use
alcohol to get others to verbalize their pain points. He asks others, and himself, “Are
you happy in this process, and if not, why not?” When an organization causes pain in
himself or others, he treats that as a problem to be fixed. People should feel joy in their
work.
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The Hangman
Never interrupt others when they are making mistakes.

The Hangman knows that we learn only by making mistakes, and he gives others copious
rope with which to learn. He only pulls the rope gently, when it’s time. A little tug to
remind the other of her precarious position. Allowing others to learn by failure gives
the good reason to stay, and the bad an excuse to leave. The Hangman is endlessly patient,
because there is no shortcut to the learning process.

The Historian
Keeping the public record may be tedious, but it’s the only way to prevent collusion.

The Historian forces discussion into the public view, to prevent collusion to own areas
of work. The Pirate Gang depends on full and equal communications that do not depend
on momentary presence. No one really reads the archives, but the simple possibility
stops most abuses. The Historian encourages the right tool for the job: email for tran‐
sient discussions, IRC for chatter, wikis for knowledge, issue tracking for recording
opportunities.

The Provocateur
When a man knows he is to be hanged in a fortnight, it concentrates his mind wonder‐
fully. — Samuel Johnson

The Provocateur creates deadlines, enemies, and the occasional impossibility. Teams
work best when they don’t have time for the crap. Deadlines bring people together and
focus the collective mind. An external enemy can move a passive team into action. The
Provocateur never takes the deadline too seriously. The product is always ready to ship.
But she gently reminds the team of the stakes: fail, and we all look for other jobs.

The Mystic
When people argue or complain, just write them a Sun Tzu quotation. — Mikko Kop‐
panen

The Mystic never argues directly. He knows that to argue with an emotional person only
creates more emotion. Instead, he sidesteps the discussion. It’s hard to be angry at a
Chinese general, especially when he has been dead for 2,400 years. The Mystic plays
Hangman when people insist on the right to get it wrong.
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CHAPTER 7

Advanced Architecture Using ØMQ

One of the effects of using ØMQ at a large scale is that because we can build distributed
architectures so much faster than before, the limitations of our software engineering
processes become more visible. Mistakes in slow motion are often harder to see (or
rather, easier to rationalize away).

My experience when teaching ØMQ to groups of engineers is that it’s rarely sufficient
to just explain how ØMQ works and then expect them to start building successful
products. Like any technology that removes friction, ØMQ opens the door to big blun‐
ders. If ØMQ is the ACME rocket-propelled shoe of distributed software development,
a lot of us are like Wile E. Coyote, slamming full speed into the proverbial desert cliff.

We saw in Chapter 6that ØMQ itself uses a formal process for changes. One reason we
built this process, over some years, was to stop the repeated cliff-slamming that hap‐
pened in the library itself.

Partially it’s about slowing down, and partially it’s about ensuring that when you move
fast, you go—and this is essential, dear reader—in the right direction. It’s my standard
interview riddle: what’s the rarest property of any software system, the absolute hardest
thing to get right, the lack of which causes the slow or fast death of the vast majority of
projects? The answer is not code quality, funding, performance, or even (though it’s a
close answer) popularity. The answer is accuracy.

Accuracy is half the challenge, and that applies to any engineering work. The other half
is specific distributed computing itself, which sets up a whole range of problems that
we need to solve if we are going to create large architectures. We need to encode and
decode data, and we need to define protocols to connect clients and servers; we need to
secure these protocols against attackers, and we need to make stacks that are robust.
Asynchronous messaging is hard to get right.
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This chapter will tackle these challenges, starting with a basic reappraisal of how to
design and build software and ending with a fully formed example of a distributed
application for large-scale file distribution.

We’ll cover the following juicy topics:

• How to go from idea to working prototype safely (the MOPED pattern)
• Different ways to serialize your data as ØMQ messages
• How to code-generate binary serialization codecs
• How to build custom code generators using the GSL tool
• How to write and license a protocol specification
• How to perform fast restartable file transfer over ØMQ
• How to accomplish credit-based flow control
• How to build protocol servers and clients as state machines
• How to make a secure protocol over ØMQ
• A large-scale file publishing system (FileMQ)

Message-Oriented Pattern for Elastic Design
In this section I’ll introduce the Message-Oriented Pattern for Elastic Design (MOPED),
a software engineering pattern for ØMQ architectures. It was either “MOPED” or
“BIKE,” the Backronym-Induced Kinetic Effect. That’s short for “BICICLE,” the
Backronym-Inflated See if I Care Less Effect. In life, one learns to go with the least
embarrassing choice.

If you’ve been reading the book carefully, you’ll have seen MOPED in action already.
The development of the Majordomo pattern in Chapter 4 is a near-perfect case. But cute
names are worth a thousand words.

The goal of MOPED is to define a process by which we can take a rough use case for a
new distributed application, and go from “Hello World” to fully working prototype in
any language in under a week.

Using MOPED, you grow, more than build, a working ØMQ architecture from the
ground up with minimal risk of failure. By focusing on the contracts rather than the
implementations, you avoid the risk of premature optimization. By driving the design
process through ultra-short test-based cycles, you can be more certain that what you
have works before you add more.

We can turn this into five real steps:

1. Internalize the ØMQ semantics.

372 | Chapter 7: Advanced Architecture Using ØMQ



2. Draw a rough architecture.
3. Decide on the contracts.
4. Make a minimal end-to-end solution.
5. Solve one problem and repeat.

Step 1: Internalize the Semantics
You must learn and digest ØMQ’s “language,” that is, the socket patterns and how they
work. The only way to learn a language is to use it. There’s no way to avoid this invest‐
ment, no tapes you can play while you sleep, no chips you can plug in to magically
become smarter. Read Part I of this book, work through the code examples, understand
what’s going on, and (most importantly) write some examples yourself, and then throw
them away.

At a certain point, you’ll feel a clicking noise in your brain. Maybe you’ll have a weird
chili-induced dream where little ØMQ tasks run around trying to eat you alive. Maybe
you’ll just think, “Aaahh, so that’s what it means!” If we did our work right, it should
take two to three days. However long it takes, until you start thinking in terms of ØMQ
sockets and patterns, you’re not ready for step 2.

Step 2: Draw a Rough Architecture
From my experience, it’s essential to be able to draw the core of your architecture. This
helps others understand what you are thinking, but it also helps you think through your
ideas. There is really no better way to explain your ideas to your colleagues than using
a whiteboard.

You don’t need to get it right, and you don’t need to make it complete. What you do
need to do is break your architecture into pieces that make sense. The nice thing about
software architecture (as compared to constructing bridges) is that you really can replace
entire layers cheaply, if you’ve isolated them.

Start by choosing the core problem that you are going to solve. Ignore anything that’s
not essential to that problem: you will add it in later. The problem should be an end-to-
end problem: the rope across the gorge.

For example, a client asked us to make a supercomputing cluster with ØMQ. Clients
create bundles of work, which are sent to a broker that distributes them to workers
(running on fast graphics processors), collects the results back, and returns them to the
client.

The rope across the gorge is one client talking to a broker talking to one worker. We
draw three boxes: client, broker, and worker. We draw arrows from box to box showing
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the request flowing one way, and the response flowing back. It’s just like the many dia‐
grams we saw in earlier chapters.

Be minimalistic. Our goal is not to define a real architecture, but to throw a rope across
the gorge to bootstrap our process. We’ll make the architecture progressively more
complete and realistic over time: e.g., adding multiple workers, adding client and worker
APIs, handling failures, and so on.

Step 3: Decide on the Contracts
A good software architecture depends on contracts, and the more explicit they are, the
better things scale. You don’t care how things happen; you only care about the results.
If I send an email, I don’t care how it arrives at its destination, as long as the contract is
respected (it arrives within a few minutes, it’s not modified, and it doesn’t get lost).

And to build a large system that works well, you must focus on the contracts before the
implementations. It may sound obvious, but all too often people forget or ignore this,
or are just too shy to impose themselves. I wish I could say ØMQ had done this properly,
but for years our public contracts were second-rate afterthoughts instead of primary
in-your-face pieces of work.

So what is a contract in a distributed system? There are, in my experience, two types of
contract:

• The APIs to client applications. Remember the Psychological Elements of Software
Architecture from Chapter 6. The APIs need to be as absolutely simple, consistent,
and familiar as possible. Yes, you can generate API documentation from code, but
you must first design it, and designing an API is often hard.

• The protocols that connect the pieces. It sounds like rocket science, but it’s really
just a simple trick, and one that ØMQ makes particularly easy. In fact, they’re so
simple to write, and need so little bureaucracy, that I call them “unprotocols.”

You’ll write minimal contracts that are mostly just place markers. Most messages and
most API methods will be missing or empty. You’ll also want to write down any known
technical requirements in terms of throughput, latency, reliability, etc. These are the
criteria on which you will accept, or reject, any particular piece of work.

Step 4: Write a Minimal End-to-End Solution
The goal is to test out the overall architecture as rapidly as possible. Make skeleton
applications that call the APIs, and skeleton stacks that implement both sides of every
protocol. You want to get a working end-to-end “Hello World” as soon as you can. You
want to be able to test code as you write it and to weed out the broken assumptions and
inevitable errors you make. Do not go off and spend six months writing a test suite!
Instead, make a minimal bare-bones application that uses your still-hypothetical API.
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If you design an API wearing the hat of the person who implements it, you’ll start to
think of performance, features, options, and so on. You’ll make it more complex, more
irregular, and more surprising than it should be. But—and here’s the trick (it’s a cheap
one, was big in Japan)—if you design an API while wearing the hat of the person who
has to actually write apps that use it, you’ll use all that laziness and fear to your
advantage.

Write down the protocols on a wiki or shared document in such a way that you can
explain every command clearly, without too much detail. Strip off any real
functionality, because it’ll only create inertia that makes it harder to move stuff around.
You can always add weight. Don’t spend effort defining formal message structures: pass
the minimum around in the simplest possible fashion using ØMQ’s multipart framing.

Our goal is to get the simplest test case working, without any avoidable functionality.
Everything you can chop off the list of things to do, you chop. Ignore the groans from
colleagues and bosses. I’ll repeat this once again: you can always add functionality, that’s
relatively easy. But aim to keep the overall weight to a minimum.

Step 5: Solve One Problem and Repeat
You’re now in the happy cycle of issue-driven development, where you can start to solve
tangible problems instead of adding features. Write issues that state a clear problem,
and propose a solution for each. As you design the API, keep in mind your standards
for names, consistency, and behavior. Writing these down in prose often helps keep
them sane.

From here, every single change you make to the architecture and code can be proven
by running the test case, watching it not work, making the change, and then watching
it work.

Now you can go through the whole cycle (extending the test case, fixing the API, up‐
dating the protocol, extending the code, as needed), taking problems one at a time and
testing the solutions individually. It should take about 10–30 minutes for each cycle,
with the occasional spike due to random confusion.

Unprotocols
When this man thinks of protocols, this man thinks of massive documents written by
committees, over years. This man thinks of the IETF, W3C, ISO, Oasis, regulatory cap‐
ture, FRAND patent license disputes... and soon after, this man thinks of retirement to
a nice little farm in northern Bolivia, up in the mountains where the only other need‐
lessly stubborn beings are the goats chewing up the coffee plants.

Now, I’ve nothing personal against committees. The useless folk need a place to sit out
their lives with minimal risk of reproducing; after all, that only seems fair. But most
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committee protocols tend toward complexity (the ones that work), or trash (the ones
we don’t talk about). There are a few reasons for this. One is the amount of money at
stake. More money means more people who want their particular prejudices and as‐
sumptions expressed in prose. But the second reason is the lack of good abstractions on
which to build. People have tried to build reusable protocol abstractions, like BEEP.
Most did not stick, and those that did, like SOAP and XMPP, are on the complex side
of things.

It used to be, decades ago, when the Internet was a young and modest thing, that pro‐
tocols were short and sweet. They weren’t even “standards,” but “requests for comments,”
which is as modest as you can get. It’s been one of my goals since we started iMatix in
1995 to find a way for ordinary people like me to write small, accurate protocols without
the overhead of the committees.

Now, ØMQ does appear to provide a living, successful protocol abstraction layer with
its “we’ll carry multipart messages over random transports” way of working. Because
ØMQ deals silently with framing, connections, and routing, it’s surprisingly easy to
write full protocol specs on top of ØMQ, and in Chapter 4 and Chapter 5 I showed how
to do this.

Somewhere around mid-2007, I kicked off the Digital Standards Organization
to define new, simpler ways of producing little standards, protocols, and specifications.
In my defense, it was a quiet summer. At the time, I wrote that a new specification should
take “minutes to explain, hours to design, days to write, weeks to prove, months to
become mature, and years to replace.”

In 2010, we started calling such little specifications “unprotocols,” which some people
might mistake for a dastardly plan for world domination by a shadowy international
organization, but which really just means “protocols without the goats.”

Contracts Are Hard
Writing contracts is perhaps the most difficult part of large-scale architecture. With
unprotocols, we remove as much of the unnecessary friction as possible. What remains
is still a hard set of problems to solve. A good contract (be it an API, a protocol, or a
rental agreement) has to be simple, unambiguous, technically sound, and easy to en‐
force.

Like any technical skill, it’s something you have to learn and practice. There are a series
of specifications on the ØMQ RFC site, which are worth reading and using as a basis
for your own specifications when you find yourself in need.

I’ll try to summarize what I’ve learned from my experience as a protocol writer:

• Start simple, and develop your specifications step-by-step. Don’t solve problems
you don’t have in front of you.
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• Use very clear and consistent language. A protocol may often break down into
commands and fields; use clear, short names for these entities.

• Try to avoid inventing concepts. Reuse anything you can from existing specifica‐
tions. Use terminology that is obvious and clear to your audience.

• Make nothing for which you cannot demonstrate an immediate need. Your speci‐
fication solves problems; it does not provide features. Make the simplest plausible
solution for each problem that you identify.

• Implement your protocol as you build it, so that you are aware of the technical
consequences of each choice. Use a language that makes it hard (like C) and not
one that makes it easy (like Python).

• Test your specification on other people as you build it . Your best feedback on a
specification is when someone else tries to implement it without the assumptions
and knowledge that you have in your head.

• Cross-test rapidly and consistently, throwing others’ clients against your servers
and vice versa.

• Be prepared to throw it out and start again as often as needed. Plan for this, by
layering your architecture so that, e.g., you can keep an API but change the under‐
lying protocols.

• Only use constructs that are independent of programming language and operating
system.

• Solve a large problem in layers, making each layer an independent specification.
Beware of creating monolithic protocols. Think about how reusable each layer is.
Think about how different teams could build competing specifications at each layer.

And above all, write it down. Code is not a specification. The point about a written
specification is that no matter how weak it is, it can be systematically improved. By
writing down a specification you will be able to spot inconsistencies and gray areas that
are impossible to see in code.

If this sounds hard, don’t worry too much. One of the less obvious benefits of using
ØMQ is that it reduces the effort necessary to write a protocol spec by perhaps 90% or
more, because it already handles framing, routing, queuing, and so on. This means that
you can experiment rapidly, make mistakes cheaply, and thus learn rapidly.

How to Write Unprotocols
When you start to write an unprotocol specification document, stick to a consistent
structure so that your readers know what to expect. Here is the structure I use:

• Cover section: with a one-line summary, URL to the spec, formal name, version,
who to blame.
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• License for the text: absolutely needed for public specifications.
• The change process: i.e., how can I as a reader fix problems in the specification?
• Use of language: MUST, MAY, SHOULD, etc., with a reference to RFC 2119.
• Maturity indicator: is this an experimental, draft, stable, legacy, or retired version?
• Goals of the protocol: what problems is it trying to solve?
• Formal grammar: prevents arguments due to different interpretations of the text.
• Technical explanation: semantics of each message, error handling, etc.
• Security discussion: explicitly, how secure the protocol is.
• References: to other documents, protocols, etc.

Writing clear, expressive text is hard. Do avoid trying to describe implementations of
the protocol. Remember that you’re writing a contract. Describe in clear language the
obligations and expectations of each party, the level of obligation, and the penalties for
breaking the rules. Do not try to define how each party honors its part of the deal.

Here are some key points about unprotocols:

• As long as your process is open, you don’t need a committee: just make clean,
minimal designs and make sure anyone is free to improve them.

• If you use an existing license, you won’t have legal worries afterwards. I use GPLv3
for my public specifications and advise you to do the same. For in-house work,
standard copyright is perfect.

• Formality is valuable. That is, learn to write a formal grammar such as ABNF (Aug‐
mented Backus-Naur Form) and use this to fully document your messages.

• Use a market-driven life-cycle process like Digistan’s COSS so that people place the
right weight on your specs as they mature (or don’t).

Why Use the GPLv3 for Public Specifications?
The license you choose is particularly crucial for public specifications. Traditionally,
protocols are published under custom licenses, where the authors own the text and
derived works are forbidden. This sounds great (after all, who wants to see a protocol
forked?), but it is in fact highly risky. A protocol committee is vulnerable to capture,
and if the protocol is important and valuable, the incentive for capture grows.

Once captured, like some wild animals, an important protocol will often die. The real
problem is that there’s no way to free a captive protocol published under a conventional
license. The word “free” isn’t just an adjective to describe speech or air, it’s also a verb,
and the right to fork a work against the wishes of the owner is essential to avoiding
capture.
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Let me explain this in shorter words. Imagine that iMatix writes a protocol today, that’s
really amazing and popular. We publish the spec, and many people implement it. Those
implementations are fast and awesome, and free as in beer. They start to threaten an
existing business, whose expensive commercial product is slower and can’t compete. So
one day some representatives of that business come to our iMatix office in Maetang-
Dong, South Korea, and offer to buy our firm. Because we’re spending vast amounts on
sushi and beer, we accept gratefully. With evil laughter, the new owners of the protocol
stop improving the public version, close the specification, and add patented extensions.
Their new products support this, and they take over the whole market.

When you contribute to an open source project, you really want to know your hard
work won’t be used against you by a closed-source competitor. This is why the GPL
beats the “more permissive” BSD/MIT/X11 licenses. These licenses give permission to
cheat. This applies just as much to protocols as to source code.

When you implement a GPLv3 specification, your applications are, of course, yours,
and they can be licensed any way you like. But you can be certain of two things. First,
that specification will never be embraced and extended into proprietary forms. Any
derived forms of the specification must also be GPLv3. And second, no one who ever
implements or uses the protocol will ever launch a patent attack on anything it covers.

Using ABNF
My advice when writing protocol specs is to learn, and use, a formal grammar. It’s just
less hassle than allowing others to interpret what you mean, and then recover from the
inevitable false assumptions. The target of your grammar is other people: engineers, not
compilers.

My favorite grammar is ABNF, as defined by RFC 2234, because it is probably the sim‐
plest and most widely used formal language for defining bidirectional communications
protocols. Most IETF (Internet Engineering Task Force) specifications use ABNF, which
is good company to be in.

I’ll give a 30-second crash course in writing ABNF here. It may remind you of regular
expressions. You write the grammar as rules. Each rule takes the form “name = elements”.
An element can be another rule (which you define below as another rule), or a pre-
defined “terminal” (like CRLF, OCTET), or a number. The RFC lists all the terminals.
To define alternative elements, use “element / element”. To define repetition, use “*”
(read the RFC, because it’s not intuitive). To group elements, use parentheses.

I’m not sure if this extension is proper, but I then prefix elements with “C:” and “S:” to
indicate whether they come from the client or server.

Here’s a piece of ABNF for an unprotocol called NOM that we’ll come back to later in
this chapter:

Unprotocols | 379

http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2234.txt


nom-protocol    = open-peering *use-peering

open-peering    = C:OHAI ( S:OHAI-OK / S:WTF )

use-peering     = C:ICANHAZ
                / S:CHEEZBURGER
                / C:HUGZ S:HUGZ-OK
                / S:HUGZ C:HUGZ-OK

I’ve actually used these keywords (OHAI, WTF) in commercial projects. They make
developers giggly and happy. They confuse management. They’re good in first drafts
that you want to throw away later.

The Cheap or Nasty Pattern
There is a general lesson I’ve learned over a couple of decades of writing protocols small
and large. I call this the “Cheap or Nasty” pattern: you can often split your work into
two aspects or layers, and solve these separately—one using a “cheap” approach, the
other using a “nasty” approach.

The key insight to making Cheap or Nasty work is to realize that many protocols mix a
low-volume chatty part for control, and a high-volume asynchronous part for data. For
instance, HTTP has a chatty dialog to authenticate and get pages, and an asynchronous
dialog to stream data. FTP actually splits this over two ports; one port for control and
one port for data.

Protocol designers who don’t separate control from data tend to make horrid protocols,
because the trade-offs in the two cases are almost totally opposed. What is perfect for
control is bad for data, and what’s ideal for data just doesn’t work for control. This is
especially true when we want high performance at the same time as extensibility and
good error checking.

Let’s break this down using a classic client/server use case. The client connects to the
server and authenticates. It then asks for some resource. The server chats back, then
starts to send data back to the client. Eventually, the client disconnects or the server
finishes, and the conversation is over.

Now, before starting to design these messages, stop and think, and let’s compare the
control dialog and the data flow:

• The control dialog lasts a short time and involves very few messages. The data flow
could last for hours or days and involve billions of messages.

• The control dialog is where all the “normal” errors happen, e.g., not authenticated,
not found, payment required, censored, and so on. Any errors that happen during
the data flow are exceptional (disk full, server crashed).
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• The control dialog is where things will change over time as we add more options,
parameters, and so on. The data flow should barely change over time because the
semantics of a resource are fairly constant over time.

• The control dialog is essentially a synchronous request-reply dialog. The data flow
is essentially a one-way asynchronous flow.

These differences are critical. Thus, when we talk about performance, it applies only to
data flows. It’s pathological to design a one-time control dialog to be fast. When we talk
about the cost of serialization, this only applies to the data flow. The cost of encoding/
decoding the control flow could be huge, and for many cases it would not change a
thing. So, we encode control using Cheap, and we encode data flows using Nasty.

Cheap is essentially synchronous, verbose, descriptive, and flexible. A Cheap message
is full of rich information that can change for each application. Your goal as designer is
to make this information easy to encode and parse, trivial to extend for experimentation
or growth, and highly robust against change, both forwards and backwards. The Cheap
part of a protocol looks like this:

• It uses a simple self-describing structured encoding for data, be it XML, JSON,
HTTP-style headers, or some other. Any encoding is fine, so as long as there are
standard simple parsers for it in your target languages.

• It uses a straight request-reply model where each request has a success/failure reply.
This makes it trivial to write correct clients and servers for a Cheap dialog.

• It doesn’t try, even marginally, to be fast. Performance doesn’t matter when you do
something only once or a few times per session.

A Cheap parser is something you take off the shelf and throw data at. It shouldn’t crash,
shouldn’t leak memory, should be highly tolerant, and should be relatively simple to
work with. That’s it.

Nasty, however, is essentially asynchronous, terse, silent, and inflexible. A Nasty message
carries minimal information that practically never changes. Your goal as designer is to
make this information ultra-fast to parse, and possibly even impossible to extend and
experiment with. The ideal Nasty pattern looks like this:

• It uses a hand-optimized binary layout for data, where every bit is precisely crafted.
• It uses a pure asynchronous model, where one or both peers send data without

acknowledgments (or if they do use these, they use sneaky asynchronous techniques
like credit-based flow control).

• It doesn’t try, even marginally, to be friendly. Performance is all that matters when
you are doing something several million times per second.
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A Nasty parser is something you write by hand, which writes or reads bits, bytes, words,
and integers individually and precisely. It rejects anything it doesn’t like, does no mem‐
ory allocations at all, and never crashes.

Cheap or Nasty isn’t a universal pattern; not all protocols have this dichotomy. Also,
how you use Cheap or Nasty will depend on your circumstances. In some cases, it can
be two parts of a single protocol. In other cases it can be two protocols, one layered on
top of the other.

Error handling

Using Cheap or Nasty makes error handling rather simpler. You have two kinds of
commands and two ways to signal errors:
Synchronous control commands

Errors are normal: every request has a response that is either OK or an error
response.

Asynchronous data commands
Errors are exceptional: bad commands either are discarded silently or cause the
whole connection to be closed.

It’s usually good to distinguish a few kinds of errors, but as always keep it minimal and
add only what you need.

Serializing Your Data
When we start to design a protocol, one of the first questions we face is how to encode
data on the wire. There is no universal answer. There are a half-dozen different ways to
serialize data, each with pros and cons. We’ll explore some of these.

ØMQ Framing
The simplest and most widely used serialization format for ØMQ applications is ØMQ’s
own multipart framing. For example, here is how the Majordomo Protocol defines a
request:

Frame 0: Empty frame
Frame 1: "MDPW01" (six bytes, representing MDP/Worker v0.1)
Frame 2: 0x02 (one byte, representing REQUEST)
Frame 3: Client address (envelope stack)
Frame 4: Empty (zero bytes, envelope delimiter)
Frames 5+: Request body (opaque binary)

Reading and writing this in code is easy. But this is a classic example of a control flow
(the whole of MDP is a classic example, really, as it’s a chatty request-reply protocol).
When we came to improve MDP for the second version, we had to change this framing.
Excellent, we broke all existing implementations!
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Backward compatibility is hard, but using ØMQ framing for control flows does not
help. Here’s how I should have designed this protocol if I’d followed my own advice (and
I’ll fix this in the next version). It’s split into a Cheap part and a Nasty part, and it uses
the ØMQ framing to separate these:

Frame 0: "MDP/2.0" for protocol name and version
Frame 1: command header
Frame 2: command body

Where we’d expect to parse the command header in the various intermediaries (client
API, broker, and worker API), and pass the command body untouched from application
to application.

Serialization Languages
Serialization languages have their fashions. XML used to be big as in popular, then it
got big as in overengineered, and then it fell into the hands of “Enterprise Information
Architects” and it’s not been seen alive since. Today’s XML is the epitome of “somewhere
in that mess is a small, elegant language trying to escape.”

Still, XML was way, way better than its predecessors, which included such monsters as
the Standard Generalized Markup Language (SGML), which in turn were a cool breeze
compared to mind-torturing beasts like EDIFACT. So, the history of serialization lan‐
guages seems to be one of gradually emerging sanity, hidden by waves of revolting EIAs
doing their best to hold onto their jobs.

JSON popped out of the JavaScript world as a quick-and-dirty “I’d rather resign than
use XML here” way to throw data onto the wire and get it back again. JSON is just
minimal XML expressed, sneakily, as JavaScript source code.

Here’s a simple example of using JSON in a Cheap protocol:
"protocol": {
    "name": "MTL",
    "version": 1
},
"virtual-host": "test-env"

The same example in XML would be (XML forces us to invent a single top-level entity):
<command>
    <protocol name = "MTL" version = "1" />
    <virtual-host>test-env</virtual-host>
</command>

And using plain-old HTTP-style headers:
Protocol: MTL/1.0
Virtual-host: test-env
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These are all pretty equivalent, so as long as you don’t go overboard with validating
parsers, schemas, and other “trust us, this is all for your own good” nonsense. A Cheap
serialization language gives you space for experimentation for free (“ignore any ele‐
ments/attributes/headers that you don’t recognize”), and it’s simple to write generic
parsers that, for example, thunk a command into a hash table, or vice versa.

However, it’s not all roses. While modern scripting languages support JSON and XML
easily enough, older languages do not. If you use XML or JSON, you create nontrivial
dependencies. It’s also somewhat of a pain to work with tree-structured data in a lan‐
guage like C.

So, you can drive your choice according to the languages you’re aiming for. If your
universe is a scripting language, then go for JSON. If you are aiming to build protocols
for wider system use, keep things simple for C developers and stick to HTTP-style 
headers.

Serialization Libraries
The msgpack.org site says this about the MessagePack serialization library:

It’s like JSON, but fast and small. MessagePack is an efficient binary serialization format.
It lets you exchange data among multiple languages like JSON, but it’s faster and smaller.
For example, small integers (like flags or error code) are encoded into a single byte, and
typical short strings only require an extra byte in addition to the strings themselves.

I’m going to make the perhaps unpopular claim that “fast and small” are features that
solve non-problems. The only real problem that serialization libraries solve is, as far as
I can tell, the need to document the message contracts and actually serialize data to and
from the wire.

Let’s start with the “fast and small” claim. It’s based on a two-part argument: first, that
making your messages smaller and reducing CPU cost for encoding and decoding will
make a significant difference to your application’s performance; and second, that this
will be equally valid across the board, for all messages.

But most real applications tend to fall into one of two categories: either the speed of
serialization and size of encoding are marginal compared to other costs, such as database
access or application code performance, or network performance really is critical, and
then all significant costs occur in a few specific message types.

Thus, aiming for “fast and small” across the board is a false optimization. You get neither
the easy flexibility of Cheap for your infrequent control flows, nor the brutal efficiency
of Nasty for your high-volume data flows. Worse, the assumption that all messages are
equal in some way can corrupt your protocol design. Cheap or Nasty isn’t only about
serialization strategies; it’s also about synchronous versus asynchronous, error handling,
and the cost of change.
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My experience is that most performance problems in message-based applications can
be solved by (a) improving the application itself and (b) hand-optimizing the high-
volume data flows. And to hand-optimize your most critical data flows, you need to
cheat and to know and exploit facts about your data, which is something general- pur‐
pose serializers cannot do.

Now let us address documentation: the need to write our contracts explicitly and for‐
mally, not only in code. This is a valid problem to solve: indeed, one of the main ones
if we’re to build a long-lasting, large-scale, message-based architecture.

Here is how we describe a typical message using the MessagePack interface definition
language (IDL):

message Person {
  1: string surname
  2: string firstname
  3: optional string email
}

Now, here’s the same message using the Google protocol buffers IDL:
message Person {
  required string surname = 1;
  required string firstname = 2;
  optional string email = 3;
}

It works, but in most practical cases wins you little over a serialization language backed
by decent specifications written by hand or produced mechanically (we’ll come to this).
The price you’ll pay is an extra dependency and, quite probably, worse overall perfor‐
mance than if you used Cheap or Nasty.

Handwritten Binary Serialization
As you’ll gather from this book, my preferred language for systems programming is C
(upgraded to C99, with a constructor/destructor API model and generic containers).
There are two reasons I like this modernized C language. First, I’m too weak-minded
to learn a big language like C++. Life just seems filled with more interesting things to
understand. Second, I find that this specific level of manual control lets me produce
better results, faster.

The point here isn’t C versus C++, but the value of manual control for high-end pro‐
fessional users. It’s no accident that the best cars, cameras, and espresso machines in the
world have manual controls. That level of on-the-spot fine-tuning often makes the dif‐
ference between world-class success and being second best.

When you are really, truly concerned about the speed of serialization and/or the size of
the result (often these contradict each other), you need handwritten binary serialization.
In other words, let’s hear it for Mr. Nasty!
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Your basic process for writing an efficient Nasty encoder/decoder (codec) is:

• Build representative data sets and test applications that can stress-test your codec.
• Write a first dumb version of the codec.
• Test, measure, improve, and repeat until you run out of time and/or money.

Here are some of the techniques we use to make our codecs better:

• Use a profiler. There’s simply no way to know what your code is doing until you’ve
profiled it for function counts and for CPU cost per function. When you find your
hot spots, fix them.

• Eliminate memory allocations. The heap is very fast on a modern Linux kernel, but
it’s still the bottleneck in most naive codecs. On older kernels, the heap can be
tragically slow. Use local variables (the stack) instead of the heap where you can.

• Test on different platforms and with different compilers and compiler options. Apart
from the heap, there are many other differences. You need to learn the main ones,
and allow for them.

• Use state to compress better. If you are concerned about codec performance, you
are almost definitely sending the same kinds of data many times. There will be
redundancy between instances of data. You can detect these and use that to com‐
press (for example, a short value that means “same as last time”).

• Know your data. The best compression techniques (in terms of CPU cost for com‐
pactness) require knowing about the data. For example, the techniques used to
compress a word list, a video, and a stream of stock market data are all different.

• Be ready to break the rules. Do you really need to encode integers in big-endian
network byte order? x86 and ARM account for almost all modern CPUs, yet they
use little-endian byte order (ARM is actually bi-endian, but Android, like Windows
and iOS, is little-endian).

Code Generation
Reading the previous two sections, you might have wondered, “Could I write my own
IDL generator that’s better than a general-purpose one?” If this thought wandered into
your mind, it probably left pretty soon after, chased by dark calculations about how
much work that would actually involve.

What if I told you of a way to build custom IDL generators cheaply and quickly? You
can have a way to get perfectly documented contracts, code that is as evil and domain-
specific as you need, and all you need to do is sign away your soul (who ever really used
that, amirite?) right here....
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At iMatix, until a few years ago, we used code generation to build ever larger and more
ambitious systems; then we decided the technology (the Generator Script Language, or
GSL) was too dangerous for common use, and we sealed the archive and locked it away,
with heavy chains, in a deep dungeon. In reality, we actually posted it on GitHub. If you
want to try the examples that are coming up, grab the repository and build yourself a
gsl command. Typing “make” in the src subdirectory should do it (and if you’re that guy
who loves Windows, I’m sure you’ll send a patch with project files).

This section isn’t really about GSL at all, but about a useful and little-known trick that’s
handy for ambitious architects who want to scale themselves, as well as their work. Once
you learn the trick, you can whip up your own code generators in a short time. The code
generators most software engineers know about come with a single hard-coded model.
For instance, Ragel “compiles executable finite state machines from regular languages”
(i.e., Ragel’s model is a regular language). This certainly works for a good set of problems,
but it’s far from universal. How do you describe an API in Ragel? Or a project makefile?
Or even a finite-state machine like the one we used to design the Binary Star pattern in
Chapter 4?

All of these would benefit from code generation, but there’s no universal model. So, the
trick is to design your own models as you need them, and then make code generators
as cheap compilers for those models. You need some experience in how to make good
models, and you need a technology that makes it cheap to build custom code
generators. Scripting languages like Perl and Python are a good option. However, we
actually built GSL specifically for this, and that’s what I prefer.

Let’s take a simple example that ties into what we already know. We’ll see more extensive
examples later, because I really do believe that code generation is crucial knowledge for
large-scale work. In Chapter 4, we developed the Majordomo Protocol (MDP) and wrote
clients, brokers, and workers for that. Now, could we generate those pieces mechanically,
by building our own interface description language and code generators?

When we write a GSL model, we can use any semantics we like. In other words, we can
invent domain-specific languages on the spot. I’ll invent a couple—see if you can guess
what they represent:

slideshow
    name = Cookery level 3
    page
        title = French Cuisine
        item = Overview
        item = The historical cuisine
        item = The nouvelle cuisine
        item = Why the French live longer
    page
        title = Overview
        item = Soups and salads
        item = Le plat principal
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        item = Béchamel and other sauces
        item = Pastries, cakes, and quiches
        item = Soufflé - cheese to strawberry

Now, how about this one?
table
    name = person
    column
        name = firstname
        type = string
    column
        name = lastname
        type = string
    column
        name = rating
        type = integer

The first we could compile into a presentation. The second, we could compile into SQL
to create and work with a database table. So, for this exercise our domain language—
our model—consists of “classes” that contain “messages” that contain “fields” of various
types. It’s deliberately familiar. Here is the MDP client protocol:

<class name = "mdp_client">
    MDP/Client
    <header>
        <field name = "empty" type = "string" value = ""
            >Empty frame</field>
        <field name = "protocol" type = "string" value = "MDPC01"
            >Protocol identifier</field>
    </header>
    <message name = "request">
        Client request to broker
        <field name = "service" type = "string">Service name</field>
        <field name = "body" type = "frame">Request body</field>
    </message>
    <message name = "reply">
        Response back to client
        <field name = "service" type = "string">Service name</field>
        <field name = "body" type = "frame">Response body</field>
    </message>
</class>

And here is the MDP worker protocol:
<class name = "mdp_worker">
    MDP/Worker
    <header>
        <field name = "empty" type = "string" value = ""
            >Empty frame</field>
        <field name = "protocol" type = "string" value = "MDPW01"
            >Protocol identifier</field>
        <field name = "id" type = "octet">Message identifier</field>
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    </header>
    <message name = "ready" id = "1">
        Worker tells broker it is ready
        <field name = "service" type = "string">Service name</field>
    </message>
    <message name = "request" id = "2">
        Client request to broker
        <field name = "client" type = "frame">Client address</field>
        <field name = "body" type = "frame">Request body</field>
    </message>
    <message name = "reply" id = "3">
        Worker returns reply to broker
        <field name = "client" type = "frame">Client address</field>
        <field name = "body" type = "frame">Request body</field>
    </message>
    <message name = "hearbeat" id = "4">
        Either peer tells the other it’s still alive
    </message>
    <message name = "disconnect" id = "5">
        Either peer tells other the party is over
    </message>
</class>

GSL uses XML as its modeling language. XML has a poor reputation, having been
dragged through too many enterprise sewers to smell sweet, but it has some strong
positives, as long as you keep it simple. Any way to write a self-describing hierarchy of
items and attributes would work.

Now, here is a short IDL generator written in GSL that turns our protocol models into
documentation:

.#  Trivial IDL generator (specs.gsl)

.#

.output "$(class.name).md"
## The $(string.trim (class.?''):left) Protocol
.for message
.   frames = count (class->header.field) + count (field)

A $(message.NAME) command consists of a multipart message of $(frames)
frames:

.   for class->header.field

.       if name = "id"
* Frame $(item ()): 0x$(message.id:%02x) (1 byte, $(message.NAME))
.       else
* Frame $(item ()): "$(value:)" ($(string.length ("$(value)")) \
bytes, $(field.:))
.       endif
.   endfor
.   index = count (class->header.field) + 1
.   for field
* Frame $(index): $(field.?'') \
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.       if type = "string"
(printable string)
.       elsif type = "frame"
(opaque binary)
.           index += 1
.       else
.           echo "E: unknown field type: $(type)"
.       endif
.       index += 1
.   endfor
.endfor

The XML models and this script are in the subdirectory examples/models. To do the
code generation, I give this command:

gsl -script:specs mdp_client.xml mdp_worker.xml

Here is the Markdown text we get for the worker protocol:
## The MDP/Worker Protocol

A READY command consists of a multipart message of 4 frames:

* Frame 1: "" (0 bytes, Empty frame)
* Frame 2: "MDPW01" (6 bytes, Protocol identifier)
* Frame 3: 0x01 (1 byte, READY)
* Frame 4: Service name (printable string)

A REQUEST command consists of a multipart message of 5 frames:

* Frame 1: "" (0 bytes, Empty frame)
* Frame 2: "MDPW01" (6 bytes, Protocol identifier)
* Frame 3: 0x02 (1 byte, REQUEST)
* Frame 4: Client address (opaque binary)
* Frame 6: Request body (opaque binary)

A REPLY command consists of a multipart message of 5 frames:

* Frame 1: "" (0 bytes, Empty frame)
* Frame 2: "MDPW01" (6 bytes, Protocol identifier)
* Frame 3: 0x03 (1 byte, REPLY)
* Frame 4: Client address (opaque binary)
* Frame 6: Request body (opaque binary)

A HEARBEAT command consists of a multipart message of 3 frames:

* Frame 1: "" (0 bytes, Empty frame)
* Frame 2: "MDPW01" (6 bytes, Protocol identifier)
* Frame 3: 0x04 (1 byte, HEARBEAT)

A DISCONNECT command consists of a multipart message of 3 frames:

* Frame 1: "" (0 bytes, Empty frame)
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* Frame 2: "MDPW01" (6 bytes, Protocol identifier)
* Frame 3: 0x05 (1 byte, DISCONNECT)

Which, as you can see, is close to what I wrote by hand in the original spec. Now, if you
have cloned the book repository and you are looking at the code in examples/models,
you can generate the MDP client and worker codecs. We pass the same two models to
a different code generator:

gsl -script:codec_c mdp_client.xml mdp_worker.xml

Which gives us mdp_client and mdp_worker classes. Actually, MDP is so simple that it’s
barely worth the effort of writing the code generator. The profit comes when we want
to change the protocol (which we did for the standalone Majordomo project). We mod‐
ify the protocol, run the command, and out pops more perfect code.

The codec_c.gsl code generator is not short, but the resulting codecs are much better
than the handwritten code I originally put together for Majordomo. For instance, the
handwritten code had no error checking, and would die if you passed it bogus messages.

I’m now going to explain the pros and cons of GSL-powered model-oriented code gen‐
eration. Power does not come for free, and one of the greatest traps in our business is
the ability to invent concepts out of thin air. GSL makes this particularly easy, so it can
be an equally dangerous tool.

Do not invent concepts. The job of a designer is to remove problems, not add features.

First, I will lay out the advantages of model-oriented code generation:

• You can create “perfect” abstractions that map to your real world. So, our protocol
model maps 100% to the “real world” of Majordomo. This would be impossible
without the freedom to tune and change the model in any way.

• You can develop these perfect models quickly and cheaply.
• You can generate any text output. From a single model, you can create documen‐

tation, code in any language, test tools—literally any output you can think of.
• You can generate (and I mean this literally) perfect output, since it’s cheap to improve

your code generators to any level you want.
• You get a single source that combines specifications and semantics.
• You can leverage a small team to a massive size. At iMatix, we produced the million-

line OpenAMQ messaging product out of perhaps 85K lines of input models, in‐
cluding the code generation scripts themselves.

Now, let’s look at the disadvantages:

• You add tool dependencies to your project.
• You may get carried away and create models for the pure joy of creating them.
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• You may alienate newcomers, who will see “strange stuff,” from your work.
• You may give people a strong excuse to not invest in your project.

Cynically, model-oriented abuse works great in environments where you want to pro‐
duce huge amounts of perfect code that you can maintain with little effort, and which
no one can ever take away from you. Personally, I like to cross my rivers and move on.
But if long-term job security is your thing, this is almost perfect.

So, if you do use GSL and want to create open communities around your work, here is
my advice:

• Use it only where you would otherwise be writing tiresome code by hand.
• Design natural models that are what people would expect to see.
• Write the code by hand first so you know what to generate.
• Do not overuse. Keep it simple! Do not get too meta!!
• Introduce it gradually into a project.
• Put the generated code into your repositories.

We’re already using GSL in some projects around ØMQ. For example the high-level C
binding, CZMQ, uses GSL to generate the socket options class (zsockopt). A 300-line
code generator turns 78 lines of XML model into 1,500 lines of perfect but really boring
code. That’s a good win.

Transferring Files
Let’s take a break from the lecturing and get back to our first love and the reason for
doing all of this: code.

“How do I send a file?” is a common question on the ØMQ mailing lists. Not surpris‐
ingly, file transfer is perhaps the oldest and most obvious type of messaging. Sending
files around networks has lots of use cases, apart from annoying the copyright cartels.
ØMQ is very good out of the box at sending events and tasks, but less good at sending
files.

I’ve promised, for a year or two, to write a proper explanation. Here’s a gratuitous piece
of information to brighten your morning: the word “proper” comes from the archaic
French propre, which means “clean.” English common folk in the Dark Ages, not being
familiar with hot water and soap, changed the word to mean “foreign” or “upper-class,”
as in “that’s proper food!”; later it came to mean just “real,” as in “that’s a proper mess
you’ve gotten us into!”

So, file transfer. There are several reasons why you can’t just pick up a random file,
blindfold it, and shove it whole into a message. The most obvious reason is that despite
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decades of determined growth in RAM sizes (and who among us old-timers doesn’t
fondly remember saving up for that 1,024-byte memory extension card?!), disk sizes
obstinately remain much larger. Even if we could send a file with one instruction (say,
using a system call like sendfile), we’d hit the reality that networks are neither infinitely
fast, nor perfectly reliable. After trying to upload a large file several times on a slow,
flaky network (WiFi, anyone?), you’ll realize that a proper file transfer protocol needs
a way to recover from failures. That is, it needs a way to send only the part of a file that
hasn’t yet been received.

Finally, after all this, if you build a proper file server you’ll notice that simply sending
massive amounts of data to lots of clients creates that situation we like to call, in the
technical parlance, “server went belly-up due to all available heap memory being eaten
by a poorly designed application.” A proper file transfer protocol needs to pay attention
to memory use.

We’ll solve these problems properly, one by one, which should hopefully get us to a good
and proper file transfer protocol running over ØMQ. First, let’s generate a 1 GB test file
with random data (real power-of-two-giga-like-Von-Neumman-intended, not the fake
silicon ones the memory industry likes to sell):

dd if=/dev/urandom of=testdata bs=1M count=1024

This is large enough to be troublesome when we have lots of clients asking for the same
file at once, and on many machines, 1 GB is going to be too large to allocate in memory
anyhow. As a base reference, let’s measure how long it takes to copy this file from disk
back to disk. This will tell us how much our file transfer protocol adds on top (including
network costs):

$ time cp testdata testdata2

real    0m7.143s
user    0m0.012s
sys     0m1.188s

The four-figure precision is misleading; expect variations of 25% either way. This is just
an “order of magnitude” measurement.

Example 7-1 shows our first cut at the code, where the client asks for the test data and
the server just sends it, without stopping for breath, as a series of messages, where each
message holds one “chunk.”

Example 7-1. File transfer test, model 1 (fileio1.c)
//  File Transfer model #1
//  
//  In which the server sends the entire file to the client in
//  large chunks with no attempt at flow control.

#include <czmq.h>
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#define CHUNK_SIZE  250000

static void
client_thread (void *args, zctx_t *ctx, void *pipe)
{
    void *dealer = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (dealer, "tcp://127.0.0.1:6000");
    
    zstr_send (dealer, "fetch");
    size_t total = 0;       //  Total bytes received
    size_t chunks = 0;      //  Total chunks received
    
    while (true) {
        zframe_t *frame = zframe_recv (dealer);
        if (!frame)
            break;              //  Shutting down, quit
        chunks++;
        size_t size = zframe_size (frame);
        zframe_destroy (&frame);
        total += size;
        if (size == 0)
            break;              //  Whole file received
    }
    printf ("%zd chunks received, %zd bytes\n", chunks, total);
    zstr_send (pipe, "OK");
}

static void
free_chunk (void *data, void *arg)
{
    free (data);
}

The server thread, shown in Example 7-2, reads the file from the disk in chunks and
sends each chunk to the client as a separate message. We only have one test file, so we’ll
open that once and then serve it out as needed.

Example 7-2. File transfer test, model 1 (fileio1.c): file server thread
static void
server_thread (void *args, zctx_t *ctx, void *pipe)
{
    FILE *file = fopen ("testdata", "r");
    assert (file);

    void *router = zsocket_new (ctx, ZMQ_ROUTER);
    //  Default HWM is 1000, which will drop messages here
    //  since we send more than 1,000 chunks of test data,
    //  so set an infinite HWM as a simple, stupid solution
    zsocket_set_hwm (router, 0);
    zsocket_bind (router, "tcp://*:6000");
    while (true) {
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        //  First frame in each message is the sender identity
        zframe_t *identity = zframe_recv (router);
        if (!identity)
            break;              //  Shutting down, quit
            
        //  Second frame is "fetch" command
        char *command = zstr_recv (router);
        assert (streq (command, "fetch"));
        free (command);

        while (true) {
            byte *data = malloc (CHUNK_SIZE);
            assert (data);
            size_t size = fread (data, 1, CHUNK_SIZE, file);
            zframe_t *chunk = zframe_new_zero_copy (data, size, free_chunk, NULL);
            zframe_send (&identity, router, ZFRAME_REUSE + ZFRAME_MORE);
            zframe_send (&chunk, router, 0);
            if (size == 0)
                break;          //  Always end with a zero-size frame
        }
        zframe_destroy (&identity);
    }
    fclose (file);
}

The main task, shown in Example 7-3, starts the client and server threads; it’s easier to
test this as a single process with threads than as multiple processes.

Example 7-3. File transfer test, model 1 (fileio1.c): file main thread
int main (void)
{
    //  Start child threads
    zctx_t *ctx = zctx_new ();
    zthread_fork (ctx, server_thread, NULL);
    void *client =
    zthread_fork (ctx, client_thread, NULL);
    //  Loop until client tells us it's done
    char *string = zstr_recv (client);
    free (string);
    //  Kill server thread
    zctx_destroy (&ctx);
    return 0;
}

It’s pretty simple, but we already run into a problem: if we send too much data to the
ROUTER socket, we can easily overflow it. The simple but stupid solution is to put an
infinite high-water mark on the socket. It’s stupid because we now have no protection
against exhausting the server’s memory. Yet without an infinite HWM, we risk losing
chunks of large files.
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Try this: set the HWM to 1,000 (in ØMQ v3.x, this is the default) and then reduce the
chunk size to 100K so we send 10K chunks in one go. Run the test, and you’ll see it never
finishes. As the zmq_socket() man page says with cheerful brutality, for the ROUTER
socket: “ZMQ_HWM option action: Drop.”

We have to control the amount of data the server sends up-front. There’s no point in it
sending more than the network can handle. Let’s try sending one chunk at a time. In
this version of the protocol, the client will explicitly say, “Give me chunk N,” and the
server will fetch that specific chunk from disk and send it.

Example 7-4 presents the improved second model, where the client asks for one chunk
at a time, and the server only sends one chunk for each request it gets from the client.

Example 7-4. File transfer test, model 2 (fileio2.c)
//  File Transfer model #2
//  
//  In which the client requests each chunk individually, thus
//  eliminating server queue overflows, but at a cost in speed.

#include <czmq.h>
#define CHUNK_SIZE  250000

static void
client_thread (void *args, zctx_t *ctx, void *pipe)
{
    void *dealer = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_set_hwm (dealer, 1);
    zsocket_connect (dealer, "tcp://127.0.0.1:6000");

    size_t total = 0;       //  Total bytes received
    size_t chunks = 0;      //  Total chunks received

    while (true) {
        //  Ask for next chunk
        zstr_sendfm (dealer, "fetch");
        zstr_sendfm (dealer, "%ld", total);
        zstr_sendf  (dealer, "%ld", CHUNK_SIZE);
        
        zframe_t *chunk = zframe_recv (dealer);
        if (!chunk)
            break;              //  Shutting down, quit
        chunks++;
        size_t size = zframe_size (chunk);
        zframe_destroy (&chunk);
        total += size;
        if (size < CHUNK_SIZE)
            break;              //  Last chunk received; exit
    }
    printf ("%zd chunks received, %zd bytes\n", chunks, total);
    zstr_send (pipe, "OK");
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}

static void
free_chunk (void *data, void *arg)
{
    free (data);
}

The server thread (Example 7-5) waits for a chunk request from a client, reads that
chunk, and sends it back to the client.

Example 7-5. File transfer test, model 2 (fileio2.c): file server thread
static void
server_thread (void *args, zctx_t *ctx, void *pipe)
{
    FILE *file = fopen ("testdata", "r");
    assert (file);

    void *router = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_set_hwm (router, 1);
    zsocket_bind (router, "tcp://*:6000");
    while (true) {
        //  First frame in each message is the sender identity
        zframe_t *identity = zframe_recv (router);
        if (!identity)
            break;              //  Shutting down, quit
            
        //  Second frame is "fetch" command
        char *command = zstr_recv (router);
        assert (streq (command, "fetch"));
        free (command);

        //  Third frame is chunk offset in file
        char *offset_str = zstr_recv (router);
        size_t offset = atoi (offset_str);
        free (offset_str);

        //  Fourth frame is maximum chunk size
        char *chunksz_str = zstr_recv (router);
        size_t chunksz = atoi (chunksz_str);
        free (chunksz_str);

        //  Read chunk of data from file
        fseek (file, offset, SEEK_SET);
        byte *data = malloc (chunksz);
        assert (data);

        //  Send resulting chunk to client
        size_t size = fread (data, 1, chunksz, file);
        zframe_t *chunk = zframe_new_zero_copy (data, size, free_chunk, NULL);
        zframe_send (&identity, router, ZFRAME_MORE);
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        zframe_send (&chunk, router, 0);
    }
    fclose (file);
}

//  The main task is just the same as in the first model
...

It is much slower now, because of the to-and-fro chatting between client and server. We
pay about 300 microseconds for each request-reply round-trip, on a local loop connec‐
tion (client and server on the same box). It doesn’t sound like much, but it adds up
quickly:

$ time ./fileio1
4296 chunks received, 1073741824 bytes

real    0m0.669s
user    0m0.056s
sys     0m1.048s

$ time ./fileio2
4295 chunks received, 1073741824 bytes

real    0m2.389s
user    0m0.312s
sys     0m2.136s

There are two valuable lessons here. First, while request-reply is easy, it’s also too slow
for high-volume data flows. Paying that 300 microseconds once would be fine. Paying
it for every single chunk isn’t acceptable, particularly on real networks with latencies
perhaps 1,000 times higher.

The second point is something I’ve said before but will repeat: it’s incredibly easy to
experiment, measure, and improve a protocol over ØMQ. And when the cost of some‐
thing comes way down, you can afford a lot more of it. Do learn to develop and prove
your protocols in isolation: I’ve seen teams waste a lot of time trying to improve poorly
designed protocols that are too deeply embedded in applications to be easily testable or
fixable.

Our model 2 file transfer protocol isn’t so bad, apart from performance:

• It completely eliminates any risk of memory exhaustion. To prove that, we set the
high-water mark to 1 in both the sender and the receiver.

• It lets the client choose the chunk size, which is useful because if there’s any tuning
of the chunk size to be done (for network conditions, for file types, or to reduce
memory consumption further), it’s the client that should be doing this.

• It gives us fully restartable file transfers.
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• It allows the client to cancel the file transfer at any point in time.

If we just didn’t have to do a request for each chunk, it’d be a usable protocol. What we
need is a way for the server to send multiple chunks without waiting for the client to
request or acknowledge each one. What are our choices?

• The server could send 10 chunks at once, then wait for a single acknowledgment.
That’s exactly like multiplying the chunk size by 10, though, so it’s pointless. And
yes, it’s just as pointless for all multiples of 10.

• The server could send chunks without any chatter from the client but with a slight
delay between each send, so that it would send chunks only as fast as the network
could handle them. This would require the server to know what’s happening at the
network layer, though, which sounds like hard work. It also breaks layering horribly.
And what happens if the network is really fast, but the client itself is slow? Where
are chunks queued then?

• The server could try to spy on the sending queue—i.e., see how full it is, and send
only when the queue isn’t full. ØMQ doesn’t allow that, though, because it doesn’t
work, for the same reason as throttling doesn’t work. The server and network may
be more than fast enough, but the client may be a slow little device.

• We could modify libzmq to take some other action on reaching the HWM. Perhaps
it could block? That would mean that a single slow client would block the whole
server, so no thank you. Maybe it could return an error to the caller? Then the server
could do something smart like... well, there isn’t really anything it could do that’s
any better than dropping the message.

Apart from being complex and variously unpleasant, none of these options would even
work. What we need is a way for the client to tell the server, asynchronously and in the
background, that it’s ready for more. We need some kind of asynchronous flow control.
If we do this right, data should flow without interruption from the server to the client,
but only as long as the client is reading it. Let’s review our protocols. This was the first
one:

C: fetch
S: chunk 1
S: chunk 2
S: chunk 3
...

And the second introduced a request for each chunk:
C: fetch chunk 1
S: send chunk 1
C: fetch chunk 2
S: send chunk 2
C: fetch chunk 3
S: send chunk 3
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C: fetch chunk 4
...

Now—waves hands mysteriously—here’s a changed protocol that fixes the performance
problem:

C: fetch chunk 1
C: fetch chunk 2
C: fetch chunk 3
S: send chunk 1
C: fetch chunk 4
S: send chunk 2
S: send chunk 3
....

It looks suspiciously similar to the second protocol. In fact, it’s identical, except that we
send multiple requests without waiting for a reply for each one. This is a technique called
“pipelining,” and it works because our DEALER and ROUTER sockets are fully asyn‐
chronous.

Example 7-6 presents the third model of our file transfer test-bench, with pipelining.
The client sends a number of requests ahead (the “credit”), and then each time it pro‐
cesses an incoming chunk, it sends one more credit. The server will never send more
chunks than the client has asked for.

Example 7-6. File transfer test, model 3 (fileio3.c)
//  File Transfer model #3
//  
//  In which the client requests each chunk individually, using
//  command pipelining to give us a credit-based flow control.

#include <czmq.h>
#define CHUNK_SIZE  250000
#define PIPELINE    10

static void
client_thread (void *args, zctx_t *ctx, void *pipe)
{
    void *dealer = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (dealer, "tcp://127.0.0.1:6000");

    //  Up to this many chunks in transit
    size_t credit = PIPELINE;
    
    size_t total = 0;       //  Total bytes received
    size_t chunks = 0;      //  Total chunks received
    size_t offset = 0;      //  Offset of next chunk request
    
    while (true) {
        while (credit) {
            //  Ask for next chunk
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            zstr_sendfm (dealer, "fetch");
            zstr_sendfm (dealer, "%ld", offset);
            zstr_sendf  (dealer, "%ld", CHUNK_SIZE);
            offset += CHUNK_SIZE;
            credit--;
        }
        zframe_t *chunk = zframe_recv (dealer);
        if (!chunk)
            break;              //  Shutting down, quit
        chunks++;
        credit++;
        size_t size = zframe_size (chunk);
        zframe_destroy (&chunk);
        total += size;
        if (size < CHUNK_SIZE)
            break;              //  Last chunk received; exit
    }
    printf ("%zd chunks received, %zd bytes\n", chunks, total);
    zstr_send (pipe, "OK");
}

//  The rest of the code is exactly the same as in model 2, except
//  that we set the HWM on the server’s ROUTER socket to PIPELINE
//  to act as a sanity check
...

That tweak gives us full control over the end-to-end pipeline, including all network
buffers and ØMQ queues at the sender and receiver. We ensure the pipeline is always
filled with data while never growing beyond a predefined limit. More than that, the
client decides exactly when to send a “credit” to the sender. It could be when it receives
a chunk, or when it has fully processed a chunk. And this happens asynchronously, with
no significant performance cost.

In the third model, I chose a pipeline size of 10 messages (each message is a chunk).
This will cost a maximum of 2.5 MB of memory per client, so with 1 GB of memory we
can handle at least 400 clients. We can try to calculate the ideal pipeline size. It takes
about 0.7 seconds to send the 1 GB file, which is about 160 microseconds for a chunk.
A round-trip is 300 microseconds, so the pipeline needs to be at least 3–5 messages to
keep the server busy. In practice, I still got performance spikes with a pipeline of 5,
probably because the credit messages sometimes get delayed by outgoing data. At 10, it
works consistently:

$ time ./fileio3
4291 chunks received, 1072741824 bytes

real    0m0.777s
user    0m0.096s
sys     0m1.120s
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Do measure rigorously. Your calculations may be good, but the real world tends to have
its own opinions.

What we’ve made is clearly not yet a real file transfer protocol, but it proves the pattern,
and I think it is the simplest plausible design. For a real working protocol, we might
want to add some or all of the following:

• Authentication and access controls, even without encryption: the point isn’t to pro‐
tect sensitive data, but to catch errors like sending test data to production servers.

• A Cheap-style request including the file path, optional compression, and other stuff
we’ve learned is useful from HTTP (such as If-Modified-Since).

• A Cheap-style response, at least for the first chunk, that provides meta-data such
as file size (so the client can preallocate and avoid unpleasant disk-full situations).

• The ability to fetch a set of files in one go; otherwise the protocol becomes inefficient
for large sets of small files.

• Confirmation from the client when it’s fully received a file, to recover from chunks
that might be lost if the client disconnects unexpectedly.

So far, our semantic has been “fetch”; that is, the recipient knows (somehow) that it
needs a specific file, so it asks for it. The knowledge of which files exist, and where they
are, is then passed out-of-band (e.g., in HTTP, by links in the HTML page).

How about a “push” semantic? There are two plausible use cases for this. First, if we
adopt a centralized architecture with files on a main “server” (not something I’m ad‐
vocating, but people do sometimes like this), then it’s very useful to allow clients to
upload files to the server. Second, it lets us do a kind of pub-sub for files, where the client
asks for all new files of some type; as the server gets these, it forwards them to the client.

A fetch semantic is synchronous, while a push semantic is asynchronous. Asynchronous
is less chatty, so faster. Also, you can do cute things like “subscribe to this path,” thus
creating a publish-subscribe file transfer architecture. That is so obviously awesome that
I shouldn’t need to explain what problem it solves.

Still, here is the problem with the fetch semantic: that out-of-band route to tell clients
what files exist. No matter how you do this, it ends up being complex. Either clients have
to poll, or you need a separate pub-sub channel to keep clients up-to-date, or you need
user interaction.

Thinking this through a little more, though, we can see that fetch is just a special case
of publish-subscribe. So, we can get the best of both worlds. Here is the general design:

• Fetch this path
• Here is credit (repeat)
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To make this work (and we will, my dear readers), we need to be a little more explicit
about how we send credit to the server. The cute trick of treating a pipelined “fetch
chunk” request as credit won’t fly because the client doesn’t know any longer what files
actually exist, how large they are, or anything. If the client says, “I’m good for 250,000
bytes of data,” this should work equally for 1 file of 250K bytes, or 100 files of 2,500
bytes.

And this gives us “credit-based flow control,” which effectively removes the need for
high-water marks and any risk of memory overflow.

State Machines
Software engineers tend to think of (finite) state machines as a kind of intermediary
interpreter. That is, you take a regular language and compile that into a state machine,
then execute the state machine. The state machine itself is rarely visible to the developer:
it’s an internal representation—optimized, compressed, and bizarre.

However, it turns out that state machines are also valuable as first-class modeling lan‐
guages for protocol handlers, such as ØMQ clients and servers. ØMQ makes it rather
easy to design protocols, but we’ve never defined a good pattern for writing those clients
and servers properly.

A protocol has at least two levels:

• How we represent individual messages on the wire
• How messages flow between peers, and the significance of each message

We’ve seen in this chapter how to produce codecs that handle serialization. That’s a good
start. But if we leave the second job to developers, that gives them a lot of room to
interpret. As we make more ambitious protocols (file transfer + heartbeating + credit
+ authentication), it becomes less and less sane to try to implement clients and servers
by hand.

Yes, people do this almost systematically. But the costs are high, and they’re avoidable.
In this section I’ll explain how to model protocols using state machines, and how to
generate neat and solid code from those models.

My initial experience with using state machines as a software construction tool dates
back to 1985 and my first real job making tools for application developers. In 1991 I
turned that knowledge into a free software tool called Libero, which spat out executable
state machines from a simple text model.

The thing about Libero’s model was that it was readable. That is, you described your
program logic as named states, each accepting a set of events, each doing some real
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work. The resulting state machine hooked into your application code, driving it like a
boss.

Libero was charmingly good at its job, fluent in many languages, and modestly popular,
given the enigmatic nature of state machines. We used Libero in anger in dozens of large
distributed applications, one of which was finally switched off in 2011 after 20 years of
operation. State-machine-driven code construction worked so well that it’s somewhat
impressive that this approach never hit the mainstream of software engineering.

So, in this section I’m going to explain Libero’s model, and show how to use it to generate
ØMQ clients and servers. We’ll use GSL again, but like I said, the principles are general
and you can put together code generators using any scripting language.

As a worked example, let’s see how to carry on a stateful dialog with a peer on a ROUTER
socket. We’ll develop the server using a state machine (and the client by hand). We have
a simple protocol that I’ll call “NOM.” I’m using the oh-so-very-serious “Keywords for
Unprotocols” proposal:

nom-protocol    = open-peering *use-peering

open-peering    = C:OHAI ( S:OHAI-OK / S:WTF )

use-peering     = C:ICANHAZ
                / S:CHEEZBURGER
                / C:HUGZ S:HUGZ-OK
                / S:HUGZ C:HUGZ-OK

I’ve not found a quick way to explain the true nature of state machine programming.
In my experience, it invariably takes a few days of practice. After three or four days’
exposure to the idea there is a near-audible “click!” as something in the brain connects
all the pieces together. We’ll make it concrete by looking at the state machine for our
NOM server.
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A useful thing about state machines is that you can read them state by state. Each state
has a unique descriptive name and one or more events, which we list in any order. For
each event we perform zero or more actions, and we then move to a next state (or stay
in the same state).

In a ØMQ protocol server, we have a state machine instance per client. That sounds
complex, but it isn’t, as we’ll see. We describe our first state (Start) as having one valid
event, “OHAI.” We check the user’s credentials and then arrive in the Authenticated state
(Figure 7-1).

Figure 7-1. The “Start” state

The Check Credentials action produces either an “OK” or an “error” event. It’s in the
Authenticated state that we handle these two possible events, by sending an appropriate
reply back to the client (Figure 7-2). If authentication failed, we return to the Start state
where the client can try again.

Figure 7-2. The “Authenticated” state

When authentication has succeeded, we arrive in the Ready state. Here we have three
possible events: an ICANHAZ or HUGZ message from the client, or a heartbeat timer
event (Figure 7-3).
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Figure 7-3. The “Ready” state

There are a few more things about this state machine model that are worth knowing:

• Events in upper-case (like “HUGZ”) are “external events” that come from the client
as messages.

• Events in lower-case (like “heartbeat”) are “internal events,” produced by code in
the server.

• The “Send SOMETHING” actions are shorthand for sending a specific reply back
to the client.

• Events that aren’t defined in a particular state are silently ignored.

Now, the original source for these pretty pictures is an XML model:
<class name = "nom_server" script = "server_c">

<state name = "start">
    <event name = "OHAI" next = "authenticated">
        <action name = "check credentials" />
    </event>
</state>

<state name = "authenticated">
    <event name = "ok" next = "ready">
        <action name = "send" message ="OHAI-OK" />
    </event>
    <event name = "error" next = "start">
        <action name = "send" message = "WTF" />
    </event>
</state>

<state name = "ready">
    <event name = "ICANHAZ">
        <action name = "send" message = "CHEEZBURGER" />
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    </event>
    <event name = "HUGZ">
        <action name = "send" message = "HUGZ-OK" />
    </event>
    <event name = "heartbeat">
        <action name = "send" message = "HUGZ" />
    </event>
</state>
</class>

The code generator is in examples/models/server_c.gsl. It is a fairly complete tool that
I’ll use and expand for more serious work later. It generates:

• A server class in C (nom_server.c, nom_server.h) that implements the whole pro‐
tocol flow

• A selftest method that runs the self-test steps listed in the XML file
• Documentation in the form of graphics (the pretty pictures)

Here’s a simple main program that starts the generated NOM server:
#include "czmq.h"
#include "nom_server.h"

int main (int argc, char *argv [])
{
    printf ("Starting NOM protocol server on port 5670...\n");
    nom_server_t *server = nom_server_new ();
    nom_server_bind (server, "tcp://*:5670");
    nom_server_wait (server);
    nom_server_destroy (&server);
    return 0;
}

The generated nom_server class is a fairly classic model. It accepts client messages on
a ROUTER socket, so the first frame of every request is the client’s connection identity.
The server manages a set of clients, each with state. As messages arrive, it feeds these as
“events” to the state machine. Here’s the core of the state machine, as a mix of GSL
commands and the C code we intend to generate:

client_execute (client_t *self, int event)
{
    self->next_event = event;
    while (self->next_event) {
        self->event = self->next_event;
        self->next_event = 0;
        switch (self->state) {
.for class.state
            case $(name:c)_state:
.   for event
.       if index () > 1
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                else
.       endif
                if (self->event == $(name:c)_event) {
.       for action
.           if name = "send"
                    zmsg_addstr (self->reply, "$(message:)");
.           else
                $(name:c)_action (self);
.           endif
.       endfor
.       if defined (event.next)
                    self->state = $(next:c)_state;
.       endif
                }
.   endfor
                break;
.endfor
        }
        if (zmsg_size (self->reply) > 1) {
            zmsg_send (&self->reply, self->router);
            self->reply = zmsg_new ();
            zmsg_add (self->reply, zframe_dup (self->address));
        }
    }
}

Each client is held as an object with various properties, including the variables we need
to represent a state machine instance:

event_t next_event;         //  Next event
state_t state;              //  Current state
event_t event;              //  Current event

You will see by now that we are generating technically perfect code that has the precise
design and shape we want. The only clue that the nom_server class isn’t handwritten is
that the code is too good. People who complain that code generators produce poor code
are used to poor code generators.

It is trivial to extend our model as we need it. For example, here’s how we generate the
self-test code. First, we add a “selftest” item to the state machine and write our tests.
We’re not using any XML grammar or validation, so it really is just a matter of opening
the editor and adding a half-dozen lines of text:

<selftest>
    <step send = "OHAI" body = "Sleepy" recv = "WTF" />
    <step send = "OHAI" body = "Joe" recv = "OHAI-OK" />
    <step send = "ICANHAZ" recv = "CHEEZBURGER" />
    <step send = "HUGZ" recv = "HUGZ-OK" />
    <step recv = "HUGZ" />
</selftest>
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Designing on the fly, I decided that “send” and “recv” were a nice way to express “send
this request, then expect this reply.” Here’s the GSL code that turns this model into real
code:

.for class->selftest.step

.   if defined (send)
    msg = zmsg_new ();
    zmsg_addstr (msg, "$(send:)");
.       if defined (body)
    zmsg_addstr (msg, "$(body:)");
.       endif
    zmsg_send (&msg, dealer);

.   endif

.   if defined (recv)
    msg = zmsg_recv (dealer);
    assert (msg);
    command = zmsg_popstr (msg);
    assert (streq (command, "$(recv:)"));
    free (command);
    zmsg_destroy (&msg);

.   endif

.endfor

Finally, one of the more tricky but absolutely essential parts of any state machine gen‐
erator is how do I plug this into my own code? As a minimal example for this exercise, I
wanted to implement the “check credentials” action by accepting all OHAIs from my
friend Joe (Hi Joe!) and rejecting everyone else’s OHAIs. After some thought I decided
to grab code directly from the state machine model—i.e., embed action bodies in the
XML file. So, in nom_server.xml, you’ll see this:

<action name = "check credentials">
    char *body = zmsg_popstr (self->request);
    if (body && streq (body, "Joe"))
        self->next_event = ok_event;
    else
        self->next_event = error_event;
    free (body);
</action>

And the code generator grabs that C code and inserts it into the generated nom_serv‐
er.c file:

.for class.action
static void
$(name:c)_action (client_t *self) {
$(string.trim (.):)
}
.endfor
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Now we have something quite elegant: a single source file that describes my server state
machine, and which also contains the native implementations for my actions. A nice
mix of high-level and low-level that is about 90% smaller than the C code.

Beware, as your head spins with notions of all the amazing things you could produce
with such leverage: while this approach gives you real power, it also moves you away
from your peers, and if you go too far, you’ll find yourself working alone.

By the way, this simple little state machine design exposes just three variables to our
custom code:

• self->next_event

• self->request

• self->reply

In the Libero state machine model there are a few more concepts that we haven’t used
here but that we will need when we write larger state machines:

• Exceptions, which let us write terser state machines. When an action raises an ex‐
ception, further processing on the event stops. The state machine can then define
how to handle exception events.

• Default state, where we can define default handling for events (especially useful for
exception events).

Authentication Using SASL
When we designed AMQP in 2007, we chose the Simple Authentication and Security
Layer (SASL) for the authentication layer, one of the ideas we took from the BEEP
protocol framework. SASL looks complex at first, but it’s actually simple and fits neatly
into a ØMQ-based protocol. What I especially like about SASL is that it’s scalable. You
can start with anonymous access or plain text authentication and no security, and grow
to more secure mechanisms over time, without changing your protocol.

I’m not going to give a deep explanation now, since we’ll see SASL in action a bit later.
But I’ll explain the principle so you’re already somewhat prepared.

In the NOM protocol the client started with an OHAI command, which the server either
accepted (“Hi Joe!”) or rejected. This is simple but not scalable, since the server and
client have to agree up-front on what kind of authentication they’re going to do.

What SASL introduces, which is genius, is a fully abstracted and negotiable security
layer that’s still easy to implement at the protocol level. It works as follows:

1. The client connects.
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2. The server challenges the client, passing a list of security “mechanisms” that it knows
about.

3. The client chooses a security mechanism that it knows about, and answers the
server’s challenge with a blob of opaque data that (and here’s the neat trick) some
generic security library calculates and gives to the client.

4. The server takes the security mechanism the client chose, and that blob of data, and
passes it to its own security library.

5. Either the library accepts the client’s answer, or the server challenges again.

There are a number of free SASL libraries. When we come to real code, we’ll implement
just two mechanisms, ANONYMOUS and PLAIN, which don’t need any special libra‐
ries.

To support SASL we have to add an optional challenge/response step to our “open-
peering” flow. Here is what the resulting protocol grammar looks like (I’m modifying
NOM to do this):

secure-nom      = open-peering *use-peering

open-peering    = C:OHAI *( S:ORLY C:YARLY ) ( S:OHAI-OK / S:WTF )

ORLY            = 1*mechanism challenge
mechanism       = string
challenge       = *OCTET

YARLY           = mechanism response
response        = *OCTET

where ORLY and YARLY each contain a string (a list of mechanisms in ORLY, one
mechanism in YARLY) and a blob of opaque data. Depending on the mechanism, the
initial challenge from the server may be empty. We don’t care a jot: we just pass this to
the security library to deal with.

The SASL RFC goes into detail about other features (that we don’t need), the kinds of
ways SASL could be attacked, and so on.

Large-Scale File Publishing: FileMQ
Let’s put all these techniques together into a file distribution system that I’ll call FileMQ.
This is going to be a real product, living on GitHub. What we’ll make here is a first
version of FileMQ, as a training tool. If the concept works, the real thing may eventually
get its own book.
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Why Make FileMQ?
Why make a file distribution system? I already explained how to send large files over
ØMQ, and it’s really quite simple. But if you want to make messaging accessible to a
million times more people than can use ØMQ, you need another kind of API. An API
that my five-year-old son can understand. An API that is universal, requires no pro‐
gramming, and works with just about every single application.

Yes, I’m talking about the filesystem. It’s the DropBox pattern: chuck your files some‐
where, and they get magically copied somewhere else, when the network connects again.

However, what I’m aiming for is a fully decentralized architecture that looks more like
Git, that doesn’t need any cloud services (though we could put FileMQ in the cloud),
and that does multicast (i.e., can send files to many places at once).

FileMQ has to be secure(able), has to be easily hooked into random scripting languages,
and has to be as fast as possible across our domestic and office networks.

I want to use it to back up photos from my mobile phone to my laptop, over WiFi. To
share presentation slides in real time across 50 laptops in a conference. To share docu‐
ments with colleagues in a meeting. To send earthquake data from sensors to central
clusters. To back up video from my phone as I take it, during protests or riots. To
synchronize configuration files across a cloud of Linux servers.

A visionary idea, isn’t it? Well, ideas are cheap. The hard part is making this, and making
it simple.

Initial Design Cut: The API
Here’s the way I see the first design. FileMQ has to be distributed, so every node can be
a server and a client at the same time. But I don’t want the protocol to be symmetrical,
because that seems forced. We have a natural flow of files from point A to point B, where
A is the “server” and B is the “client.” If files flow back the other way, we have two flows.
FileMQ is not yet a directory synchronization protocol, but we’ll bring it quite close.

Thus, I’m going to build FileMQ as two pieces: a client and a server. Then, I’ll put these
together in a main application (the “filemq” tool) that can act both as client and server.
The two pieces will look quite similar to the nom_server, with the same kind of API:

fmq_server_t *server = fmq_server_new ();
fmq_server_bind (server, "tcp://*:5670");
fmq_server_publish (server, "/home/ph/filemq/share", "/public");
fmq_server_publish (server, "/home/ph/photos/stream", "/photostream");

fmq_client_t *client = fmq_client_new ();
fmq_client_connect (client, "tcp://pieter.filemq.org:5670");
fmq_client_subscribe (server, "/public/", "/home/ph/filemq/share");
fmq_client_subscribe (server, "/photostream/", "/home/ph/photos/stream");
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while (!zctx_interrupted)
    sleep (1);

fmq_server_destroy (&server);
fmq_client_destroy (&client);

If we wrap this C API in other languages, we can easily script FileMQ, embed it appli‐
cations, port it to smartphones, and so on.

Initial Design Cut: The Protocol
The full name for the protocol is the File Message Queuing Protocol, or FILEMQ (in
uppercase, to distinguish it from the software). To start with, we write down the protocol
as an ABNF grammar. Our grammar starts with the flow of commands between the
client and server. You should recognize these as a combination of the various techniques
we’ve seen already:

filemq-protocol = open-peering *use-peering [ close-peering ]

open-peering    = C:OHAI *( S:ORLY C:YARLY ) ( S:OHAI-OK / error )

use-peering     = C:ICANHAZ ( S:ICANHAZ-OK / error )
                / C:NOM
                / S:CHEEZBURGER
                / C:HUGZ S:HUGZ-OK
                / S:HUGZ C:HUGZ-OK

close-peering   = C:KTHXBAI / S:KTHXBAI

error           = S:SRSLY / S:RTFM

Here are the commands to and from the server:
;   The client opens peering to the server
OHAI            = signature %x01 protocol version
signature       = %xAA %xA3
protocol        = string        ; Must be "FILEMQ"
string          = size *VCHAR
size            = OCTET
version         = %x01

;   The server challenges the client using the SASL model
ORLY            = signature %x02 mechanisms challenge
mechanisms      = size 1*mechanism
mechanism       = string
challenge       = *OCTET        ; 0MQ frame

;   The client responds with SASL authentication information
YARLY           = %signature x03 mechanism response
response        = *OCTET        ; 0MQ frame

;   The server grants the client access
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OHAI-OK         = signature %x04

;   The client subscribes to a virtual path
ICANHAZ         = signature %x05 path options cache
path            = string        ; Full path or path prefix
options         = dictionary
dictionary      = size *key-value
key-value       = string        ; Formatted as name=value
cache           = dictionary    ; File SHA-1 signatures

;   The server confirms the subscription
ICANHAZ-OK      = signature %x06

;   The client sends credit to the server
NOM             = signature %x07 credit
credit          = 8OCTET        ; 64-bit integer, network order
sequence        = 8OCTET        ; 64-bit integer, network order

;   The server sends a chunk of file data
CHEEZBURGER     = signature %x08 sequence operation filename
                  offset headers chunk
sequence        = 8OCTET        ; 64-bit integer, network order
operation       = OCTET
filename        = string
offset          = 8OCTET        ; 64-bit integer, network order
headers         = dictionary
chunk           = FRAME

;   Client or server sends a heartbeat
HUGZ            = signature %x09

;   Client or server responds to a heartbeat
HUGZ-OK         = signature %x0A

;   Client closes the peering
KTHXBAI         = signature %x0B

And here are the different ways the server can tell the client things went wrong:
;   Server error reply - refused due to access rights
S:SRSLY         = signature %x80 reason

;   Server error reply - client sent an invalid command
S:RTFM          = signature %x81 reason

FILEMQ lives on the ØMQ unprotocols website and has a registered TCP port with
IANA (the Internet Assigned Numbers Authority), which is port 5670.

Building and Trying FileMQ
The FileMQ stack is on GitHub. It works like a classic C/C++ project:
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git clone git://github.com/hintjens/filemq.git
cd filemq
./autogen.sh
./configure
make check

You want to be using the latest CZMQ master for this. Now try running the track
command, which is a simple tool that uses FileMQ to track changes in one directory in
another:

cd src
./track ./fmqroot/send ./fmqroot/recv

Open two file navigator windows, one into src/fmqroot/send and one into src/fmqroot/
recv. Drop files into the send folder, and you’ll see them arrive in the recv folder. The
server checks once per second for new files. Delete files in the send folder, and they’re
deleted in the recv folder simultaneously.

I use track for things like updating my MP3 player, mounted as a USB drive. As I add
or remove files in my laptop’s Music folder, the same changes happen on the MP3 player.
FILEMQ isn’t a full replication protocol yet, but we’ll fix that later.

Internal Architecture
To build FileMQ I used a lot of code generation, possibly too much for a tutorial. How‐
ever, the code generators are all reusable in other stacks and will be important for our
final project in Chapter 8. They are an evolution of the set we saw earlier:

• codec_c.gsl generates a message codec for a given protocol.
• server_c.gsl generates a server class for a protocol and state machine.
• client_c.gsl generates a client class for a protocol and state machine.

The best way to learn to use GSL code generation is to translate these into a language
of your choice and make your own demo protocols and stacks. You’ll find it fairly easy.
FileMQ itself doesn’t try to support multiple languages. It could, but it’d make things
needlessly complex.

The FileMQ architecture actually slices into two layers. There’s a generic set of classes
to handle chunks, directories, files, patches, SASL security, and configuration files. Then,
there’s the generated stack: messages, client, and server. If I was creating a new project
I’d fork the whole FileMQ project, and go and modify the three models:

• fmq_msg.xml, which defines the message formats
• fmq_client.xml, which defines the client state machine, API, and implementation
• fmq_server.xml, which does the same for the server
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You’d want to rename things to avoid confusion. Why didn’t I make the reusable classes
into a separate library? The answer is twofold. First, no one actually needs this (yet).
Second, it’d make things more complex for you as you build and play with FileMQ. It’s
never worth adding complexity to solve a theoretical problem.

Although I wrote FileMQ in C, it’s easy to map to other languages. It is quite amazing
how nice C becomes when you add CZMQ’s generic zlist and zhash containers, and
class style. Let me go through the classes quickly:

• fmq_sasl encodes and decodes a SASL challenge. I only implemented the PLAIN
mechanism, which is enough to prove the concept.

• fmq_chunk works with variable-sized blobs. These are not as efficient as ØMQ’s
messages, but they do less weirdness and so are easier to understand. The chunk
class has methods to read and write chunks from/to disk.

• fmq_file works with files, which may or may not exist on disk. It gives you infor‐
mation about a file (like size) and lets you read from and write to files, remove files,
check if a file exists, and check if a file is “stable” (more on that later).

• fmq_dir works with directories, reading them from disk and comparing two di‐
rectories to see what’s changed. When there are changes, it returns a list of “patches.”

• fmq_patch works with one patch, which really just says “create this file” or “delete
this file” (referring to an fmq_file item each time).

• fmq_config works with configuration data. I’ll come back to client and server con‐
figuration later.

Every class has a test method, and the main development cycle is “edit, test.” These are
mostly simple self-tests, but they make the difference between code I can trust and code
I know will still break. It’s a safe bet that any code that isn’t covered by a test case will
have undiscovered errors. I’m not a fan of external test harnesses, but internal test code
that you write as you write your functionality... that’s like the handle on a knife.

You should, really, be able to read the source code and rapidly understand what these
classes are doing. If you can’t read the code happily, tell me. If you want to port the
FileMQ implementation into other languages, start by forking the whole repository, and
later we’ll see if it’s possible to do this in one overall repo.

Public API
The public API consists of two classes (as we sketched earlier):

• fmq_client provides the client API, with methods to connect to a server, configure
the client, and subscribe to paths.
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• fmq_server provides the server API, with methods to bind to a port, configure the
server, and publish a path.

These classes provide a multithreaded API, a model we’ve used a few times now. When
you create an API instance (i.e., fmq_server_new() or fmq_client_new()), this method
kicks off a background thread that does the real work—that is, runs the server or the
client. The other API methods then talk to this thread over ØMQ sockets (a “pipe”
consisting of two PAIR sockets over inproc).

If I was a keen young developer eager to use FileMQ in another language, I’d probably
spend a happy weekend writing a binding for this public API, then stick it in a subdir‐
ectory of the filemq project called, say, “bindings/,” and make a pull request.

The actual API methods come from the state machine description, like this (for the
server):

<method name = "publish">
<argument name = "location" type = "string" />
<argument name = "alias" type = "string" />
mount_t *mount = mount_new (location, alias);
zlist_append (self->mounts, mount);
</method>

Which gets turned into this code:
void
fmq_server_publish (fmq_server_t *self, const char *location, const char *alias)
{
    assert (self);
    assert (location);
    assert (alias);
    zstr_sendm (self->pipe, "PUBLISH");
    zstr_sendfm (self->pipe, "%s", location);
    zstr_sendf (self->pipe, "%s", alias);
}

Design Notes
The hardest part of making FileMQ wasn’t implementing the protocol, but maintaining
accurate state internally. An FTP or HTTP server is essentially stateless, but a publish-
subscribe server has to maintain subscriptions, at least.

So, I’ll go through some of the design aspects:

• The client detects if the server has died by the lack of heartbeats (HUGZ) coming
from the server. It then restarts its dialog by sending an OHAI. There’s no timeout
on the OHAI since the ØMQ DEALER socket will queue an outgoing message
indefinitely.
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• The server detects if a client has died by its lack of response (HUGZ-OK) to a
heartbeat. In that case, it deletes all state for the client, including its subscriptions.

• The client API holds subscriptions in memory and replays them when it has con‐
nected successfully. This means the caller can subscribe at any time (and doesn’t
care when connections and authentication actually happen).

• The server and client use virtual paths, much like an HTTP or FTP server. You
publish one or more “mount points,” each corresponding to a directory on the
server. Each of these maps to some virtual path; for instance, “/” if you have only
one mount point. Clients then subscribe to virtual paths, and files arrive in an inbox
directory. We don’t send physical filenames across the network.

• There are some timing issues: if the server is creating its mount points while clients
are connected and subscribing, the subscriptions won’t attach to the right mount
points. So, we bind the server port as the last thing.

• Clients can reconnect at any point; if the client sends OHAI, that signals the end of
any previous conversation and the start of a new one. I might one day make sub‐
scriptions durable so that they survive a disconnection. The client stack, after re‐
connecting, replays any subscriptions the caller application has already made.

Configuration
I’ve built several large server products, like the Xitami web server that was popular in
the late ’90s, and the OpenAMQ messaging server. Getting configuration easy and ob‐
vious was a large part of making these servers fun to use.

We typically aim to solve a number of problems:

• Ship default configuration files with the product.
• Allow users to add custom configuration files that are never overwritten.
• Allow users to configure from the command line.

And then layer these one on top of the other, so command-line settings override custom
settings, which override default settings. It can be a lot of work to do this right. For
FileMQ, I’ve taken a somewhat simpler tack: all configuration is done from the API.

This is how we start and configure the server, for example:
server = fmq_server_new ();
fmq_server_configure (server, "server_test.cfg");
fmq_server_publish (server, "./fmqroot/send", "/");
fmq_server_publish (server, "./fmqroot/logs", "/logs");
fmq_server_bind (server, "tcp://*:5670");
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We do use a specific format for the config files—the ZeroMQ Property Language (ZPL),
a minimalist syntax that we started using for ØMQ “devices” a few years ago, but which
works well for any server:

#   Configure server for plain access
#
server
    monitor = 1             #   Check mount points
    heartbeat = 1           #   Heartbeat to clients

publish
    location = ./fmqroot/logs
    virtual = /logs

security
    echo = I: use guest/guest to login to server
    #   These are SASL mechanisms we accept
    anonymous = 0
    plain = 1
        account
            login = guest
            password = guest
            group = guest
        account
            login = super
            password = secret
            group = admin

One cute thing (which seems useful) that the generated server code does is to parse this
config file (when you use the fmq_server_configure() method) and execute any sec‐
tion that matches an API method. Thus, the “publish” section works as an fmq_serv
er_publish() method.

File Stability
It is quite common to poll a directory for changes and then do something “interesting”
with new files. But as one process is writing to a file, other processes have no idea when
the file has been fully written. One solution is to add a second “indicator” file that we
create after creating the first file. This is intrusive, however.

There is a neater way, which is to detect when a file is “stable” (i.e., no one is writing to
it any longer). FileMQ does this by checking the modification time of the file. If it’s more
than a second old, then the file is considered stable—at least, stable enough to be shipped
off to clients. If a process comes along after five minutes and appends to the file, it’ll be
shipped off again.

For this to work, and this is a requirement for any application hoping to use FileMQ
successfully, do not buffer more than a second’s worth of data in memory before writing.
If you use very large block sizes, the file may look stable when it’s not.
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Delivery Notifications
One of the nice things about the multithreaded API model we’re using is that it’s es‐
sentially message-based. This makes it ideal for returning events back to the caller. A
more conventional API approach would be to use callbacks, but callbacks that cross
thread boundaries are somewhat delicate. Here’s how the client sends a message back
when it has received a complete file:

zstr_sendm (self->pipe, "DELIVER");
zstr_sendm (self->pipe, filename);
zstr_sendf (self->pipe, "%s/%s", inbox, filename);

We can now add a _recv() method to the API that waits for events back from the client.
It makes a clean style for the caller: create the client object, configure it, and then receive
and process any events it returns.

Symbolic Links
While using a staging area is a nice, simple API, it also creates costs for senders. If I
already have a 2 GB video file on a camera and I want to send it via FileMQ, the current
implementation asks that I copy it to a staging area before it will be sent to subscribers.

One option is to mount the whole content directory (e.g., /home/me/Movies), but this
is fragile since it means the application can’t decide to send individual files. It’s everything
or nothing.

A simple answer is to implement portable symbolic links. As Wikipedia explains:

A symbolic link contains a text string that is automatically interpreted and followed by
the operating system as a path to another file or directory. This other file or directory is
called the “target”. The symbolic link is a second file that exists independently of its target.
If a symbolic link is deleted, its target remains unaffected.

This doesn’t affect the protocol in any way; it’s an optimization in the server imple‐
mentation. Let’s make a simple portable implementation:

• A symbolic link consists of a filename with the extension .ln.
• The filename without .ln is the published filename.
• The link file contains one line, which is the real path to the file.

Since we’ve collected all operations on files in a single class (fmq_file), it’s a clean
change. When we create a new file object we check if it’s a symbolic link; if so, all read-
only actions (get file size, read file) operate on the target file, not the link.
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Recovery and Late Joiners
As it stands now, FileMQ has one major remaining problem: it provides no way for
clients to recover from failures. The scenario is that a client, connected to a server, starts
to receive files, and then disconnects for some reason. The network may be too slow, or
break. The client may be on a laptop that is shut down, then resumed. The WiFi may
be disconnected. As we move to a more mobile world (see Chapter 8), this use case
becomes more and more frequent. In some ways it’s becoming a dominant use case.

In the classic ØMQ publish-subscribe pattern, there are two strong underlying as‐
sumptions, both of which are usually wrong in FileMQ’s real world: first, that data
expires very rapidly, so there’s no interest in asking for old data; and second, that net‐
works are stable and rarely break (so it’s better to invest more in improving the infra‐
structure and less in addressing recovery).

Take any FileMQ use case, and you’ll see that if the client disconnects and reconnects,
it should get anything it missed. A further improvement would be to recover from partial
failures, like HTTP and FTP do. But one thing at a time.

One answer to recovery is “durable subscriptions.” The first drafts of the FILEMQ pro‐
tocol aimed to support this, with client identifiers that the server could hold onto and
store so that if a client reappeared after a failure, the server would know what files it had
not received.

Stateful servers are, however, nasty to make and difficult to scale. How do we, for ex‐
ample, fail over to a secondary server? Where does it get its subscriptions from? It’s far
nicer if each client connection works independently and carries all necessary state with
it.

Another nail in the coffin of durable subscriptions is that this approach requires up-
front coordination. Up-front coordination is always a red flag, whether it’s in a team of
people working together or a bunch of processes talking to each other. What about late
joiners? In the real world, clients do not neatly line up and then all say “Ready!” at the
same time. In the real world they come and go arbitrarily, and it’s valuable if we can
treat a brand new client in the same way as a client that has gone away and come back.

To deal with this I will add two concepts to the protocol: a resync option and a cache
field (a dictionary). If the client wants recovery, it sets the resync option and tells the
server what files it already has via the cache field. We need both, because there’s no way
in the protocol to distinguish between an empty field and a null field. The FILEMQ RFC
describes these fields as follows:

The ‘options’ field provides additional information to the server. The server SHOULD
implement these options:
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• RESYNC=1 - if the client sets this, the server SHALL send the full contents of the
virtual path to the client, except files the client already has, as identified by their
SHA-1 digest in the ‘cache’ field.

When the client specifies the RESYNC option, the ‘cache’ dictionary field tells the server
which files the client already has. Each entry in the ‘cache’ dictionary is a “filename=di‐
gest” key/value pair where the digest SHALL be a SHA-1 digest in printable hexadecimal
format. If the filename starts with ‘/’ then it SHOULD start with the path, otherwise the
server MUST ignore it. If the filename does not start with ‘/’ then the server SHALL treat
it as relative to the path.

Clients that know they are in the classic pub-sub use case just don’t provide any cache
data, and clients that want recovery provide their cache data. It requires no state in the
server, no up-front coordination, and works equally well for brand new clients (which
may have received files via some out-of-band means) and clients that have received
some files and were then disconnected for a while.

I decided to use SHA-1 digests for several reasons. First, SHA-1 is fast enough: 150 msec
to digest a 25 MB core dump on my laptop. Second, it’s reliable: the chance of getting
the same hash for different versions of one file is close enough to zero. Third, it’s the
widest supported digest algorithm. A cyclic-redundancy check (such as CRC-32) is
faster but not reliable. More recent SHA versions (SHA-256, SHA-512) are more secure
but take 50% more CPU cycles, and are overkill for our needs.

Here is what a typical ICANHAZ message looks like when we use both caching and
resyncing (this is output from the dump method of the generated codec class):

ICANHAZ:
    path='/photos'
    options={
        RESYNC=1
    }
    cache={
        DSCF0001.jpg=1FABCD4259140ACA99E991E7ADD2034AC57D341D
        DSCF0006.jpg=01267C7641C5A22F2F4B0174FFB0C94DC59866F6
        DSCF0005.jpg=698E88C05B5C280E75C055444227FEA6FB60E564
        DSCF0004.jpg=F0149101DD6FEC13238E6FD9CA2F2AC62829CBD0
        DSCF0003.jpg=4A49F25E2030B60134F109ABD0AD9642C8577441
        DSCF0002.jpg=F84E4D69D854D4BF94B5873132F9892C8B5FA94E
    }

Although we don’t do this in FileMQ, the server can use the cache information to help
the client catch up with deletions that it has missed. To do this it would have to log
deletions, and then compare this log with the client cache when a client subscribes.
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Test Use Case: The Track Tool
To properly test something like FileMQ we need a test case that plays with live data. One
of my sysadmin tasks is to manage the MP3 tracks on my music player. That is, by the
way, a Sansa Clip reflashed with Rock Box, which I highly recommend. As I download
tracks into my Music folder, I want to copy these to my player, and as I find tracks that
annoy me, I delete them in the Music folder and want those gone from my player, too.

I could write this using a bash or Perl script—a powerful file distribution protocol is
kind of overkill—but to be honest the hardest work in FileMQ was the directory com‐
parison code, and I want to benefit from that. So I put together a simple tool called
“track” that calls the FileMQ API. From the command line this runs with two arguments,
the sending and receiving directories:

./track /home/ph/Music /media/3230-6364/MUSIC

The code is a neat example of how to use the FileMQ API to do local file distribution.
Here is the full program, minus the license text (it’s MIT/X11 licensed):

#include "czmq.h"
#include "../include/fmq.h"

int main (int argc, char *argv [])
{
    fmq_server_t *server = fmq_server_new ();
    fmq_server_configure (server, "anonymous.cfg");
    fmq_server_publish (server, argv [1], "/");
    fmq_server_set_anonymous (server, true);
    fmq_server_bind (server, "tcp://*:5670");

    fmq_client_t *client = fmq_client_new ();
    fmq_client_connect (client, "tcp://localhost:5670");
    fmq_client_set_inbox (client, argv [2]);
    fmq_client_set_resync (client, true);
    fmq_client_subscribe (client, "/");

    while (true) {
        //  Get message from fmq_client API
        zmsg_t *msg = fmq_client_recv (client);
        if (!msg)
            break;              //  Interrupted
        char *command = zmsg_popstr (msg);
        if (streq (command, "DELIVER")) {
            char *filename = zmsg_popstr (msg);
            char *fullname = zmsg_popstr (msg);
            printf ("I: received %s (%s)\n", filename, fullname);
            free (filename);
            free (fullname);
        }
        free (command);
        zmsg_destroy (&msg);
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    }
    fmq_server_destroy (&server);
    fmq_client_destroy (&client);
    return 0;
}

Note how we work with physical paths in this tool. The server publishes the physical
path “/home/ph/Music” and maps this to the virtual path “/”. The client subscribes to
“/” and receives all files in “/media/3230-6364/MUSIC”. I could use any structure within
the server directory, and it would be copied faithfully to the client’s inbox. Note the API
method fmq_client_set_resync(), which causes a server-to-client synchronization.

Getting an Official Port Number
We’ve been using port 5670 in the examples for FILEMQ. Unlike all the previous ex‐
amples in this book, this port isn’t arbitrary but was assigned by the Internet Assigned
Numbers Authority, which “is responsible for the global coordination of the DNS Root,
IP addressing, and other Internet protocol resources.”

I’ll explain very briefly when and how to request registered port numbers for your
application protocols. The main reason is to ensure that your applications can run in
the public domain without conflict with other protocols. Technically, if you ship any
software that uses port numbers between 1024 and 49151, you should be using only
IANA-registered port numbers. Many products don’t bother with this, however, and
tend instead to use the IANA list as “ports to avoid.”

If you aim to make a public protocol of any importance, such as FILEMQ, you’re going
to want an IANA-registered port. Briefly, here’s how to do this:

• Document your protocol clearly, as IANA will want a specification of how you
intend to use the port. It’s not a formal agreement but must be solid enough to pass
expert review.

• Decide what transport protocols you want: UDP, TCP, SCTP, etc. Usually with ØMQ
you will want just TCP.

• Fill in the application on iana.org, providing all the necessary information.
• IANA will then continue the process by email until your application is either ac‐

cepted or rejected.

Note that you don’t request a specific port number; IANA will assign you one. It’s there‐
fore wise to start this process before you ship software, not afterwards.
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CHAPTER 8

A Framework for Distributed Computing

We’ve gone though a journey of understanding ØMQ in its many aspects. By now you
may have started to build your own products using the techniques I’ve explained, as
well as others you’ve figured out yourself. You will start to face questions about how to
make these products work in the real world.

But what is that “real world”? I’ll argue that it is becoming a world of ever-increasing
numbers of moving pieces. Some people use the phrase “the Internet of Things,” sug‐
gesting that we’ll soon see a new category of devices that are more numerous, but also
more stupid than our current smartphones, tablets, laptops, and servers. However, I
don’t think the data points this way at all. Yes, there are more and more devices, but
they’re not stupid at all. They’re smart and powerful, and getting more so all the time.

The mechanism at work is something I call “cost gravity,” and it has the effect of reducing
the cost of technology by half every 18–24 months. Put another way, our global com‐
puting capacity doubles every two years, over and over and over. The future is filled
with trillions of devices that are fully powerful multicore computers: they don’t run a
cut-down “operating system for things,” but full operating systems and full applications.

And this is the world at which we’re aiming with ØMQ. When we talk of “scale,” we
don’t mean hundreds of computers, or even thousands. Think of clouds of tiny, smart,
and perhaps self-replicating machines surrounding every person, filling every space,
covering every wall, filling the cracks and, eventually, becoming so much a part of us
that we get them before birth and they follow us to death.

These clouds of tiny machines talk to each other, all the time, over short-range wireless
links using the Internet Protocol. They create mesh networks, pass information and
tasks around like nervous signals. They augment our memory, our vision, every aspect
of our communications, and our physical functions. And it’s ØMQ that powers their
conversations and events and exchanges of work and information.
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Now, to make even a thin imitation of this vision come true today, we need to solve a
set of technical problems. These include: How do peers discover each other? How do
they talk to existing networks like the Web? How do they protect the information they
carry? How do we track and monitor them, to get some idea of what they’re doing? Then
we need to do what most engineers forget about: package this solution into a framework
that is dead easy for ordinary developers to use.

This is what we’ll attempt in this chapter: to build a framework for distributed appli‐
cations, as an API, protocols, and implementations. It’s not a small challenge, but I’ve
claimed often that ØMQ makes such problems simple, so let’s see if that’s still true.

We’ll cover:

• Requirements for distributed computing
• The pros and cons of WiFi for proximity networking
• Discovery using UDP and TCP
• A message-based API
• Creating a new open source project
• Peer-to-peer connectivity (the Harmony pattern)
• Tracking peer presence and disappearance
• Group messaging without central coordination
• Large-scale testing and simulation
• Dealing with high-water marks and blocked peers
• Distributed logging and monitoring

Design for the Real World
Whether we’re connecting a roomful of mobile devices over WiFi or a cluster of virtual
boxes over simulated Ethernet, we will hit the same kinds of problems. These are:
Discovery

How do we learn about other nodes on the network? Do we use a discovery service,
centralized mediation, or some kind of broadcast beacon?

Presence
How do we track when other nodes come and go? Do we use some kind of central
registration service, or heartbeating or beacons?

Connectivity
How do we actually connect one node to another? Do we use local networking,
wide-area networking, or do we use a central message broker to do the forwarding?
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Point-to-point messaging
How do we send a message from one node to another? Do we send this to the node’s
network address, or do we use some indirect addressing via a centralized message
broker?

Group messaging
How do we send a message from one node to a group of others? Do we work via a
centralized message broker, or do we use a publish-subscribe model like ØMQ?

Testing and simulation
How do we simulate large numbers of nodes so we can test performance properly?
Do we have to buy two dozen Android tablets, or can we use pure software simu‐
lation?

Distributed logging
How do we track what this cloud of nodes is doing so we can detect performance
problems and failures? Do we create a main logging service, or do we allow every
device to log the world around it?

Content distribution
How do we send content from one node to another? Do we use server-centric pro‐
tocols like FTP or HTTP, or do we use decentralized protocols like FileMQ?

If we can solve these problems reasonably well, and the further problems that will
emerge (like security and wide-area bridging), we’ll get something like a framework for
what I might call “Really Cool Distributed Applications” and my grandkids might call
“the software our world runs on.”

You should have guessed from my rhetorical questions that there are two broad direc‐
tions in which we can go. One is to centralize everything. The other is to distribute
everything. I’m going to bet on decentralization. If you want centralization, you don’t
really need ØMQ; there are other options you can use.

So, very roughly, here’s the story. One, the number of moving pieces increases expo‐
nentially over time (it doubles every 24 months). Two, these pieces stop using wires
because dragging cables everywhere gets really boring. Three, future applications run
across clusters of these pieces using the Benevolent Tyrant pattern from Chapter 6. Four,
today it’s really difficult—nay, still rather impossible—to build such applications. Five,
let’s make it cheap and easy using all the techniques and tools we’ve built up. Six, partay!

The Secret Life of WiFi
The future is clearly wireless, and while many big businesses live by concentrating data
in their clouds, the future doesn’t look quite so centralized. The devices at the edges of
our networks get smarter every year, not dumber. They’re hungry for work and infor‐
mation to digest and profit from. And they don’t drag cables around, except once a night
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for power. It’s all wireless and more and more, it’s 802.11-branded WiFi of different
alphabetical flavors.

Why Mesh Isn’t Here Yet
As such a vital part of our future, WiFi has a big problem that’s not often discussed, but
that anyone betting on it needs to be aware of. The phone companies of the world have
built themselves nice, profitable mobile phone cartels in nearly every country with a
functioning government, based on convincing governments that without monopoly
rights to airwaves and ideas, the world would fall apart. Technically, we call this “regu‐
latory capture” and “patents,” but in fact it’s just a form of blackmail and corruption. If
you, the state, give me, a business, the right to overcharge, tax the market, and ban all
real competitors, I’ll give you 5%. Not enough? How about 10%? OK, 15% plus snacks.
If you refuse, we pull service.

But WiFi snuck past this, borrowing unlicensed airspace and riding on the back of the
open and unpatented and remarkably innovative Internet Protocol stack. So today, we
have the curious situation where it costs me several euros a minute to call from Seoul
to Brussels if I use the state-backed infrastructure that we’ve subsidized over decades,
but nothing at all if I can find an unregulated WiFi access point. Oh, and I can do video,
send files and photos, and download entire home movies all for the same amazing price
point of precisely zero point zero zero (in any currency you like). God help me if I try
to send just one photo to my home using the service for which I actually pay. That would
cost me more than the camera I took it on.

This is the price we pay for having tolerated the “trust us, we’re the experts” patent system
for so long. But more than that, it’s a massive economic incentive to chunks of the
technology sector—and especially chipset makers who own patents on the anti-Internet
GSM, GPRS, 3G, and LTE stacks, and who treat the telcos as prime clients—to actively
throttle WiFi development. And of course, it’s these firms that bulk out the IEEE com‐
mittees that define WiFi.

The reason for this rant against lawyer-driven “innovation” is to steer your thinking
toward the question, “What if WiFi were really free?” This will happen one day, not too
far off, and it’s worth betting on. We’ll see several things happen: first, much more
aggressive use of airspace, especially for near-distance communications where there is
no risk of interference; second, big capacity improvements as we learn to use more
airspace in parallel; third, acceleration of the standardization process; and last, broader
support in devices for really interesting connectivity.

Right now, streaming a movie from your phone to your TV is considered “leading edge.”
This is ridiculous. Let’s get truly ambitious. How about a stadium of people watching a
game, sharing photos and HD video with each other in real time, creating an ad hoc
event that literally saturates the airspace with a digital frenzy? I should be able to collect
terabytes of imagery from those around me, in an hour. Why does this have to go
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through Twitter or Facebook and that tiny, expensive mobile data connection? How
about a home with hundreds of devices all talking to each other over mesh, so when
someone rings the doorbell, the porch lights stream video through to your phone or
TV? How about a car that can talk to your phone and play your dubstep playlist without
you plugging in wires?

To get more serious, why is our digital society in the hands of central points that are
monitored, censored, logged, used to track who we talk to and to collect evidence against
us, and then shut down when the authorities decide we have too much free speech? The
loss of privacy we’re living through is only a problem when it’s one-sided, but then the
problem is calamitous. A truly wireless world would bypass all central censorship. It’s
how the Internet was designed, and it’s quite feasible, technically.

Some Physics
Naive developers of distributed software treat the network as infinitely fast and perfectly
reliable. While this is approximately true for simple applications running over Ethernet,
WiFi rapidly proves the difference between magical thinking and science. That is, WiFi
breaks so easily and dramatically under stress that I sometimes wonder how anyone
would dare use it for real work. The ceiling moves up as WiFi gets better, but never fast
enough to stop us hitting it.

To understand how WiFi performs technically, you need to understand a basic law of
physics: the power required to connect two points increases according to the square of
the distance. People who grow up in larger houses have exponentially louder voices, as
I learned in Dallas. For a WiFi network this means that as two radios get further apart,
they have to either use more power or lower their signal rate.

There’s only so much power you can pull out of a battery before users treat the device
as hopelessly broken. Thus, even though a WiFi network may be rated at a certain speed,
the real bit rate between the access point (AP) and a client depends on how far apart
the two are. As you move your WiFi-enabled phone away from the AP, the two radios
trying to talk to each other will first increase their power and then reduce their bit rate.

This effect has some consequences of which we should be aware if we want to build
robust distributed applications that don’t dangle wires behind them like puppets:

• If you have a group of devices talking to an AP, when the AP is talking to the slowest
device, the whole network has to wait. It’s like having to repeat a joke at a party to
the designated driver who has no sense of humor, is still fully and tragically sober,
and has a poor grasp of language.

• If you use unicast TCP and send a message to multiple devices, the AP must send
the packets to each device separately, Yes, you knew this; it’s also how Ethernet
works. But now understand that one distant (or low-powered) device will force
everything to wait for that slowest device to catch up.
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• If you use multicast or broadcast (which work the same, in most cases), the AP will
send single packets to the whole network at once, which is awesome, but it will do
it at the slowest possible bit rate (usually 1 Mbps). You can adjust this rate manually
in some APs, but that just reduces the reach of your AP. You can also buy more
expensive APs that have a little more intelligence and will figure out the highest bit
rate they can safely use, or you can use enterprise APs with Internet Group Man‐
agement Protocol (IGMP) support and ØMQ’s PGM transport to send only to
subscribed clients. I would not, however, bet on such APs being widely available,
ever.

As you try to put more devices onto an AP, performance rapidly gets worse, to the point
where adding one more device can break the whole network for everyone. Many APs
solve this by randomly disconnecting clients when they reach some limit, such as 4–8
devices for a mobile hotspot, 30–50 devices for a consumer AP, or perhaps 100 devices
for an enterprise AP.

What’s the Current Status?
Despite its uncomfortable role as enterprise technology that somehow escaped into the
wild, WiFi is already useful for more than making a free Skype call. It’s not ideal, but it
works well enough to let us solve some interesting problems. Let me give you a rapid
status report.

First, point-to-point versus AP-to-client. Traditional WiFi is all AP-client. Every packet
has to go from client A to AP, then to client B. You cut your bandwidth by 50%—but
that’s only half the problem. I explained about the inverse power law. If A and B are very
close together but both are far from the AP, they’ll both be using a low bit rate. Imagine
your AP is in the garage, and you’re in the living room trying to stream video from your
phone to your TV. Good luck!

There is an old “ad hoc” mode that lets A and B talk to each other, but it’s way too slow
for anything fun, and of course, it’s disabled on all mobile chipsets. Actually, it’s disabled
in the top-secret drivers that the chipset makers kindly provide to hardware makers.
There is also a new Tunneled Direct Link Setup (TDLS) protocol that lets two devices
create a direct link, using an AP for discovery but not for traffic. And there’s a “5G”
WiFi standard (it’s a marketing term, so it goes in quotes) that boosts link speeds to a
gigabit. TDLS and 5G together make HD movie streaming from your phone to your
TV a plausible reality. I assume TDLS will be restricted in various ways so as to placate
the telcos.

Furthermore, we saw standardization of the 802.11s mesh protocol in 2012, after a
remarkably speedy 10 years or so of work. Mesh removes the access point completely,
at least in the imaginary future where it exists and is widely used. Devices talk to each
other directly and maintain little routing tables of neighbors that let them forward
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packets. Imagine the AP software embedded into every device, but smart enough (it’s
not as impressive as it sounds) to do multiple hops.

No one who is making money from the mobile data extortion racket wants to see 802.11s
available, because citywide mesh is such a nightmare for the bottom line, so it’s hap‐
pening as slowly as possible. The only large organization with the power (and, I assume
the surface-to-surface missiles) to get mesh technology into wide use is the US Army.
But mesh will emerge, and I’d bet on 802.11s being widely available in consumer elec‐
tronics by 2020 or so.

Second, if we don’t have point-to-point, how far can we trust APs today? Well, if you go
to a Starbucks in the US and try the ØMQ “Hello World” example using two laptops
connected via the free WiFi, you’ll find they cannot connect. Why? The answer is in the
name: “attwifi.” AT&T is a good old incumbent telco that hates WiFi and presumably
provides the service cheaply to Starbucks and others so that independents can’t get into
the market. But any access point you buy will support client-AP-client access, and out‐
side the US I’ve never found a public AP locked down the AT&T way.

Third, performance. The AP is clearly a bottleneck; you cannot get better than half of
its advertised speed even if you put A and B literally beside the AP. Worse, if there are
other APs in the same airspace, they’ll shout each other out. In my home, WiFi barely
works at all because the neighbors two houses down have an AP that they’ve amplified.
Even on a different channel, it interferes with our home WiFi. In the cafe where I’m
sitting now there are over a dozen networks. Realistically, as long as we’re dependent
on AP-based WiFi, we’re subject to random interference and unpredictable perfor‐
mance.

Fourth, battery life. There’s no inherent reason that WiFi, when idle, is hungrier than
Bluetooth, for example. They use the same radio waves and low-level framing. The main
difference is in tuning and in the protocols. For wireless power-saving to work well,
devices have to mostly sleep, and beacon out to other devices only once every so often.
For this to work, they need to synchronize their clocks. This happens properly for the
mobile phone part, which is why my old flip phone can run five days on a charge. When
WiFi is working, it will use more power. Current power amplifier technology is also
inefficient, meaning you draw a lot more energy from your battery than you pump into
the air (the waste turns into a hot phone). Power amplifiers are improving as people
focus more on mobile WiFi.

Lastly, mobile access points. If we can’t trust centralized APs, and if our devices are smart
enough to run full operating systems, can’t we make them work as APs? I’m so glad you
asked that question. Yes, we can, and it works quite nicely. Especially since we can switch
this on and off in software, on a modern OS like Android. Again, the villains of the piece
are the US telcos, who mostly detest this feature and kill it or cripple it on the phones
they control. Smarter telcos realize that it’s a way to amplify their “last mile” and bring
higher-value products to more users, but crooks don’t compete on smarts.
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Conclusions
WiFi is not Ethernet, and although I believe future ØMQ applications will have a very
important decentralized wireless presence, it’s not going to be an easy road. Much of
the basic reliability and capacity that you expect from Ethernet is missing. When you
run a distributed application over WiFi you have to allow for frequent timeouts, random
latencies, arbitrary disconnections, whole interfaces going down and coming up, and
so on.

The technological evolution of wireless networking is best described as “slow and joy‐
less.” Applications and frameworks that try to exploit decentralized wireless are mostly
absent or poor. The only existing open source framework for proximity networking is
AllJoyn from Qualcomm. But with ØMQ we proved that the inertia and decrepit in‐
competence of existing players was no reason for us to sit still. When we accurately
understand problems, we can solve them. What we imagine, we can make real.

Discovery
One of the great things about short-range wireless is the proximity. WiFi maps closely
to the physical space, which maps closely to how we naturally organize. In fact, the
Internet is quite abstract, and this confuses a lot of people who “kind of get it” but in
fact don’t really. With WiFi, we have technical connectivity that is potentially super-
tangible. You see what you get and you get what you see. Tangible means easy to un‐
derstand, and that should mean love from users instead of the typical frustration and
quiet seething hatred.

Proximity is the key. Say we have a bunch of WiFi radios in a room, happily beaconing
to each other. For lots of applications it makes sense that they can find each other and
start chatting, without any user input. After all, most real-world data isn’t private, it’s
just highly localized.

As a first step toward ØMQ-based proximity networking, let’s look at how to do dis‐
covery. There exist libraries that do this. I don’t like them. They seem too complex and
too specific and somehow to date from a prehistoric era before people realized that
distributed computing could be fundamentally simple.

Preemptive Discovery over Raw Sockets
I’m in a hotel room in Gangnam, Seoul, with a 4G wireless hotspot, a Linux laptop, and
a couple of Android phones. The phones and laptop are talking to the hotspot. The
ifconfig command says my IP address is 192.168.1.2. Let me try some ping commands.
Dynamic Host Control Protocol (DHCP) servers tend to dish out addresses in sequence,
so my phones are probably close by, numerically speaking:
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$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=376 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=358 ms
64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=167 ms
^C
--- 192.168.1.1 ping statistics ---
3 packets transmitted, 2 received, 33% packet loss, time 2001ms
rtt min/avg/max/mdev = 358.077/367.522/376.967/9.445 ms

Found one! 150–300 msec round-trip latency... that’s a surprisingly high figure, some‐
thing to keep in mind for later. Now I ping myself, just to try to double-check things:

$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_req=1 ttl=64 time=0.054 ms
64 bytes from 192.168.1.2: icmp_req=2 ttl=64 time=0.055 ms
64 bytes from 192.168.1.2: icmp_req=3 ttl=64 time=0.061 ms
^C
--- 192.168.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.054/0.056/0.061/0.009 ms

The response time is a bit faster now, which is what we’d expect. Let’s try the next couple
of addresses:

$ ping 192.168.1.3
PING 192.168.1.3 (192.168.1.3) 56(84) bytes of data.
64 bytes from 192.168.1.3: icmp_req=1 ttl=64 time=291 ms
64 bytes from 192.168.1.3: icmp_req=2 ttl=64 time=271 ms
64 bytes from 192.168.1.3: icmp_req=3 ttl=64 time=132 ms
^C
--- 192.168.1.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 132.781/231.914/291.851/70.609 ms

That’s the second phone, with the same kind of latency as the first one. Let’s continue,
and see if there are any other devices connected to the hotspot:

$ ping 192.168.1.4
PING 192.168.1.4 (192.168.1.4) 56(84) bytes of data.
^C
--- 192.168.1.4 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2016ms

And that is it. Now, ping uses raw IP sockets to send ICMP_ECHO messages. The useful
thing about ICMP_ECHO is that it gets a response from any IP stack that has not deliber‐
ately had echo switched off. That’s still a common practice on corporate websites who
fear the old “ping of death” exploit, where malformed messages could crash the machine.

I call this pre-emptive discovery since it doesn’t take any cooperation from the device.
We don’t rely on any cooperation from the phones to see them sitting there; as long as
they’re not actively ignoring us, we can see them.
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You might ask why this is useful. We don’t know that the peers responding to ICMP_ECHO
run ØMQ, that they are interested in talking to us, that they have any services we can
use, or even what kinds of devices they are. However, knowing that there’s something
on address 192.168.1.3 is already useful. We also know how far away the device is (rel‐
atively), we know how many devices are on the network, and we know the rough state
of the network (as in, good, poor, or terrible).

It isn’t even hard to create ICMP_ECHO messages and send them. It only takes a few dozen
lines of code, and we could use ØMQ multithreading to do this in parallel for addresses
stretching out above and below our own IP address. Could be kind of fun.

However, sadly, there’s a fatal flaw in my idea of using ICMP_ECHO to discover devices.
Opening a raw IP socket requires root privileges on a POSIX box. This stops rogue
programs getting data meant for others. We can get the power to open raw sockets on
Linux by giving sudo privileges to our command (ping has the so-called sticky bit set).
But on a mobile OS like Android, it requires root access (i.e., rooting the phone or
tablet). That’s out of the question for most people, so ICMP_ECHO is out of reach for most
devices.

Expletive deleted! Let’s try something in user space. The next step most people take is
UDP multicast or broadcast. Let’s follow that trail.

Cooperative Discovery Using UDP Broadcasts
Multicast tends to be seen as more modern and “better” than broadcast. In IPv6, broad‐
cast doesn’t work at all: you always have to use multicast. Nonetheless, all IPv4 local
network discovery protocols end up using UDP broadcast anyhow. The reason: broad‐
cast and multicast end up working much the same, except broadcast is simpler and less
risky. Multicast is seen by network admins as kind of dangerous, as it can leak over
network segments.

If you’ve never used UDP, you’ll discover it’s quite a nice protocol. In some ways it
reminds me of ØMQ, sending whole messages to peers using two different patterns:
one-to-one and one-to-many. The main problems with UDP are that (a) the POSIX
socket API was designed for universal flexibility, not simplicity, (b) UDP messages are
limited for practical purposes to about 512 bytes, and (c) when you start to use UDP
for real data you’ll find that a lot of messages get dropped, especially as infrastructure
tends to favor TCP over UDP.

Example 8-1 is a minimal ping program that uses UDP instead of ICMP_ECHO.

Example 8-1. UDP discovery, model 1 (udpping1.c)
//
//  UDP ping command
//  Model 1, does UDP work inline
//
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#include <czmq.h>
#define PING_PORT_NUMBER 9999
#define PING_MSG_SIZE    1
#define PING_INTERVAL    1000  //  Once per second

static void
derp (char *s)
{
    perror (s);
    exit (1);
}

int main (void)
{
    zctx_t *ctx = zctx_new ();

    //  Create UDP socket
    int fd;
    if ((fd = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)
        derp ("socket");

    //  Ask operating system to let us do broadcasts from socket
    int on = 1;
    if (setsockopt (fd, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on)) == -1)
        derp ("setsockopt (SO_BROADCAST)");

    //  Bind UDP socket to local port so we can receive pings
    struct sockaddr_in si_this = { 0 };
    si_this.sin_family = AF_INET;
    si_this.sin_port = htons (PING_PORT_NUMBER);
    si_this.sin_addr.s_addr = htonl (INADDR_ANY);
    if (bind (fd, &si_this, sizeof (si_this)) == -1)
        derp ("bind");
    
    byte buffer [PING_MSG_SIZE];

We use zmq_poll() to wait for activity on the UDP socket, since this function works
on non-ØMQ file handles. We send a beacon once a second, and we collect and report
beacons that come in from other nodes. Example 8-2 shows the main ping loop.

Example 8-2. UDP discovery, model 1 (udpping1.c): main ping loop
    zmq_pollitem_t pollitems [] = {{ NULL, fd, ZMQ_POLLIN, 0 }};
    //  Send first ping right away
    uint64_t ping_at = zclock_time ();
    
    while (!zctx_interrupted) {
        long timeout = (long) (ping_at - zclock_time ());
        if (timeout < 0)
            timeout = 0;
        if (zmq_poll (pollitems, 1, timeout * ZMQ_POLL_MSEC) == -1)
            break;              //  Interrupted

Discovery | 435



        //  Someone answered our ping
        if (pollitems [0].revents & ZMQ_POLLIN) {
            struct sockaddr_in si_that;
            socklen_t si_len;
            ssize_t size = recvfrom (fd, buffer, PING_MSG_SIZE, 0, &si_that,        &si_len);
            if (size == -1)
                derp ("recvfrom");
            printf ("Found peer %s:%d\n",
                inet_ntoa (si_that.sin_addr), ntohs (si_that.sin_port));
        }
        if (zclock_time () >= ping_at) {
            //  Broadcast our beacon
            puts ("Pinging peers...");
            buffer [0] = '!';
            struct sockaddr_in si_that = si_this;
            inet_aton ("255.255.255.255", &si_that.sin_addr);
            if (sendto (fd, buffer, PING_MSG_SIZE, 0, &si_that,        sizeof (struct sockaddr_in)) == 
                derp ("sendto");
            ping_at = zclock_time () + PING_INTERVAL;
        }
    }
    close (fd);
    zctx_destroy (&ctx);
    return 0;
}

This code uses a single socket to broadcast 1-byte messages and receive anything that
other nodes are broadcasting. When I run it, it shows just one node, which is itself:

Pinging peers...
Found peer 192.168.1.2:9999
Pinging peers...
Found peer 192.168.1.2:9999

If I switch off all networking and try again, sending a message fails, as I’d expect:
Pinging peers...
sendto: Network is unreachable

Working on the basis of solve the problems currently aiming at your throat, let’s fix the
most urgent issues in this first model. These issues are:

• Using the 255.255.255.255 broadcast address is a bit dubious. On the one hand, this
broadcast address means precisely “send to all nodes on the local network, and don’t
forward.” However, if you have several interfaces (wired Ethernet, WiFi), broadcasts
will go out on your default route only, and via just one interface. What we want to
do is either send our broadcast on each interface’s broadcast address, or find the
WiFi interface and its broadcast address.
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• Like many aspects of socket programming, getting information on network inter‐
faces is not portable. Do we want to write nonportable code in our applications?
No, this is better hidden in a library.

• There’s no handling for errors except “abort,” which is too brutal for transient
problems like “your WiFi is switched off.” The code should distinguish between soft
errors (ignore and retry) and hard errors (assert).

• The code needs to know its own IP address and ignore beacons that it sent out. Like
finding the broadcast address, this requires inspecting the available interfaces.

The simplest answer to these issues is to push the UDP code into a separate library that
provides a clean API, like this:

//  Constructor
static udp_t *
    udp_new (int port_nbr);

//  Destructor
static void
    udp_destroy (udp_t **self_p);

//  Returns UDP socket handle
static int
    udp_handle (udp_t *self);

//  Send message using UDP broadcast
static void
    udp_send (udp_t *self, byte *buffer, size_t length);

//  Receive message from UDP broadcast
static ssize_t
    udp_recv (udp_t *self, byte *buffer, size_t length);

Example 8-3 shows the refactored UDP ping program that calls this library, which is
much cleaner and nicer.

Example 8-3. UDP discovery, model 2 (udpping2.c)
//
//  UDP ping command
//  Model 2, uses separate UDP library
//
#include <czmq.h>
#include "udplib.c"

#define PING_PORT_NUMBER 9999
#define PING_MSG_SIZE    1
#define PING_INTERVAL    1000  //  Once per second

int main (void)
{
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    zctx_t *ctx = zctx_new ();
    udp_t *udp = udp_new (PING_PORT_NUMBER);
    
    byte buffer [PING_MSG_SIZE];
    zmq_pollitem_t pollitems [] = {{ NULL, udp_handle (udp), ZMQ_POLLIN, 0 }};
    
    //  Send first ping right away
    uint64_t ping_at = zclock_time ();
    
    while (!zctx_interrupted) {
        long timeout = (long) (ping_at - zclock_time ());
        if (timeout < 0)
            timeout = 0;
        if (zmq_poll (pollitems, 1, timeout * ZMQ_POLL_MSEC) == -1)
            break;              //  Interrupted

        //  Someone answered our ping
        if (pollitems [0].revents & ZMQ_POLLIN)
            udp_recv (udp, buffer, PING_MSG_SIZE);
        
        if (zclock_time () >= ping_at) {
            puts ("Pinging peers...");
            buffer [0] = '!';
            udp_send (udp, buffer, PING_MSG_SIZE);
            ping_at = zclock_time () + PING_INTERVAL;
        }
    }
    udp_destroy (&udp);
    zctx_destroy (&ctx);
    return 0;
}

The library, udplib, hides a lot of the unpleasant code (which will become uglier as we
make this work on more systems). I’m not going to print that code here, but you can
read it in the repository.

Now there are more problems sizing us up and wondering if they can make lunch out
of us. First, IPv4 versus IPv6 and multicast versus broadcast. In IPv6, broadcast doesn’t
exist at all; one uses multicast. From my experience with WiFi, IPv4 multicast and
broadcast work identically except that multicast breaks in some situations where broad‐
cast works fine. The problem is that some access points do not forward multicast packets.
When you have a device (e.g., a tablet) that acts as a mobile AP, it’s possible it won’t get
multicast packets, meaning it won’t see other peers on the network.

The simplest plausible solution is simply to ignore IPv6 for now, and use broadcast. A
perhaps smarter solution would be to use multicast, and deal with asymmetric beacons
if they happen.

We’ll stick with stupid and simple for now. There’s always time to make it more complex.
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Multiple Nodes on One Device
So, we can discover nodes on the WiFi network, as long as they’re sending out beacons
as we expect. But when I try to test this with two processes, running udpping2 twice,
the second instance complains “‘Address already in use’ on bind” and exits. Oh, right.
UDP and TCP both return an error if you try to bind two different sockets to the same
port. This is correct; the semantics of two readers on one socket would be weird, to say
the least. Odd/even bytes? You get all the 1s, I get all the 0s?

However, a quick check of stackoverflow.com and some memory of a socket option
called SO_REUSEADDR turns up gold. If I use that, I can bind several processes to the same
UDP port, and they will all receive any message arriving on that port. It’s almost as if
the guys who designed this were reading my mind! (That’s way more plausible than me
reinventing the wheel.)

A quick test shows that SO_REUSEADDR works as promised. This is great because the next
thing I want to do is design an API and then start dozens of nodes to see them discovering
each other. It would be really cumbersome to have to test each node on a separate device.
And when we get to testing how real traffic behaves on a large, flaky network, the two
alternatives are simulation or temporary insanity.

And I speak from experience: we were, this summer, testing on dozens of devices at
once. It takes about an hour to set up a full test run, and you need a space shielded from
WiFi interference if you want any kind of reproducibility (unless your test case is “prove
that interference kills WiFi networks faster than Orval can kill a thirst”).

If I was a whizz Android developer with a free weekend I’d immediately (as in, it would
take me two days) port this code to my phone and get it sending beacons to my PC. But
sometimes being lazy is more profitable. I like my Linux laptop. I like being able to start
a dozen threads from one process, and have each thread act like an independent node.
I like not having to work in a real Faraday cage when I can simulate one on my laptop.

Designing the API
I’m going to run N nodes on a device, and they are going to have to discover each other,
and also discover a bunch of other nodes out there on the local network. I can use UDP
for local discovery as well as remote discovery. It’s arguably not as efficient as using, e.g.,
the ØMQ inproc transport, but it has the great advantage that the exact same code will
work in simulation and in real deployment.

If I have multiple nodes on one device, I clearly can’t use the IP address and port number
as the node address. I need some logical node identifier. Arguably, the node identifier
only has to be unique within the context of the device. My mind fills with complex stuff
I could make, like supernodes that sit on real UDP ports and forward messages to
internal nodes. I hit my head on the table until the idea of inventing new concepts leaves
it.
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Experience tells us that WiFi does things like disappear and reappear while applications
are running. Users click on things, with interesting results like changing the IP address
halfway through a session. We cannot depend on IP addresses, nor on established con‐
nections (in the TCP fashion). We need some long-lasting addressing mechanism that
survives interfaces and connections being torn down and then recreated.

Here’s the simplest solution I can see: we give every node a UUID, and we specify that
nodes, represented by their UUIDs, can appear or reappear at certain IP address:port
endpoints, and then disappear again. We’ll deal with recovery from lost messages later.
A UUID is 16 bytes. So if I have 100 nodes on a WiFi network, that’s (double it for other
random stuff) 3,200 bytes a second of beacon data that the air has to carry just for
discovery and presence. Seems acceptable.

Back to concepts. We do need some names for our API. At the least, we need a way to
distinguish between the node object that is “us,” and node objects that are our peers.
We’ll be doing things like creating an “us” and then asking it how many peers it knows
about, and who they are. The term “peer” is clear enough.

From the developer’s point of view, a node (the application) needs a way to talk to the
outside world. Let’s borrow a term from networking and call this an “interface.” The
interface represents us to the rest of the world and presents the rest of the world to us,
as a set of other peers. It automatically does whatever discovery it has to. When we want
to talk to a peer, we get the interface to do that for us. And when a peer talks to us, it’s
the interface that delivers us the message.

This seems like a clean API design. How about the internals?

• The interface has to be multithreaded, so that one thread can do I/O in the back‐
ground, while the foreground API talks to the application. We used this design in
the Clone and Freelance client APIs.

• The interface background thread does the discovery business: bind to the UDP port,
send out UDP beacons, and receive beacons.

• We need to at least send UUIDs in the beacon message so that we can distinguish
our own beacons from those of our peers.

• We need to track peers that appear and that disappear. For this I’ll use a hash table
that stores all known peers, and expire peers after some timeout.

• We need a way to report peers and events to the caller. Here we get into a juicy
question. How does a background I/O thread tell a foreground API thread that stuff
is happening? Callbacks, maybe? Heck no. We’ll use ØMQ messages, of course.

The third iteration of the UDP ping program, shown in Example 8-4, is even simpler
and more beautiful than the second. The main body, in C, is just 10 lines of code.
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Example 8-4. UDP discovery, model 3 (udpping3.c)
//
//  UDP ping command
//  Model 3, uses abstract network interface
//
#include <czmq.h>
#include "interface.c"

int main (void)
{
    interface_t *interface = interface_new ();
    while (true) {
        zmsg_t *msg = interface_recv (interface);
        if (!msg)
            break;              //  Interrupted
        zmsg_dump (msg);
    }
    interface_destroy (&interface);
    return 0;
}

The interface code (Example 8-5) should be familiar if you’ve studied how we make
multithreaded API classes.

Example 8-5. UDP ping interface (interface.c)
//  Interface class
//  This implements an "interface" to our network of nodes

#include <czmq.h>
#include <uuid/uuid.h>
#include "udplib.c"

//  =====================================================================
//  Synchronous part, works in our application thread

//  ---------------------------------------------------------------------
//  Structure of our class

typedef struct {
    zctx_t *ctx;                //  Our context wrapper
    void *pipe;                 //  Pipe through to agent
} interface_t;

//  This is the thread that handles our real interface class
static void
    interface_agent (void *args, zctx_t *ctx, void *pipe);
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Example 8-6 presents the constructor and destructor for the interface class. Note that
the class has barely any properties; it is just an excuse to start the background thread,
and a wrapper around zmsg_recv().

Example 8-6. UDP ping interface (interface.c): constructor and destructor
interface_t *
interface_new (void)
{
    interface_t
        *self;

    self = (interface_t *) zmalloc (sizeof (interface_t));
    self->ctx = zctx_new ();
    self->pipe = zthread_fork (self->ctx, interface_agent, NULL);
    return self;
}

void
interface_destroy (interface_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        interface_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}

In Example 8-7, we wait for a message from the interface. This returns us a zmsg_t
object, or NULL if interrupted.

Example 8-7. UDP ping interface (interface.c): receive message
static zmsg_t *
interface_recv (interface_t *self)
{
    assert (self);
    zmsg_t *msg = zmsg_recv (self->pipe);
    return msg;
}

//  =====================================================================
//  Asynchronous part, works in the background

The structure in Example 8-8 defines each peer that we discover and track.

Example 8-8. UDP ping interface (interface.c): peer class
typedef struct {
    uuid_t uuid;                //  Peer's UUID as binary blob
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    char *uuid_str;             //  UUID as printable string
    uint64_t expires_at;
} peer_t;

#define PING_PORT_NUMBER 9999
#define PING_INTERVAL    1000  //  Once per second
#define PEER_EXPIRY      5000  //  Five seconds and it's gone

//  Convert binary UUID to freshly allocated string

static char *
s_uuid_str (uuid_t uuid)
{
    char hex_char [] = "0123456789ABCDEF";
    char *string = zmalloc (sizeof (uuid_t) * 2 + 1);
    int byte_nbr;
    for (byte_nbr = 0; byte_nbr < sizeof (uuid_t); byte_nbr++) {
        string [byte_nbr * 2 + 0] = hex_char [uuid [byte_nbr] >> 4];
        string [byte_nbr * 2 + 1] = hex_char [uuid [byte_nbr] & 15];
    }
    return string;
}

The constructor and destructor for the peer class are shown in Example 8-9.

Example 8-9. UDP ping interface (interface.c): peer constructor and destructor
static peer_t *
peer_new (uuid_t uuid)
{
    peer_t *self = (peer_t *) zmalloc (sizeof (peer_t));
    memcpy (self->uuid, uuid, sizeof (uuid_t));
    self->uuid_str = s_uuid_str (self->uuid);
    return self;
}

//  Destroy peer object

static void
peer_destroy (peer_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        peer_t *self = *self_p;
        free (self->uuid_str);
        free (self);
        *self_p = NULL;
    }
}

The methods in Example 8-10 return the peer’s UUID in binary format or as a printable
string.
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Example 8-10. UDP ping interface (interface.c): peer methods
static byte *
peer_uuid (peer_t *self)
{
    assert (self);
    return self->uuid;
}

static char *
peer_uuid_str (peer_t *self)
{
    assert (self);
    return self->uuid_str;
}

//  Just resets the peer's expiration time; we call this method
//  whenever we get any activity from a peer

static void
peer_is_alive (peer_t *self)
{
    assert (self);
    self->expires_at = zclock_time () + PEER_EXPIRY;
}

//  Peer hash calls this handler automatically whenever we delete
//  peer from agent peers, or destroy that hash table

static void
peer_freefn (void *argument)
{
    peer_t *peer = (peer_t *) argument;
    peer_destroy (&peer);
}

The structure in Example 8-11 holds the context for our agent, so we can pass that
around cleanly to methods that need it.

Example 8-11. UDP ping interface (interface.c): agent class
typedef struct {
    zctx_t *ctx;                //  CZMQ context
    void *pipe;                 //  Pipe back to application
    udp_t *udp;                 //  UDP object
    uuid_t uuid;                //  Our UUID as binary blob
    zhash_t *peers;             //  Hash of known peers, fast lookup
} agent_t;

The constructor and destructor for our agent are presented in Example 8-12. Each in‐
terface has one agent object, which implements its background thread.
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Example 8-12. UDP ping interface (interface.c): agent constructor and destructor
static agent_t *
agent_new (zctx_t *ctx, void *pipe)
{
    agent_t *self = (agent_t *) zmalloc (sizeof (agent_t));
    self->ctx = ctx;
    self->pipe = pipe;
    self->udp = udp_new (PING_PORT_NUMBER);
    self->peers = zhash_new ();
    uuid_generate (self->uuid);
    return self;
}

static void
agent_destroy (agent_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        agent_t *self = *self_p;
        zhash_destroy (&self->peers);
        udp_destroy (&self->udp);
        free (self);
        *self_p = NULL;
    }
}
...

Example 8-13 shows how we handle a beacon coming into our UDP socket; this may
be from other peers or an echo of our own broadcast beacon.

Example 8-13. UDP ping interface (interface.c): handle beacon
static int
agent_handle_beacon (agent_t *self)
{
    uuid_t uuid;
    ssize_t size = udp_recv (self->udp, uuid, sizeof (uuid_t));

    //  If we got a UUID and it's not our own beacon, we have a peer
    if (size == sizeof (uuid_t)
    &&  memcmp (uuid, self->uuid, sizeof (uuid))) {
        char *uuid_str = s_uuid_str (uuid);
        
        //  Find or create peer via its UUID string
        peer_t *peer = (peer_t *) zhash_lookup (self->peers, uuid_str);
        if (peer == NULL) {
            peer = peer_new (uuid);
            zhash_insert (self->peers, uuid_str, peer);
            zhash_freefn (self->peers, uuid_str, peer_freefn);
            
            //  Report peer joined the network
            zstr_sendm (self->pipe, "JOINED");
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            zstr_send (self->pipe, uuid_str);
        }
        //  Any activity from the peer means it's alive
        peer_is_alive (peer);
        free (uuid_str);
    }
    return 0;
}

The method in Example 8-14 checks one peer item for expiry; if the peer hasn’t sent us
anything by now, it’s “dead” and we can delete it.

Example 8-14. UDP ping interface (interface.c): reap peers
static int
agent_reap_peer (const char *key, void *item, void *argument)
{
    agent_t *self = (agent_t *) argument;
    peer_t *peer = (peer_t *) item;
    if (zclock_time () >= peer->expires_at) {
        //  Report peer left the network
        zstr_sendm (self->pipe, "LEFT");
        zstr_send (self->pipe, peer_uuid_str (peer));
        zhash_delete (self->peers, peer_uuid_str (peer));
    }
    return 0;
}

The main loop for the background agent is shown in Example 8-15. It uses zmq_poll()
to monitor the frontend pipe (commands from the API) and the backend UDP handle
(beacons).

Example 8-15. UDP ping interface (interface.c): agent main loop
static void
interface_agent (void *args, zctx_t *ctx, void *pipe)
{
    //  Create agent instance to pass around
    agent_t *self = agent_new (ctx, pipe);
    
    //  Send first beacon immediately
    uint64_t ping_at = zclock_time ();
    zmq_pollitem_t pollitems [] = {
        { self->pipe, 0, ZMQ_POLLIN, 0 },
        { 0, udp_handle (self->udp), ZMQ_POLLIN, 0 }
    };
    
    while (!zctx_interrupted) {
        long timeout = (long) (ping_at - zclock_time ());
        if (timeout < 0)
            timeout = 0;
        if (zmq_poll (pollitems, 2, timeout * ZMQ_POLL_MSEC) == -1)
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            break;              //  Interrupted

        //  If we had activity on the pipe, go handle the control
        //  message. Current code never sends control messages.
        if (pollitems [0].revents & ZMQ_POLLIN)
            agent_control_message (self);

        //  If we had input on the UDP socket, go process that
        if (pollitems [1].revents & ZMQ_POLLIN)
            agent_handle_beacon (self);

        //  If we passed the 1-second mark, broadcast our beacon
        if (zclock_time () >= ping_at) {
            udp_send (self->udp, self->uuid, sizeof (uuid_t));
            ping_at = zclock_time () + PING_INTERVAL;
        }
        //  Delete and report any expired peers
        zhash_foreach (self->peers, agent_reap_peer, self);
    }
    agent_destroy (&self);
}

When I run this in two windows, it reports one peer joining the network. If kill that
peer, a few seconds later it tells me the peer has left:

--------------------------------------
[006] JOINED
[032] 418E98D4B7184844B7D5E0EE5691084C
--------------------------------------
[004] LEFT
[032] 418E98D4B7184844B7D5E0EE5691084C

What’s nice about a ØMQ-message-based API is that I can wrap this any way I like. For
instance, I can turn it into callbacks if I really want those. I can also trace all activity on
the API very easily.

Some notes about tuning. On Ethernet, five seconds (the expiry time I used in this code)
seems like a lot. On a badly stressed WiFi network you can get ping latencies of 30
seconds or more. If you use a too-aggressive value for the expiry, you’ll disconnect nodes
that are still there. On the other side, end user applications expect a certain liveliness.
If it takes 30 seconds to report that a node has gone, users will get annoyed.

A decent strategy is to detect and report disappeared nodes rapidly, but only delete them
after a longer interval. Visually, a node would be green when it’s alive, then gray for a
while as it went out of reach, then finally disappear. We’re not doing this now, but we
will do it in the real implementation of the as-yet-unnamed framework we’re making.

As we will also see later, we have to treat any input from a node, not just UDP beacons,
as a sign of life. UDP may get squashed when there’s a lot of TCP traffic. This is perhaps
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the main reason we’re not using an existing UDP discovery library: we have to integrate
this tightly with our ØMQ messaging for it to work.

More About UDP
So, we have discovery and presence working over UDP IPv4 broadcasts. It’s not ideal,
but it works for the local networks we have today. However, we can’t use UDP for real
work, not without additional work to make it reliable. There’s a joke about UDP, but
sometimes you’ll get it, and sometimes you won’t.

We’ll stick to TCP for all one-to-one messaging. There is one more use case for UDP
after discovery, which is multicast file distribution. I’ll explain why and how, then shelve
that for another day. The why is simple: what we call “social networks” are just aug‐
mented culture. We create culture by sharing, and this means more and more sharing
works that we make or remix—photos, documents, contracts, tweets. The clouds of
devices we’re aiming toward do more of this, not less.

Now, there are two principal patterns for sharing content. One is the pub-sub pattern,
where one node sends out content to a set of other nodes, all at the same time. The
second is the late joiner pattern, where a node arrives somewhat later and wants to catch
up to the conversation. We can deal with the late joiner using TCP unicast, but doing
TCP unicast to a group of clients at the same time has some disadvantages. First, it can
be slower than multicast. Second, it’s unfair since some will get the content before others.

Before you jump off to design a UDP multicast protocol, realize that it’s not a simple
calculation. When you send a multicast packet, the WiFi access point uses a low bit rate,
to ensure that even the furthest devices will get it safely. Most normal APs don’t do the
obvious optimization, which is to measure the distance to the furthest device and use
that bit rate. Instead, they just use a fixed value. So, if you have a few devices close to
the AP, multicast will be insanely slow. But if you have a roomful of devices that all want
to get the next chapter of the book, multicast can be insanely effective.

The curves cross at around 6–12 devices, depending on the network. You could in theory
measure the curves in real time and create an adaptive protocol. That would be cool,
but probably too hard for even the smartest of us.

If you do sit down and sketch out a UDP multicast protocol, realize that you need a
channel for recovery, to get lost packets. You’d probably want to do this over TCP, using
ØMQ. For now, however, we’ll forget about multicast UDP, and assume all traffic goes
over TCP.

Spinning Off a Library Project
At this stage the code is growing larger than an example should be, so it’s time to create
a proper GitHub project. It’s a rule: build your projects in public view and tell people
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about them as you go, so your marketing and community building efforts start on day
one. I’ll walk through what this involves. I explained in Chapter 6 about growing com‐
munities around projects. We need a few things:

• A name
• A slogan
• A public GitHub repository
• A README that links to the C4 process
• License files
• An issue tracker
• Two maintainers
• A first bootstrap version

The name and slogan first. The trademarks of the 21st century are domain names, so
the first thing I do when spinning off a project is to look for a domain name that might
work. Quite randomly, one of our old mobile projects was called “Zyre,” and I have the
domain names for it.

I’m somewhat shy about pushing new projects into the ØMQ community too aggres‐
sively, and normally I would start a project in either my personal account or the iMatix
organization. But we’ve learned that moving projects after they become popular is
counter-productive. My predictions of a future filled with moving pieces are either valid,
or wrong. If this chapter is valid, we might as well launch this as a ØMQ project from
the start. If it’s wrong, we can delete the repository later, or let it sink to the bottom of
a long list of forgotten starts.

Let’s start with the basics. The protocol (UDP and ØMQ/TCP) will be ZRE (the ZeroMQ
Realtime Exchange protocol) and the project will be Zyre. I need a second maintainer,
so I invite my friend Dong Min (the Korean hacker behind JeroMQ, a pure-Java ØMQ
stack) to join. He’s been working on very similar ideas so is enthusiastic. We discuss this
and we get the idea of building Zyre on top of JeroMQ as well as on top of CZMQ and
libzmq. This will make it a lot easier to run Zyre on Android. It will also give us two
fully separate implementations from the start, always a good thing for a protocol.

So, we take the FileMQ project we built in Chapter 7 as a template for a new GitHub
project. The GNU autoconf tools are quite decent but have a painful syntax. It’s easiest
to copy existing project files, and modify them. The FileMQ project builds a library and
has test tools, license files, man pages, and so on. It’s not too large, so it’s a good starting
point.

I put together a README to summarize the goals of the project and point to C4. The
issue tracker is enabled by default on new GitHub projects, so once we’ve pushed the
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UDP ping code as a first version, we’re ready to go. However, it’s always good to recruit
more maintainers, so I create an issue, “Call for maintainers,” that says:

If you’d like to help click that lovely green “Merge Pull Request” button, and get eternal
karma, add a comment confirming that you’ve read and understand the C4 process at
http://rfc.zeromq.org/spec:16.

Finally, I change the issue tracker labels. By default, GitHub offers the usual variety of
issue types, but with C4 we don’t use them. Instead, we need just two labels (“Urgent,”
in red, and “Ready,” in black).

Point-to-Point Messaging
We’re going to take our last UDP ping program and build a point-to-point messaging
layer on top of that. Our goal is to be able to detect peers as they join and leave the
network, send messages to them, and get replies. It is a nontrivial problem to solve, and
it takes Min and me two days to get a “Hello World” version working.

We had to solve a number of issues:

• What information to send in the UDP beacon, and how to format it
• What ØMQ socket types to use to interconnect nodes
• What ØMQ messages to send, and how to format them
• How to send a message to a specific node
• How to know the sender of any message so we could send a reply
• How to recover from lost UDP beacons
• How to avoid overloading the network with beacons

I’ll explain these in enough detail that you understand why we made each choice we
did, with some code fragments to illustrate. We tagged this code as version 0.1.0 so you
can look at the code: most of the hard work is done in zre_interface.c.

UDP Beacon Framing
Sending UUIDs across the network is the bare minimum for a logical addressing
scheme. However, we have a few more aspects to get working before this will work in
real use:

• We need some protocol identification so that we can check for, and reject, invalid
packets.

• We need some version information so that we can change this protocol over time.
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• We need to tell other nodes how to reach us via TCP; i.e., a ØMQ port they can talk
to us on.

Let’s start with the beacon message format. We probably want a fixed protocol header
that will never change in future versions, and a body that depends on the version
(Figure 8-1).

Figure 8-1. ZRE discovery message

The version can be a 1-byte counter starting at 1. The UUID is 16 bytes, and the port is
a 2-byte port number, since UDP nicely tells us the sender’s IP address for every message
we receive. This gives us a 22-byte frame.

The C language (and a few others, like Erlang) makes it simple to read and write binary
structures. We define the beacon frame structure as follows:

#define BEACON_PROTOCOL     "ZRE"
#define BEACON_VERSION      0x01

typedef struct {
    byte protocol [3];
    byte version;
    uuid_t uuid;
    uint16_t port;
} beacon_t;

which makes sending and receiving beacons quite simple. Here is how we send a beacon,
using the zre_udp class to do the non-portable network calls:

//  Beacon object
beacon_t beacon;

//  Format beacon fields
beacon.protocol [0] = 'Z';
beacon.protocol [1] = 'R';
beacon.protocol [2] = 'E';
beacon.version = BEACON_VERSION;
memcpy (beacon.uuid, self->uuid, sizeof (uuid_t));
beacon.port = htons (self->port);

//  Broadcast the beacon to anyone who is listening
zre_udp_send (self->udp, (byte *) &beacon, sizeof (beacon_t));
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When we receive a beacon, we need to guard against bogus data. We’re not going to be
paranoid against, for example, denial-of-service attacks. We just want to make sure we’re
not going to crash when a bad ZRE implementation sends us erroneous frames.

To validate a frame we check its size and header. If those are OK, we assume the body
is usable. When we get a UUID that isn’t ourselves (recall, we’ll get our own UDP
broadcasts back), we can treat this as a peer:

//  Get beacon frame from network
beacon_t beacon;
ssize_t size = zre_udp_recv (self->udp, (byte *) &beacon, sizeof (beacon_t));

//  Basic validation on the frame
if (size != sizeof (beacon_t)
||  beacon.protocol [0] != 'Z'
||  beacon.protocol [1] != 'R'
||  beacon.protocol [2] != 'E'
||  beacon.version != BEACON_VERSION)
    return 0;               //  Ignore invalid beacons

//  If we got a UUID and it's not our own beacon, we have a peer
if (memcmp (beacon.uuid, self->uuid, sizeof (uuid_t))) {
    char *identity = s_uuid_str (beacon.uuid);
    s_require_peer (self, identity,
        zre_udp_from (self->udp), ntohs (beacon.port));
    free (identity);
}

True Peer Connectivity (Harmony Pattern)
Since ØMQ is designed to make distributed messaging easy, people often ask how to
interconnect a set of true peers (as compared to obvious clients and servers). It is a
thorny question, and ØMQ doesn’t really provide a single clear answer.

TCP, which is the most commonly used transport in ØMQ, is not symmetric; one side
must bind and one must connect, and though ØMQ tries to be neutral about this, it’s
not. When you connect, you create an outgoing message pipe. When you bind, you do
not. When there is no pipe, you cannot write messages (ØMQ will return EAGAIN).

Developers who study ØMQ and then try to create N-to-N connections between sets
of equal peers often try a ROUTER-to-ROUTER flow. It’s obvious why: each peer needs
to address a set of peers, which requires ROUTER. It usually ends with a plaintive email
to the list.

Experience teaches us that ROUTER-to-ROUTER is particularly difficult to use suc‐
cessfully. At a minimum, one peer must bind and one must connect, meaning the ar‐
chitecture is not symmetrical. But also, you simply can’t tell when you are allowed to
safely send a message to a peer. It’s a Catch-22: you can talk to a peer after it’s talked to
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you, but the peer can’t talk to you until you’ve talked to it. One side or the other will be
losing messages and thus has to retry, which means the peers cannot be equal.

I’m going to explain the Harmony pattern, which solves this problem, and which we
use in Zyre.

We want a guarantee that when a peer “appears” on our network, we can talk to it safely,
without ØMQ dropping messages. For this, we have to use a DEALER or PUSH socket
that connects out to the peer so that even if that connection takes some nonzero time,
there is immediately a pipe, and ØMQ will accept outgoing messages.

A DEALER socket cannot address multiple peers individually. But if we have one
DEALER per peer, and we connect that DEALER to the peer, we can safely send messages
to a peer as soon as we’ve connected to it.

Now, the next problem is to know who sent us a particular message. We need a reply
address, which is the UUID of the node that sent any given message. DEALER can’t do
this unless we prefix every single message with that 16-byte UUID, which would be
wasteful. ROUTER can, if we set the identity properly before connecting to the router.

And so the Harmony pattern comes down to:

• One ROUTER socket that we bind to an ephemeral port, which we broadcast in
our beacons

• One DEALER socket per peer that we connect to the peer’s ROUTER socket
• Reading from our ROUTER socket
• Writing to the peer’s DEALER socket

The next problem is that discovery isn’t neatly synchronized. We can get the first beacon
from a peer after we start to receive messages from it. A message comes in on the
ROUTER socket and has a nice UUID attached to it, but no physical IP address and
port. We have to force discovery over TCP. To do this, our first command to any new
peer we connect to is an OHAI command with our IP address and port. This ensures
that the receiver connects back to us before trying to send us any command.

Breaking this down into steps:

• If we receive a UDP beacon, we connect to the peer.
• We read messages from our ROUTER socket, and each message comes with the

UUID of the sender.
• If it’s an OHAI message, we connect back to that peer (if we’re not already connected

to it).
• If it’s any other message, we must already be connected to the peer (this is a good

place for an assertion).
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• We send messages to each peer using a dedicated per-peer DEALER socket, which
must be connected.

• When we connect to a peer, we also tell our application that the peer exists.
• Every time we get a message from a peer, we treat that as a heartbeat (it’s alive).

If we were not using UDP but some other discovery mechanism, I’d still use the Har‐
mony pattern for a true peer network: one ROUTER for input from all peers, and one
DEALER per peer for output. Bind the ROUTER, connect the DEALER, and start each
conversation with an OHAI equivalent that provides the return IP address and port. We
would need some external mechanism to bootstrap each connection.

Detecting Disappearances
Heartbeating sounds simple, but it’s not. UDP packets get dropped when there’s a lot of
TCP traffic, so if we depend on UDP beacons we’ll get false disconnections. TCP traffic
can be delayed for 5, 10, even 30 seconds if the network is really busy. So if we kill peers
when they go quiet, we’ll have false disconnections.

Since UDP beacons aren’t reliable, it’s tempting to add in TCP beacons. After all, TCP
will deliver them reliably. However, there’s one little problem. Imagine you have 100
nodes on a network, and each node sends a TCP beacon once a second. Each beacon is
22 bytes, not counting TCP’s framing overhead. That is 100 * 99 * 22 bytes per second,
or 217,000 bytes/second just for heartbeating. That’s about 1–2% of a typical WiFi net‐
work’s ideal capacity, which sounds OK. But when a network is stressed, or fighting
other networks for airspace, that extra 200K a second will break what’s left. UDP broad‐
casts are at least low cost.

So what we do is switch to TCP heartbeats only when a specific peer hasn’t sent us any
UDP beacons in a while. And then, we send TCP heartbeats only to that one peer. If the
peer continues to be silent, we conclude it’s gone away. If the peer comes back, with a
different IP address and/or port, we have to disconnect our DEALER socket and re‐
connect to the new port.

This gives us a set of states for each peer, though at this stage the code doesn’t use a
formal state machine:

• Peer visible thanks to UDP beacon (we connect using IP address and port from
beacon)

• Peer visible thanks to OHAI command (we connect using IP address and port from
command)

• Peer seems alive (we got a UDP beacon or command over TCP recently)
• Peer seems quiet (no activity in some time, so we send a HUGZ command)
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• Peer has disappeared (no reply to our HUGZ commands, so we destroy peer)

There’s one remaining scenario we haven’t addressed in the code at this stage. It’s possible
for a peer to change IP addresses and ports without actually triggering a disappearance
event. For example, if the user switches off WiFi and then switches it back on, then the
the access point can assign the peer a new IP address. We’ll need to handle a disappeared
WiFi interface on our node by unbinding the ROUTER socket and rebinding it when
we can. Since this is not central to the design now, I decided to log an issue on the GitHub
tracker and leave it for a rainy day.

Group Messaging
Group messaging is a common and very useful pattern. The concept is simple: instead
of talking to a single node, you talk to a “group” of nodes. The group is just a name, a
string that you agree on in the application. It’s precisely like using the publish-subscribe
prefixes in PUB and SUB sockets. In fact, the only reason I say “group messaging” and
not “pub-sub” is to prevent confusion, since we’re not going to use PUB-SUB sockets
for this.

PUB-SUB sockets would almost work. But we’ve just done such a lot of work to solve
the late joiner problem. Applications are inevitably going to wait for peers to arrive
before sending messages to groups, so we have to build on the Harmony pattern rather
than start again beside it.

Let’s look at the operations we want to do on groups:

• We want to join and leave groups.
• We want to know what other nodes are in any given group.
• We want to send a message to (all nodes in) a group.

These will look familiar to anyone who’s used Internet Relay Chat (IRC), except we have
no server. Every node will need to keep track of what each group represents. This in‐
formation will not always be fully consistent across the network, but it will be close
enough.

Our interface will track a set of groups (each an object). These are all the known groups
with one or more member node, excluding ourselves. We’ll track nodes as they leave
and join groups. Since nodes can join the network at any time, we have to tell new peers
what groups we’re in. When a peer disappears, we’ll remove it from all groups we know
about.

This gives us some new protocol commands:
JOIN

We send this to all peers when we join a group.
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LEAVE
We send this to all peers when we leave a group.

Plus, we add a groups field to the first command we send (renamed from OHAI to
HELLO at this point because I need a larger lexicon of command verbs).

Lastly, let’s add a way for peers to double-check the accuracy of their group data. The
risk is that we miss one of the above messages. Though we are using Harmony to avoid
the typical message loss at startup, it’s worth being paranoid. For now, all we need is a
way to detect such a failure. We’ll deal with recovery later, if the problem actually hap‐
pens.

We’ll use the UDP beacon for this. What we want is a rolling counter that simply tells
us how many join and leave operations (“transitions”) there have been for a node. It
starts at 0 and increments for each group we join or leave. We can use a minimal 1-byte
value since that will catch all failures except the astronomically rare “we lost precisely
256 messages in a row” failure (this is the one that hits during the first demo). We will
also put the transitions counter into the JOIN, LEAVE, and HELLO commands. And
to try to provoke the problem, we’ll test by joining/leaving several hundred groups, with
a high-water mark set to 10 or so.

Time to choose verbs for the group messaging. We need a command that means “talk
to one peer” and one that means “talk to many peers.” After some attempts, my best
choices are WHISPER and SHOUT, and this is what the code uses. The SHOUT com‐
mand needs to tell the user the group name, as well as the sender peer.

Since groups are like publish-subscribe, you might be tempted to use this to broadcast
the JOIN and LEAVE commands as well, perhaps by creating a “global” group that all
nodes join. My advice is to keep groups purely as user-space concepts, for two reasons.
First, how do you join the global group if you need the global group to send out a JOIN
command? Second, it creates special cases (reserved names) that are messy.

It’s simpler just to send JOINs and LEAVEs explicitly to all connected peers, period.

I’m not going to work through the implementation of group messaging in detail, since
it’s fairly pedantic and not exciting. The data structures for group and peer management
aren’t optimal, but they’re workable. We need:

• A list of groups for our interface, which we can send to new peers in a HELLO
command

• A hash of groups for other peers, which we update with information from HELLO,
JOIN, and LEAVE commands

• A hash of peers for each group, which we update with the same three commands
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At this stage I’m starting to get pretty happy with the binary serialization (our codec
generator from Chapter 7), which handles lists and dictionaries as well as strings and
integers.

This version is tagged in the repository as v0.2.0, and you can download the tarball if
you want to check what the code looked like at this stage.

Testing and Simulation
When you build a product out of pieces, and this includes a distributed framework like
Zyre, the only way to know that it will work properly in real life is to simulate real activity
on each piece.

On Assertions
The proper use of assertions is one of the hallmarks of a professional programmer.

Our confirmation bias as creators makes it hard to test our work properly. We tend to
write tests to prove the code works, rather than trying to prove it doesn’t. There are
many reasons for this. We pretend to ourselves and others that we can be (could be)
perfect, when in fact we consistently make mistakes. Bugs in code are seen as “bad”
rather than “inevitable,” so psychologically we want to see fewer of them, not uncover
more of them. “He writes perfect code” is seen as a compliment, rather than a euphemism
for “He never takes risks, so his code is as boring and heavily used as cold spaghetti.”

Some cultures teach us to aspire to perfection, and punish mistakes, in education and
work, which makes this attitude worse. To accept that we’re fallible, and then to learn
how to turn that into profit rather than shame, is one of the hardest intellectual exercises
in any profession. We leverage our fallibilities by working with others, and by chal‐
lenging our own work sooner, not later.

One trick that makes it easier is to use assertions. Assertions are not a form of error
handling. They are executable theories of fact. The code asserts, “At this point, such and
such must be true,” and if the assertion fails, the code kills itself.

The faster you can prove code incorrect, the faster and more accurately you can fix it.
Believing that code works and proving that it behaves as expected is less science, and
more magical thinking. It’s far better to be able to say, “libzmq has 500 assertions and
despite all my efforts, not one of them fails.”

So, the Zyre code base is scattered with assertions, and particularly a couple on the code
that deals with the state of peers. This is the hardest aspect to get right: peers need to
track each other and exchange state accurately, or things stop working. The algorithms
depend on asynchronous messages flying around, and I’m pretty sure the initial design
has flaws. They always do.
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And as I test the original Zyre code by starting and stopping instances of zre_ping by
hand, every so often I get an assertion failure. Running by hand doesn’t reproduce these
often enough, so let’s make a proper tester tool.

On Up-Front Testing
Being able to fully test the real behavior of individual components in the laboratory can
make a 10x or 100x difference to the cost of your project. That confirmation bias engi‐
neers have to their own work makes up-front testing incredibly profitable, and late-
stage testing incredibly expensive.

I’ll tell you a short story about a project we worked on in the late 1990s. We provided
the software, and other teams the hardware, for a factory automation project. Three or
four teams brought their experts on-site, which was a remote factory (funny how the
polluting factories are always in a remote border country).

One of these teams, a firm specializing in industrial automation, built ticket machines:
kiosks, and software to run on them. Nothing unusual: swipe a badge, choose an option,
receive a ticket. They assembled two of these kiosks on-site, each week bringing some
more bits and pieces. Ticket printers, monitor screens, special keypads from Israel. The
stuff had to be resistant against dust since the kiosks sat outside. Nothing worked. The
screens were unreadable in the sun. The ticket printers continually jammed and mis‐
printed. The internals of the kiosk were just sat on wooden shelving. The kiosk software
crashed regularly. It was comedic, except that the project really, really had to work, so
we spent weeks—months—on-site helping the other teams debug their bits and pieces
until it worked.

A year later, a second factory, and the same story. By this time the client was getting
impatient. So when it came to the third and largest factory, a year later, we jumped up
and said, “Please let us make the kiosks and the software and everything.”

We made a detailed design for the software and hardware and found suppliers for all
the pieces. It took us three months to search the Internet for each component, and
another two months to get them assembled into stainless-steel bricks, each weighing
about 20 kilos. These bricks were 60cm square and 20cm deep, with a large flat-screen
panel behind unbreakable glass, and two connectors: one for power, one for Ethernet.
You loaded up the paper bin with enough for six months, then screwed the brick into a
housing, and it automatically booted, found its DNS server, and loaded its Linux OS
and then the application software. It connected to the real server and showed the main
menu. You got access to the configuration screens by swiping a special badge and then
entering a code.

The software was portable, so we could test that as we wrote it, and as we collected the
pieces from our suppliers we kept one of each so we had a disassembled kiosk to play
with. When we got our finished kiosks, they all worked immediately. We shipped them
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to the client, who plugged them into their housings, switched them on, and got to
business. We spent a week or so on-site, and in 10 years, only one kiosk broke (the screen
died and was replaced).

The lesson is, test up-front so that when you plug the thing in, you know precisely how
it’s going to behave. If you haven’t tested it up-front, you’re going to be spending weeks
or months in the field, ironing out problems that should never have been there.

The Zyre Tester
During manual testing I did, rarely, hit an assertion. It then disappeared. Since I don’t
believe in magic, that meant the code was still wrong somewhere. So, the next step was
heavy-duty testing of the Zyre v0.2.0 code to try to break its assertions, and get a good
idea of how it would behave in the field.

We packaged the discovery and messaging functionality as an interface object that the
main program creates, works with, and then destroys. We don’t use any global variables.
This makes it easy to start large numbers of interfaces and simulate real activity, all
within one process. And if there’s one thing we’ve learned from writing lots of examples,
it’s that ØMQ’s ability to orchestrate multiple threads in a single process is much easier
to work with than multiple processes.

The first version of the tester consists of a main thread that starts and stops a set of child
threads, each running one interface, each with a ROUTER, DEALER, and UDP socket
(R, D, and U in Figure 8-2).

Figure 8-2. Zyre tester tool

The nice thing is that when I am connected to a WiFi access point, all Zyre traffic (even
between two interfaces in the same process) goes across the AP. This means I can fully
stress-test any WiFi infrastructure with just a couple of PCs running in a room. It’s hard
to emphasize how valuable this is: if we had built Zyre as, say, a dedicated service for
Android, we’d literally need dozens of Android tablets or phones to do any large-scale
testing. Kiosks, and all that.
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The focus is now on breaking the current code, trying to prove it wrong. There’s no
point at this stage in testing how well it runs, how fast it is, how much memory it uses,
or anything else. We’ll work up to trying (and failing) to break each individual func‐
tionality, but first we’ll try to break some of the core assertions I’ve put into the code.

These are:

• The first command that any node receives from a peer MUST be HELLO. In other
words, messages cannot be lost during the peer-to-peer connection process.

• The state each node calculates for its peers matches the state each peer calculates
for itself. In other words, again, no messages are lost in the network.

• When the application sends a message to a peer, we have a connection to that peer.
In other words, the application only “sees” a peer after we have established a ØMQ
connection to it.

With ØMQ, there are several cases where we may lose messages. One is the “late joiner”
syndrome. Two is when we close sockets without sending everything. Three is when we
overflow the high-water mark on a ROUTER or PUB socket. Four is when we use an
unknown address with a ROUTER socket.

Now, I think Harmony gets around all these potential cases. But we’re also adding UDP
to the mix. So, the first version of the tester simulates an unstable and dynamic network,
where nodes come and go randomly. It’s here that things will break.

Here is the main thread of the tester, which manages a pool of 100 threads, starting and
stopping each one randomly. Every ~750 msec it either starts or stops one random
thread. We randomize the timing so that threads aren’t all synchronized. After a few
minutes we have an average of 50 threads happily chatting to each other like Korean
teenagers in Gangnam subway station:

int main (int argc, char *argv [])
{
    //  Initialize context for talking to tasks
    zctx_t *ctx = zctx_new ();
    zctx_set_linger (ctx, 100);

    //  Get number of interfaces to simulate (default 100)
    int max_interface = 100;
    int nbr_interfaces = 0;
    if (argc > 1)
        max_interface = atoi (argv [1]);

    //  We address interfaces as an array of pipes
    void **pipes = zmalloc (sizeof (void *) * max_interface);

    //  We will randomly start and stop interface threads
    while (!zctx_interrupted) {
        uint index = randof (max_interface);
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        //  Toggle interface thread
        if (pipes [index]) {
            zstr_send (pipes [index], "STOP");
            zsocket_destroy (ctx, pipes [index]);
            pipes [index] = NULL;
            zclock_log ("I: Stopped interface (%d running)", --nbr_interfaces);
        }
        else {
            pipes [index] = zthread_fork (ctx, interface_task, NULL);
            zclock_log ("I: Started interface (%d running)", ++nbr_interfaces);
        }
        //  Sleep ~750 msec randomly so we smooth out activity
        zclock_sleep (randof (500) + 500);
    }
    zctx_destroy (&ctx);
    return 0;
}

Note that we maintain a pipe to each child thread (CZMQ creates the pipe automatically
when we use the zthread_fork() method). It’s via this pipe that we tell child threads
to stop, when it’s time for them to leave. The child threads do the following (I’m switching
to pseudo-code for clarity):

create an interface
while true:
    poll on pipe to parent, and on interface
    if parent sent us a message:
        break
    if interface sent us a message:
        if message is ENTER:
            send a WHISPER to the new peer
        if message is EXIT:
            send a WHISPER to the departed peer
        if message is WHISPER:
            send back a WHISPER 1/2 of the time
        if message is SHOUT:
            send back a WHISPER 1/3 of the time
            send back a SHOUT 1/3 of the time
    once per second:
        join or leave one of 10 random groups
destroy interface

Test Results
Yes, we broke the code. Several times, in fact. This was satisfying. I’ll work through the
different things we found.

Getting nodes to agree on consistent group status was the most difficult. Every node
needs to track the group membership of the whole network, as I already explained in
the section “Group Messaging.” Group messaging is a publish-subscribe pattern. JOINs
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and LEAVEs are analogous to subscribe and unsubscribe messages. It’s essential that
none of these ever get lost, or we’ll find nodes dropping randomly off groups.

So, each node counts the total number of JOINs and LEAVEs it’s ever done, and broad‐
casts this status (as a 1-byte rolling counter) in its UDP beacon. Other nodes pick up
the status and compare it to their own calculations, and if there’s a difference, the code
asserts.

The first problem was that UDP beacons get delayed randomly, so they’re useless for
carrying the status. When a beacon arrives late, the status is inaccurate and we get a
false negative. To fix this we moved the status information into the JOIN and LEAVE
commands. We also added it to the HELLO command. The logic then becomes:

• Get initial status for a peer from its HELLO command.
• When getting a JOIN or LEAVE from a peer, increment the status counter.
• Check that the new status counter matches the value in the JOIN or LEAVE com‐

mand.
• If it doesn’t, assert.

The next problem we got was that messages were arriving unexpectedly on new con‐
nections. The Harmony pattern connects, then sends HELLO as the first command.
This means the receiving peer should always get a HELLO as the first command from
a new peer. Instead, we were seeing PING, JOIN, and other commands arriving first.

This turned out to be due to CZMQ’s ephemeral port logic. An ephemeral port is just
a dynamically assigned port that a service can get rather than asking for a fixed port
number. A POSIX system usually assigns ephemeral ports in the range 0xC000 to
0xFFFF. CZMQ’s logic is to look for a free port in this range, bind to that, and return
the port number to the caller.

Which sounds fine, until you get one node stopping and another node starting close
together, and the new node getting the port number of the old node. Remember that
ØMQ tries to re-establish a broken connection. So, when the first node stops, its peers
will retry to connect. When the new node appears on that same port, suddenly all the
peers connect to it, and start chatting like they’re old buddies.

It’s a general problem that affects any larger-scale dynamic ØMQ application. There are
a number of plausible solutions. One is to not reuse ephemeral ports, which is easier
said than done when you have multiple processes on one system. Another solution
would be to select a random port each time, which at least reduces the risk of hitting a
just-freed port. This brings the risk of a garbage connection down to perhaps 1/1,000,
but it’s still there. Perhaps the best solution is to accept that this can happen, understand
the causes, and deal with it on the application level.
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We have a stateful protocol that always starts with a HELLO command. We know that
it’s possible for peers to connect to us, thinking we’re an existing node that went away
and came back, and send us other commands. Step one is, when we discover a new peer,
to destroy any existing peer connected to the same endpoint. It’s not a full answer, but
it’s polite, at least. Step two is to ignore anything coming in from a new peer until that
peer says HELLO.

This doesn’t require any change to the protocol, but it has to be specified in the protocol
when we come to it: due to the way ØMQ connections work, it’s possible to receive
unexpected commands from a well-behaving peer and there is no way to return an error
code, or otherwise tell that peer to reset its connection. Thus, a peer must discard any
command from a peer until it receives a HELLO.

In fact, if you draw this on a piece of paper and think it through, you’ll see that you
never get a HELLO from such a connection. The peer will send PINGs and JOINs and
LEAVEs and then eventually time out and close, as it fails to get any heartbeats back
from us.

You’ll also see that there’s no risk of confusion, no way for commands from two peers
to get mixed into a single stream on our DEALER socket.

When you are satisfied this works, we’re ready to move on. This version is tagged in the
repository as v0.3.0 and you can download the tarball if you want to check what the
code looked like at this stage.

Note that doing heavy simulation of lots of nodes will probably cause your process to
run out of file handles, giving an assertion failure in libzmq. I raised the per-process
limit to 30,000 by running (on my Linux box):

ulimit -n 30000

Tracing Activity
To debug the kinds of problems we saw here, we need extensive logging. There’s a lot
happening in parallel, but every problem can be traced down to a specific exchange
between two nodes, consisting of a set of events that happen in strict sequence. We know
how to make very sophisticated logging, but as usual it’s wiser to make just what we
need, no more. We have to capture:

• The time and date for each event
• In which node the event occurred
• The peer node, if any
• What the event was (e.g., which command arrived)
• Event data, if any
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The very simplest technique is to print the necessary information to the console, with
a timestamp. That’s the approach I used. Then it’s simple to find the nodes affected by
a failure, filter the log file for only messages referring to them, and see exactly what
happened.

Dealing with Blocked Peers
In any performance-sensitive ØMQ architecture you need to solve the problem of flow
control. You cannot simply send unlimited messages to a socket and hope for the best.
At the one extreme, you can exhaust memory. This is a classic failure pattern for a
message broker: one slow client stops receiving messages; the broker starts to queue
them, and eventually exhausts memory and the whole process dies. At the other extreme,
the socket drops messages, or blocks, as you hit the high-water mark.

With Zyre we want to distribute messages to a set of peers, and we want to do this fairly.
Using a single ROUTER socket for output would be problematic, since any one blocked
peer would block outgoing traffic to all peers. TCP does have good algorithms for
spreading the network capacity across a set of connections. And we’re using a separate
DEALER socket to talk to each peer, so in theory each DEALER socket will send its
queued messages in the background reasonably fairly.

The normal behavior of a DEALER socket that hits its high-water mark is to block. This
is usually ideal, but it’s a problem for us here. Our current interface design uses one
thread that distributes messages to all peers. If one of those send calls were to block, all
output would block.

There are a few options to avoid blocking. One is to use zmq_poll() on the whole set
of DEALER sockets, and only write to sockets that are ready. I don’t like this, for a couple
of reasons. First, the DEALER socket is hidden inside the peer class, and it is cleaner to
allow each class to handle this opaquely. Second, what do we do with messages we can’t
yet deliver to a DEALER socket? Where do we queue them? Third, it seems to be side-
stepping the issue. If a peer is really so busy it can’t read its messages, something is
wrong. Most likely, it’s dead.

So, no polling for output. The second option is to use one thread per peer. I quite like
the idea of this, since it fits into the ØMQ design pattern of “do one thing in one thread.”
But this is going to create a lot of threads (the square of the number of nodes we start)
in the simulation, and we’re already running out of file handles.

A third option is to use a non-blocking send. This is nicer, and it’s the solution I chose.
We can then provide each peer with a reasonable outgoing queue (the HWM) and, if
that gets full, treat it as a fatal error on that peer. This will work for smaller messages. If
we’re sending large chunks—e.g., for content distribution—we’ll need a credit-based
flow control mechanism on top.
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Therefore, the first step is to prove to ourselves that we can turn the normal blocking
DEALER socket into a non-blocking socket. Example 8-16 creates a normal DEALER
socket, connects it to some endpoint (so there’s an outgoing pipe and the socket will
accept messages), sets the high-water mark to 4, and then sets the send timeout to 0.

Example 8-16. Checking EAGAIN on DEALER socket (eagain.c)
//
//  Shows how to provoke EAGAIN when reaching HWM
//
#include <czmq.h>

int main (void) {
    zctx_t *ctx = zctx_new ();
    
    void *mailbox = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_set_sndhwm (mailbox, 4);
    zsocket_set_sndtimeo (mailbox, 0);
    zsocket_connect (mailbox, "tcp://localhost:9876");

    int count;
    for (count = 0; count < 10; count++) {
        printf ("Sending message %d\n", count);
        int rc = zstr_sendf (mailbox, "message %d", count);
        if (rc == -1) {
            printf ("%s\n", strerror (errno));
            break;
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

When we run this, we send four messages successfully (they go nowhere, the socket just
queues them), and then we get a nice EAGAIN error:

Sending message 0
Sending message 1
Sending message 2
Sending message 3
Sending message 4
Resource temporarily unavailable

The next step is to decide what a reasonable high-water mark would be for a peer. Zyre
is meant for human interactions; that is, applications that chat at a low frequency, such
as two games or a shared drawing program. I’d expect a hundred messages per second
to be quite a lot. Our “peer is really dead” timeout is 10 seconds, so a high-water mark
of 1,000 seems fair.
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Rather than set a fixed HWM, or use the default (which randomly also happens to be
1,000), we calculate it as 100 * the timeout. Here’s how we configure a new DEALER
socket for a peer:

//  Create new outgoing socket (drop any messages in transit)
self->mailbox = zsocket_new (self->ctx, ZMQ_DEALER);

//  Set our caller “From” identity so that receiving node knows
//  who each message came from
zsocket_set_identity (self->mailbox, reply_to);

//  Set a high-water mark that allows for reasonable activity
zsocket_set_sndhwm (self->mailbox, PEER_EXPIRED * 100);

//  Send messages immediately or return EAGAIN
zsocket_set_sndtimeo (self->mailbox, 0);

//  Connect through to peer node
zsocket_connect (self->mailbox, "tcp://%s", endpoint);

And finally, what do we do when we get an EAGAIN on a peer? We don’t need to go
through all the work of destroying the peer since the interface will do this automatically
if it doesn’t get any message from the peer within the expiry timeout. Just dropping the
last message seems very weak, though: it will give the receiving peer gaps.

I’d prefer a more brutal response. Brutal is good because it forces the design to a “good”
or “bad” decision rather than a fuzzy “should work, but to be honest there are a lot of
edge cases so let’s worry about it later.” Destroy the socket, disconnect the peer, and stop
sending anything to it. The peer will eventually have to reconnect and reinitialize any
state. It’s kind of an assertion that 100 messages a second is enough for anyone. So, in
the zre_peer_send() method, we do this:

int
zre_peer_send (zre_peer_t *self, zre_msg_t **msg_p)
{
    assert (self);
    if (self->connected) {
        if (zre_msg_send (msg_p, self->mailbox) && errno == EAGAIN) {
            zre_peer_disconnect (self);
            return -1;
        }
    }
    return 0;
}

Where the disconnect method looks like this:
void
zre_peer_disconnect (zre_peer_t *self)
{
    //  If connected, destroy socket and drop all pending messages
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    assert (self);
    if (self->connected) {
        zsocket_destroy (self->ctx, self->mailbox);
        free (self->endpoint);
        self->endpoint = NULL;
        self->connected = false;
    }
}

Distributed Logging and Monitoring
Let’s look at logging and monitoring. If you’ve ever managed a real server (like a web
server) you know how vital it is to have a capture of what is going on. There’s a long list
of reasons, not least:

• To measure the performance of the system over time
• To see what kinds of work are done the most, to optimize performance
• To track errors and how often they occur
• To do postmortems of failures
• To provide an audit trail in case of dispute

Let’s scope this in terms of the problems we think we’ll have to solve:

• We want to track key events (such as nodes leaving and rejoining the network).
• For each event, we want to track a consistent set of data: the date/time, node that

observed the event, peer that created the event, type of the event itself, and other
event data.

• We want to be able to switch logging on and off at any time.
• We want to be able to process log data mechanically, since it will be sizable.
• We want to be able to monitor a running system; that is, collect logs and analyze

them in real time.
• We want log traffic to have minimal effect on the network.
• We want to be able to collect log data at a single point on the network.

As in any design, some of these requirements are hostile to each other. For example,
collecting log data in real time means sending it over the network, which will affect
network traffic to some extent. However, as in any design these requirements are also
hypothetical until we have running code, so we can’t take them too seriously. We’ll aim
for plausibly good enough and improve over time.
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A Plausible Minimal Implementation
Arguably, just dumping log data to disk is one solution, and it’s what most mobile ap‐
plications do (using “debug logs”). But most failures require correlation of events from
two nodes. This means searching lots of debug logs by hand to find the ones that matter.
It’s not a very clever approach.

We want to send log data somewhere central, either immediately or opportunistically
(i.e., store and forward). For now, let’s focus on immediate logging. My first idea, when
it comes to sending data, is to use Zyre for this: just send log data to a group called
“LOG,” and hope someone collects it.

But using Zyre to log Zyre itself is a Catch-22. Who logs the logger? What if we want a
verbose log of every message sent? Do we include logging messages in that, or not? It
quickly gets messy. We want a logging protocol that’s independent of Zyre’s main ZRE
protocol. The simplest approach is a PUB-SUB protocol, where all nodes publish log
data on a PUB socket and a collector picks that up via a SUB socket (Figure 8-3).

Figure 8-3. Distributed log collection

The collector can, of course, run on any node. This gives us a nice range of use cases:

• A passive log collector that stores log data on disk for eventual statistical analysis.
This would be a PC with sufficient hard disk space for weeks or months of log data.

• A collector that stores log data into a database where it can be used in real time by
other applications. This might be overkill for a small workgroup but would be
snazzy for tracking the performance of larger groups. The collector could collect
log data over WiFi and then forward it over Ethernet to a database somewhere.

• A live meter application that joins the Zyre network and then collects log data from
nodes, showing events and statistics in real time.

The next question is how to interconnect the nodes and the collector. Which side binds,
and which connects? Both ways will work here, but it’s marginally better if the PUB
sockets connect to the SUB socket. If you recall, ØMQ’s internal buffers only pop into
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existence when there are connections. That means as soon as a node connects to the
collector it can start sending log data without loss.

How do we tell nodes what endpoint to connect to? We may have any number of col‐
lectors on the network, and they’ll be using arbitrary network addresses and ports. We
need some kind of service announcement mechanism, and here we can use Zyre to do
the work for us. We could use group messaging, but it seems neater to build service
discovery into the ZRE protocol itself. It’s nothing complex: if a node provides a service
X, it can tell other nodes about that when it sends them a HELLO command.

We’ll extend the HELLO command with a headers field that holds a set of name=value
pairs. Let’s define that the header X-ZRELOG specifies the collector endpoint (the SUB
socket). A node that acts as a collector can add a header like this (for example):

X-ZRELOG=tcp://192.168.1.122:9992

When another node sees this header, it simply connects its PUB socket to that endpoint.
Log data now gets distributed to all collectors (zero or more) on the network.

Making this first version was fairly simple and took half a day. Here are the pieces we
had to make or change:

• We made a new class, zre_log, that accepts log data and manages the connection
to the collector, if any.

• We added some basic management for peer headers, taken from the HELLO com‐
mand.

• When a peer has the X-ZRELOG header, we connect to the endpoint it specifies.
• Where we were logging to stdout, we switched to logging via the zre_log class.
• We extended the interface API with a method that lets the application set headers.
• We wrote a simple logger application that manages the SUB socket and sets the X-
ZRELOG header.

• We send our own headers when we send a HELLO command.

This version is tagged in the Zyre repository as v0.4.0, and you can download the tar‐
ball if you want to check what the code looked like at this stage.

At this point the log message is just a string. We’ll make more professionally structured
log data in a little while.

First, a note on dynamic ports. In the zre_tester app that we use for testing, we create
and destroy interfaces aggressively. One consequence is that a new interface can easily
reuse a port that was just freed by another application. If there’s a ØMQ socket some‐
where trying to connect to this port, the results can be hilarious.
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Here’s the scenario I had, which caused a few minutes’ confusion. The logger was run‐
ning on a dynamic port:

1. Start logger application.
2. Start tester application.
3. Stop logger.
4. Tester receives invalid message (and asserts as designed).

As the tester created a new interface, that reused the dynamic port freed by the (just
stopped) logger, and suddenly the interface began to receive log data from nodes on its
mailbox. We saw a similar situation before, where a new interface could reuse the port
freed by an old interface and start getting old data.

The lesson is, if you use dynamic ports, be prepared to receive random data from ill-
informed applications that are reconnecting to you. Switching to a static port stopped
the misbehaving connection. That’s not a full solution, though. There are two more
weaknesses:

• As I write this, libzmq doesn’t check socket types when connecting. The ZMTP/2.0
protocol does announce each peer’s socket type, so this check is doable.

• The ZRE protocol has no fail-fast (assertion) mechanism; we need to read and parse
a whole message before realizing that it’s invalid.

Let’s address the second one. Socket pair validation wouldn’t solve this fully anyhow.

Protocol Assertions
As Wikipedia puts it, “Fail-fast systems are usually designed to stop normal operation
rather than attempt to continue a possibly flawed process.” A protocol like HTTP has a
fail-fast mechanism in that the first four bytes that a client sends to an HTTP server
must be “HTTP”. If they’re not, the server can close the connection without reading
anything more.

Our ROUTER socket is not connection-oriented, so there’s no way to “close the con‐
nection” when we get bad incoming messages. However, we can throw out the entire
message if it’s not valid. The problem is going to be worse when we use ephemeral ports,
but it applies broadly to all protocols.

So, let’s define a protocol assertion as being a unique signature that we place at the start
of each message, which identities the intended protocol. When we read a message, we
check the signature, and if it’s not what we expect we discard the message silently. A
good signature should be hard to confuse with regular data and give us enough space
for a number of protocols.
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I’m going to use a 16-bit signature consisting of a 12-bit pattern and a 4-bit protocol ID
(Figure 8-4). The pattern %xAAA is meant to stay away from values we might otherwise
expect to see at the start of a message: %x00, %xFF, and printable characters.

Figure 8-4. Protocol signature

As our protocol codec is generated, it’s relatively easy to add this assertion. The logic is:

• Get first frame of message.
• Check if first two bytes are %xAAA with expected 4-bit signature.
• If so, continue to parse rest of message.
• If not, skip all “more” frames, get first frame, and repeat.

To test, I switched the logger back to using an ephemeral port. The interface now prop‐
erly detects and discards any messages that don’t have a valid signature. If the message
has a valid signature and is still wrong, that’s a proper bug.

Binary Logging Protocol
Now that we have the logging framework working properly, let’s look at the protocol
itself. Sending strings around the network is simple, but when it comes to WiFi we really
cannot afford to waste bandwidth. We have the tools to work with efficient binary pro‐
tocols, so let’s design one for logging.

This is going to be a PUB-SUB protocol, and in ØMQ v3.x we do publisher-side filtering.
This means we can do multilevel logging (errors, warnings, information), if we put the
logging level at the start of the message. So, our message starts with a protocol signature
(two bytes), a logging level (one byte), and an event type (one byte).

In the first version we send UUID strings to identify each node. As text, these are 32
characters each. We can send binary UUIDs, but it’s still verbose and wasteful. In the
log files we don’t care about the node identifiers. All we need is some way to correlate
events. So what’s the shortest identifier we can use that’s going to be unique enough for
logging? I say “unique enough” because while we really want zero chance of duplicate
UUIDs in the live code, log files are not so critical.

The simplest plausible answer is to hash the IP address and port into a 2-byte value.
We’ll get some collisions, but they’ll be rare. How rare? As a quick sanity check I wrote
a small program that generates a bunch of addresses and hashes them into 16-bit values,
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looking for collisions. To be sure, I generated 10,000 addresses across a small number
of IP addresses (matching a simulation setup), and then across a large number of ad‐
dresses (matching a real-life setup). The hashing algorithm is a modified Bernstein:

uint16_t hash = 0;
while (*endpoint)
    hash = 33 * hash ^ *endpoint++;

Over several runs I didn’t get any collisions, so this will work as an identifier for the log
data. This adds four bytes (two for the node recording the event, and two for its peer in
events that come from a peer).

Next, we want to store the date and time of the event. The POSIX time_t type used to
be 32 bits but since this will overflow in 2038, it’s now a 64-bit value. We’ll use this, as
there’s no need for millisecond resolution in a log file: events are sequential, clocks are
unlikely to be that tightly synchronized, and network latencies mean that precise times
aren’t that meaningful.

We’re up to 16 bytes, which is decent. Finally, we want to allow some additional data,
formatted as text and depending on the type of event. Putting this all together gives the
following message specification:

<class
    name = "zre_log_msg"
    script = "codec_c.gsl"
    signature = "2"
>
This is the ZRE logging protocol - raw version.
<include filename = "license.xml" />

<!-- Protocol constants -->
<define name = "VERSION" value = "1" />

<define name = "LEVEL_ERROR" value = "1" />
<define name = "LEVEL_WARNING" value = "2" />
<define name = "LEVEL_INFO" value = "3" />

<define name = "EVENT_JOIN" value = "1" />
<define name = "EVENT_LEAVE" value = "2" />
<define name = "EVENT_ENTER" value = "3" />
<define name = "EVENT_EXIT" value = "4" />

<message name = "LOG" id = "1">
    <field name = "level" type = "number" size = "1" />
    <field name = "event" type = "number" size = "1" />
    <field name = "node" type = "number" size = "2" />
    <field name = "peer" type = "number" size = "2" />
    <field name = "time" type = "number" size = "8" />
    <field name = "data" type = "string" />
Log an event
</message>
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</class>

Which generates us 800 lines of perfect binary codec (the zre_log_msg class). The codec
does protocol assertions just like the main ZRE protocol does. Code generation has a
fairly steep starting curve, but it makes it so much easier to push your designs past
“amateur” into “professional.”

Content Distribution
We now have a robust framework for creating groups of nodes, letting them chat to each
other, and monitoring the resulting network. The next step is to allow them to distribute
content as files.

As usual, we’ll aim for the very simplest plausible solution and then improve that step-
by-step. At the very least we want the following:

• An application can tell the Zyre API, “Publish this file,” and provide the path to a
file that exists somewhere in the filesystem.

• Zyre will distribute that file to all peers—both those that are on the network at that
time, and those that arrive later.

• Each time an interface receives a file, it tells its application, “Here is this file.”

We might eventually want more discrimination—e.g., publishing to specific groups—
but we can add that later, if it’s needed.

In Chapter 7 we developed a file distribution system (FileMQ) designed to be plugged
into ØMQ applications. Let’s use that.

Each node is going to be a file publisher, and a file subscriber. We bind the publisher to
an ephemeral port (if we use the standard FileMQ port 5670, we can’t run multiple
interfaces on one box), and we broadcast the publisher’s endpoint in the HELLO mes‐
sage, as we did for the log collector. This lets us interconnect all nodes so that all sub‐
scribers talk to all publishers.

We need to ensure that each node has its own directory for sending and receiving files
(the outbox and the inbox). Again, this is so we can run multiple nodes on one box.
Since we already have a unique ID per node, we just use that in the directory name.

Here’s how we set up the FileMQ API when we create a new interface:
sprintf (self->fmq_outbox, ".outbox/%s", self->identity);
mkdir (self->fmq_outbox, 0775);

sprintf (self->fmq_inbox, ".inbox/%s", self->identity);
mkdir (self->fmq_inbox, 0775);
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self->fmq_server = fmq_server_new ();
self->fmq_service = fmq_server_bind (self->fmq_server, "tcp://*:*");
fmq_server_publish (self->fmq_server, self->fmq_outbox, "/");
fmq_server_set_anonymous (self->fmq_server, true);
char publisher [32];
sprintf (publisher, "tcp://%s:%d", self->host, self->fmq_service);
zhash_update (self->headers, "X-FILEMQ", strdup (publisher));

//  Client will connect as it discovers new nodes
self->fmq_client = fmq_client_new ();
fmq_client_set_inbox (self->fmq_client, self->fmq_inbox);
fmq_client_set_resync (self->fmq_client, true);
fmq_client_subscribe (self->fmq_client, "/");

And when we process a HELLO command, we check for the X-FILEMQ header field:
//  If peer is a FileMQ publisher, connect to it
char *publisher = zre_msg_headers_string (msg, "X-FILEMQ", NULL);
if (publisher)
    fmq_client_connect (self->fmq_client, publisher);

The last thing is to expose content distribution in the Zyre API. We need two things:

• A way for the application to say, “Publish this file.”
• A way for the interface to tell the application, “We received this file.”

In theory the application can publish a file just by creating a symbolic link in the outbox
directory, but as we’re using a hidden outbox, this is a little difficult. So we add an API
method, publish:

//  Publish file into virtual space
void
zre_interface_publish (zre_interface_t *self, char *pathname, char *virtual)
{
    zstr_sendm (self->pipe, "PUBLISH");
    zstr_sendm (self->pipe, pathname);
    zstr_send  (self->pipe, virtual);
}

which the API passes to the interface thread, which creates the file in the outbox direc‐
tory so that the FileMQ server will pick it up and broadcast it. We could literally copy
file data into this directory, but since FileMQ supports symbolic links, we use that in‐
stead. The file has an “.ln” extension and contains one line, the actual pathname.

Finally, how do we notify the recipient that a file has arrived? The FileMQ fmq_cli
ent API has a message for this (DELIVER), so all we have to do in zre_interface is
grab this message from the fmq_client API and pass it on to our own API:

zmsg_t *msg = fmq_client_recv (fmq_client_handle (self->fmq_client));
zmsg_send (&msg, self->pipe);
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This is complex code that does a lot at once. But we’re only at around 10K lines of code
for FileMQ and Zyre together. The most complex Zyre class, zre_interface, is 800 lines
of code. This is compact. Message-based applications do keep their shape, if you’re
careful to organize them properly.

Writing the Unprotocol
We have all the pieces for a formal protocol specification, and it’s time to put the protocol
on paper. There are two reasons for this: first, to make sure that any other implemen‐
tations talk to each other properly; and second, because I want to get an official port for
the UDP discovery protocol, and that means doing the paperwork.

Like all the other unprotocols we’ve developed in this book, the protocol lives on the
ØMQ RFC site. The core of the protocol specification is the ABNF grammar for the
commands and fields:

zre-protocol    = greeting *traffic

greeting        = S:HELLO
traffic         = S:WHISPER
                / S:SHOUT
                / S:JOIN
                / S:LEAVE
                / S:PING R:PING-OK

;   Greet a peer so it can connect back to us
S:HELLO         = header %x01 ipaddress mailbox groups status headers
header          = signature sequence
signature       = %xAA %xA1
sequence        = 2OCTET        ; Incremental sequence number
ipaddress       = string        ; Sender IP address
string          = size *VCHAR
size            = OCTET
mailbox         = 2OCTET        ; Sender mailbox port number
groups          = strings       ; List of groups sender is in
strings         = size *string
status          = OCTET         ; Sender group status sequence
headers         = dictionary    ; Sender header properties
dictionary      = size *key-value
key-value       = string        ; Formatted as name=value

; Send a message to a peer
S:WHISPER       = header %x02 content
content         = FRAME         ; Message content as 0MQ frame

; Send a message to a group
S:SHOUT         = header %x03 group content
group           = string        ; Name of group
content         = FRAME         ; Message content as 0MQ frame
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; Join a group
S:JOIN          = header %x04 group status
status          = OCTET         ; Sender group status sequence

; Leave a group
S:LEAVE         = header %x05 group status

; Ping a peer that has gone silent
S:PING          = header %06

; Reply to a peer’s ping
R:PING-OK       = header %07

Conclusions
Building applications for unstable, decentralized networks is one of the endgames for
ØMQ. As the cost of computing falls every year, such networks (be they computer
electronics or virtual boxes in the cloud) become more and more common. In this
chapter we’ve pulled together many of the techniques from the book to build Zyre, a
framework for proximity computing over a local network. Zyre isn’t unique; there are
and have been many attempts to open this area for applications (ZeroConf, SLP, SSDP,
UPnP, DDS). But these all seem to end up too complex or otherwise hard for application
developers to build on.

Zyre isn’t finished. Like many of the projects in this book, it’s an icebreaker for others.
There are some major areas that are unfinished, which we may address in later editions
of this book or versions of the software:
High-level APIs

The message-based API that Zyre offers now is usable but still rather more complex
than I’d like for average developers. If there’s one target we absolutely cannot miss,
it’s raw simplicity. This means we should build high-level APIs, in lots of languages,
that hide all the messaging and come down to simple methods like start, join/leave
group, get message, publish file, and stop.

Security
How do we build a fully decentralized security system? We might be able to leverage
public key infrastructure for some work, but that requires that nodes have their
own Internet access, which isn’t guaranteed. The answer is, as far as we can tell, to
use any existing secure peer-to-peer link (TLS, Bluetooth, perhaps NFC) to ex‐
change a session key, a symmetric cipher. Symmetric ciphers have their advantages
and disadvantages.

Nomadic content
How do I, as a user, manage my content across multiple devices? The Zyre + FileMQ
combination might help for local network use, but I’d like to be able to do this across
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the Internet too. Are there cloud services I could use? Something to make using
ØMQ?

Federation
How do we scale a local-area distributed application across the globe? One plausible
answer is federation, which means creating clusters of clusters. If 100 nodes can
join together to create a local cluster, then perhaps 100 clusters can join together to
create a wide-area cluster. The challenges are then quite similar: discovery, presence,
group messaging.
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CHAPTER 9

Postface

Tales from Out There
I asked some of the contributors to this book to tell us what they were doing with ØMQ.
Here are their stories.

Rob Gagnon’s Story
“We use ØMQ to assist in aggregating thousands of events occurring every minute
across our global network of telecommunications servers so that we can accurately
report and monitor for situations that require our attention. ØMQ made the develop‐
ment of the system not only easier, but faster to develop and more robust and fault-
tolerant than we had originally planned in our original design.

“We’re able to easily add and remove clients from the network without the loss of any
message. If we need to enhance the server portion of our system, we can stop and restart
it as well, without having to worry about stopping all of the clients first. The built-in
buffering of ØMQ makes this all possible.”

Tom van Leeuwen’s Story
“I was looking at creating some kind of service bus connecting all kinds of services
together. There were already some products that implemented a broker, but they did
not have the functionality I needed. By accident, I stumbled upon ØMQ, which is awe‐
some. It’s very lightweight, lean, simple, and easy to follow since the book is very com‐
plete and reads very well. I’ve actually implemented the Titanic pattern and the Major‐
domo broker with some additions (client/worker authentication and workers sending
a catalog explaining what they provide and how they should be addressed).

“The beautiful thing about ØMQ is the fact that it is a library and not an application.
You can mold it however you like and it simply puts boring things like queuing, recon‐
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necting, TCP sockets and such to the background, making sure you can concentrate on
what is important for you. I’ve implemented all kinds of workers/clients and the broker
in Ruby, because that is the main language we use for development, but also some PHP
clients to connect to the bus from existing PHP webapps. We use this service bus for
cloud services connecting all kinds of platform devices to a service bus exposing func‐
tionality for automation.

“ØMQ is very easy to understand and if you spend a day in this book, you’ll have good
knowledge of how it works. I’m a network engineer, not a software developer, but man‐
aged to create a very nice solution for our automation needs! ØMQ: Thank you very
much!”

Michael Jakl’s Story
“We use ØMQ for distributing millions of documents per day in our distributed pro‐
cessing pipeline. We started out with big message queuing brokers that had their own
respective issues and problems. In the quest of simplifying our architecture, we chose
ØMQ to do the wiring. So far it’s had a huge impact on how our architecture scales and
how easy it is to change and move the components. The plethora of language bindings
lets us choose the right tool for the job without sacrificing interoperability in our system.
We don’t use a lot of sockets (less than 10 in our whole application), but that’s all we
needed to split a huge monolithic application into small independent parts.

“All in all, ØMQ lets me keep my sanity and helps my customers to stay within budget.”

Vadim Shalts’s Story
“I am team leader in the company ActForex, which develops software for financial
markets. Due to the nature of our domain, we need to process large volumes of prices
quickly. In addition, it’s extremely critical to minimize latency in processing orders and
prices. Achieving a high throughput is not enough. Everything must be handled in a
soft real time with a predictable ultra-low latency per price. The system consists of
multiple components exchanging messages. Each price can take a lot of processing
stages, each of which increases total latency. As a consequence, low and predictable
latency of messaging between components becomes a key factor of our architecture.

“We investigated different solutions to find one suitable for our needs. We tried different
message brokers (RabbitMQ, ActiveMQ Apollo, Kafka), but failed to reach a low and
predictable latency with any of them. In the end, we chose ØMQ used in conjunction
with ZooKeeper for service discovery. Complex coordination with ØMQ requires a
relatively large effort and a good understanding, as a result of the natural complexity of
multithreading. We found that an external agent like ZooKeeper is a better choice for
service discovery and coordination while ØMQ can be used primarily for simple mes‐
saging. ØMQ perfectly fit into our architecture. It allowed us to achieve the desired
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latency using minimal efforts. It saved us from a bottleneck in the processing of messages
and made processing time very stable and predictable.

“I can decidedly recommend ØMQ for solutions where low latency is important.”

How This Book Happened
When I set out to write a ØMQ book, we were still debating the pros and cons of forks
and pull requests in the ØMQ community. Today, for what it’s worth, this argument
seems settled: the “liberal” policy we adopted for libzmq in early 2012 broke our de‐
pendency on a single prime author and opened the floor to dozens of new contributors.
More profoundly, it allowed us to move to a gently organic evolutionary model that was
very different from the older forced-march model.

The reason I was confident this would work was that our work on the guide had, for a
year or more, shown the way. True, the text is my own work, which is perhaps as it
should be. Writing is not programming. When we write, we tell a story, and one doesn’t
want different voices telling one tale; it feels strange.

For me the real long-term value of this project is the repository of examples: about
65,000 lines of code in 24 different languages. It’s partly about making ØMQ accessible
to more people. People already refer to the Python and PHP example repositories—two
of the most complete—when they want to tell others how to learn ØMQ. But it’s also
about learning programming languages.

For example, here’s a loop of code in Tcl:
while {1} {
    # Process all parts of the message
    zmq message message
    frontend recv_msg message
    set more [frontend getsockopt RCVMORE]
    backend send_msg message [expr {$more?"SNDMORE":""}]
    message close
    if {!$more} {
        break ; # Last message part
    }
}

And the same loop in Lua:
while true do
    --  Process all parts of the message
    local msg = frontend:recv()
    if (frontend:getopt(zmq.RCVMORE) == 1) then
        backend:send(msg, zmq.SNDMORE)
    else
        backend:send(msg, 0)
        break;      --  Last message part
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    end
end

This particular example (rrbroker) is also included in the online version of this book in
C#, C++, CL, Clojure, Erlang, F#, Go, Haskell, Haxe, Java, Lua, Node.js, Perl, PHP,
Python, Ruby, Scala, Tcl, and of course C. This code base, all licensed as open source
under the MIT/X11 license, may form the basis for other books or projects.

But what this collection of translations says most profoundly is this: the language you
choose is a detail, even a distraction. The power of ØMQ lies in the patterns it gives you
and lets you build, and these transcend the comings and goings of languages. My goal
as a software and social architect is to build structures that can last generations. There
seems no point in aiming for mere decades.

Removing Friction
I’ll explain the technical toolchain we used in terms of the friction we removed. With
this book we’re telling a story, and the goal is to reach as many people as possible, as
cheaply and smoothly as we can.

The core idea was to host this book on GitHub and make it easy for anyone to contribute.
It turned out to be more complex than that, however.

Let’s start with the division of labor. I’m a good writer and can produce endless amounts
of decent text quickly. But what was impossible for me was to provide the examples in
other languages. Because the core ØMQ API is in C, it seemed logical to write the
original examples in C. Also, C is a neutral choice; it’s perhaps the only language that
doesn’t create strong emotions.

How to encourage people to make translations of the examples? We tried a few ap‐
proaches and finally what worked best was to offer a “choose your language” link on
every single example, in the text, which took people either to the translation or to a page
explaining how they could contribute. The way it usually works is that as people learn
ØMQ in their preferred language, they contribute a handful of translations, or fixes to
the existing ones.

At the same time I noticed a few people quite determinedly translating every single
example. This was mainly binding authors who’d realized that the examples were a great
way to encourage people to use their bindings. For their efforts, I extended the scripts
to produce language-specific versions of the book online. Instead of including the C
code, we’d include the Python, or PHP code. Lua and Haxe also got their dedicated
books.

Once we have an idea of who works on what, we know how to structure the work itself.
It’s clear that to write and test an example, what you want to work on is source code. So
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we import this source code when we build the book, and that’s how we make language-
specific versions.

I like to write in a plain text format. It’s fast and works well with source control systems
like Git. Since the main platform for our websites is Wikidot, I write using Wikidot’s
very readable markup format.

At least in the first chapters, it was important to draw pictures to explain the flow of
messages between peers. I found Ditaa, a lovely tool that chews up line drawings and
spits out elegant graphics. Having the graphics in the text, as text, makes it remarkably
easy to work.

By now you’ll realize that the toolchain we use is highly customized, though it uses a lot
of external tools. All are available on Ubuntu, which is a mercy, and the whole toolchain
is in the zguide repository in the bin subdirectory.

Let’s walk through the editing and publishing process. Here is how we produce the online
version:

bin/mkguide

Which works as follows:

• The original text sits in a series of text files (one per chapter).
• The examples sit in the examples subdirectory, classified per language.
• We take the text and process this into a set of Wikidot-ready files, for each of the

languages that get their own version.
• We extract the graphics and call Ditaa on each one to produce image files, which

are stored in the images subdirectory.
• We extract inline listings (which are not translated) and store these in the listings

subdirectory.
• We use pygmentize on each example and listing to create a marked-up page in

Wikidot format.
• We upload all changed files to the book wiki using the Wikidot API.

Doing this from scratch takes a while. So, we store the SHA-1 signatures of every image,
listing, example, and text file and only process and upload changes, and that makes it
easy to publish a new version of the book when people make new contributions.

To produce the PDF and Epub formats, we do this:
bin/mkpdfs

Which works as follows:

• We use the mkbook script on all the input files to produce a DocBook output.
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• We push the DocBook format through docbook2ps and ps2pdf to create clean PDFs,
in each language.

• We push the DocBook format though db2epub to create Epub books, in each lan‐
guage.

• We upload the PDFs to the wiki using the Wikidot API.

When creating a community project, it’s important to lower the “change latency,” which
is the time it takes for people to see their work live or, at least, to see that you’ve accepted
their pull requests. If that is more than a day or two, you’ve often lost your contribu‐
tor’s interest.

Licensing
I want people to reuse this text in their own work: in presentations, articles, and even
other books. However, the deal is that if they remix my work, others can remix theirs.
I’d like credit, and have no argument against others making money from their remixes.
Thus, this text is licensed under cc-by-sa.

For the examples, we started with GPL, but it rapidly became clear this wasn’t workable.
The point of examples is to give people reusable code fragments so they will use ØMQ
more widely, and if these are GPL that won’t happen. So we switched to MIT/X11, even
for the larger and more complex examples that conceivably would work as LGPL.

However, when we started turning the examples into standalone projects (as with Ma‐
jordomo), we used LGPL. Again, remixability trumps dissemination. Licenses are tools;
use them with intent, not ideology.
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Symbols
0MQ (see ZeroMQ)

A
ABNF, 379
AMQP

authentication for, 410
messaging used by, 24

APIs
contracts as, 374
for discovery, 439–448
for FileMQ project, 412, 416–417
high-level, for ZeroMQ, 102–110

assertions, 56
(see also testing)
best practices for, 457
protocol assertions, 470–471

asserts, removed by optimizer, 57
asynchronous client/server pattern, 111–116
asynchronous disconnected network, 194–206
Asynchronous Majordomo pattern, 186–191
authentication

SASL for, 410–411
state for, 405

B
Benevolent Tyrant role, 366

binary logging protocol, 471–473
Binary Star pattern, 206–222

adding to Clone pattern, 296–306
for reactor class, 218–222
requirements for, 208–211
split-brain syndrome, preventing, 211

binding (see server node)
Black Box pattern, 258–260
bridging, 54–56
broker (see proxy or broker)
brokerless messaging, reliability for, 223–243
BSD license, 330–332, 335
burnout, reducing risk of, 364–366

C
C string format, 10–11
C4 contract, 325, 335–349
Canary Watcher role, 368
Cheap or Nasty pattern, 380
CHP (Clustered Hashmap Protocol), 306–309
client node

connecting sockets to endpoint, 32–34
multiple, connecting to multiple servers with

proxy, 143
(see also Majordomo pattern; Paranoid

Pirate pattern; Simple Pirate pattern;
Titanic pattern)

multiple, connecting to multiple servers
without proxies, 144, 223–243
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multiple, connecting to single server, 143,
144–148

role of, 32, 33, 89
starting before server node, 33

clocks, portable, 104
Clone pattern, 260–320

adding Binary Star pattern to, 296–306
central server for, 261
Clustered Hashmap Protocol for, 306–309
ephemeral values with, 284–292
multithreaded stack for, 310–320
reactor with, 292–295
requirements for, 260
state representation, 261–271
state snapshots, 271–276
state subtrees, 281–283
state updates from clients, 276–281

cloud computing example (see Inter-Broker
Routing example)

Clustered Hashmap Protocol (CHP), 306
COD (Complexity-Oriented Design), 361–362
code examples, xv, 5

(see also patterns)
creation of, 481–484
Git repository for, 5
Hello World, 5–9
Inter-Broker Routing example (see Inter-

Broker Routing example)
licensing for, 484
licensing of, xv, 5
Load-Balancing Message Broker, 96–102
Multiple Socket Reader/Poller, 41–44
Multithreaded Hello World, 65–67
Multithreaded Relay, 68–70
Parallel Task Ventilator, 16–20, 57–59
permission to use, xvi
Request-Reply Broker, 50–54
Synchronized Publisher, 71–74
translations of, xv, 5
Weather Update Proxy, 54–56
Weather Update Server, 11–15
website for, xv
Zyre project (see Zyre project)

code generation, 386–392
Collective Code Construction Contract (see C4

contract)
collector (see server node)
community, 325–327

building and maintaining, 332–335

burnout, reducing risk of, 364–366
C4 contract, 325, 335–349
example of, 349–352
iMatix’s role in, 327
licensing, 330–332, 335, 339
open source model used by ZeroMQ, 325
software architecture guidelines, 327–335
structure of, 326–327

Complexity-Oriented Design (COD), 361–362
connectedness of software, 3–4
connecting (see client node)
connections, 32–34

(see also client node)
transports for, 33

Constant Gardner role, 367
contact information for this book, xvi
context

adding threads to, 36
best practices for, 21–22
configuring, 28
creating, 21
destroying, 21, 22, 57
monitoring, 28
as threadsafe, 64, 69

contracts, 163, 374
APIs as, 374
C4 contract, 325, 335–349
unprotocols as, 374, 375–382

contributors to this book, 479–481
conventions used in this book, xv
cooperative discovery, 434–438
Cost Gravity, 425
creation of this book, xiii–xv, 481–484
Ctrl-C (SIGINT), handling, 61–62, 105, 107,

110, 110
CZMQ API, 105–110

D
data serialization (see serialization of data)
DEALER and DEALER combination, 88, 114
DEALER and REP combination, 87
DEALER and ROUTER combination, 88

(see also ROUTER-DEALER proxy)
asynchronous client/server pattern using,

111–116
load balancing using, 94–102

DEALER socket, 38, 49, 86, 86–88
(see also ROUTER-DEALER proxy)
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design models, 356–364
COD (Complexity-Oriented Design), 361–

362
TOD (Trash-Oriented Design), 359–361

Digital Standards Organization (Digistan), 328
disconnected network, asynchronous, 194–206
disconnected TCP transport (see tcp transport)
discovery, 432–448

API for, 439–448
cooperative discovery, 434–438
preemptive discovery, 432–434
testing with multiple nodes per device, 439
UDP for, 448–448

distributed computing, 425–427
discovery, 432–448

API for, 439–448
cooperative discovery, 434–438
preemptive discovery, 432–434
testing with multiple nodes per device,

439
logging and monitoring for, 467–473
Zyre project for (see Zyre project)

dynamic discovery, 45–47

E
EAGAIN return code, 57, 466
Earth and Sky role, 366
EFSM error code, 87, 144
EHOSTUNREACH error code, 91
EINTR return code, 62
envelopes, 75–76, 81–86
ephemeral values, 284–292
error handling, 56–59

with Cheap and Nasty pattern, 382
by ROUTER socket, 91

Espresso pattern, 247–249
ETERM return code, 57
examples (see code examples)
exclusive pair pattern, 37
exiting, best practices for, 22–23

F
failure, causes of, 141

(see also reliability)
fair-queuing, 20
federation interconnection, 121
FileMQ project, 411–424

building, 414

client and server API for, 412, 416–417
configuration for, 418–419
delivery notifications for, 420
file stability, determining, 419
internal architecture of, 415–416
late joiners, handling, 421–422
maintaining state for, 417–418
protocol for, 413–414
recovery from failure for, 421–422
running, 415
symbolic links with, 420
testing, 423–424
used in Zyre project, 449, 473–475

FILEMQ protocol, 413–414
files

large-scale distribution of, 411–424, 473–475
transferring, 392–403

Flash Mob role, 368
flow control, 77
fonts used in this book, xv
Fork + Pull Model, GitHub, 335
fork() function, 21
Foundation for a Free Information Infrastruc‐

ture (FFII), 328
frames, 40, 382

(see also multipart messages)
free software (see open source software)
Freelance pattern, 223–243

G
Gagnon, Rob (contributor), 479
Git branches, 352–355
GitHub, 338, 343

C4 contract with, 336
Fork + Pull Model, 335
issue tracker, 338, 343, 344
projects (see projects)

GPL license, 330–332, 335, 339, 378
group messaging pattern, 455–457

(see also Zyre project)
GSL, 387–392

H
Hadoop Zookeeper project, 24
Hangman role, 369
hardware

failure of, 142
writing messages to hard disk, 195–206
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Harmony pattern, 452–454
heartbeating, 116, 125, 159–163

in Zyre project, 454–455
not using, 160–160
one-way heartbeats, 160
for Paranoid Pirate pattern, 161–163
in Paranoid Pirate pattern, 151, 151, 154,

155, 156, 157, 158, 158
ping-pong heartbeats, 161–163

Hello World example, 5–9
high-level API for ZeroMQ, 102–110
high-level patterns, 38
high-water mark (HWM), 77–78
Historian role, 369
HTTP protocol, using ZeroMQ for, 35–36
HWM (see high-water mark)

I
I/O threads, 36
IANA (Internet Assigned Numbers Authority),

424
idempotent services, 193–194
identity, 89–91
iMatix, xiii, 327
innovation, models for, 356–364
inproc (inter-thread) transport, 35, 64, 68–70

binding order requirement for, 35
high-water mark with, 78

Inter-Broker Routing example, 116–140
brokers, interconnecting, 119–122
cloud flow for, 126–133
clusters of workers and clients for, 117–121
final code for, 133–140
ipc transport for, 123
limitations of, 140
local flow for, 126–133
requirements for, 116–117
sockets, naming, 122–123
state flow for, 123–126

inter-process transport (see ipc transport)
inter-thread transport (see inproc transport)
intermediation, 45

for publish-subscribe pattern, 46–47
for request-reply pattern, 48–54
zmq_proxy() function for, 53–54

Internet Assigned Numbers Authority (IANA),
424

Internet of Things, 425
interrupt signals, handling, 61–62

ipc (inter-process) transport, 35
binding to same endpoint twice, 33
for Inter-Broker Routing, 123

J
Jakl, Michael (contributor), 480
JeroMQ implementation, 326
JSON, 383

L
last value caching (LVC), 250–254
late (slow) joiners

with Clone pattern, 264, 271
with FileMQ project, 421–422
with Harmony pattern, 460
with pipeline pattern, 20
with publish-subscribe pattern, 14
TCP for, 448

Laughing Clown role, 367
Laxy Pirate pattern, 144–148
Lazy Perfectionist role, 366
van Leeuwen, Tom (contributor), 479
LGPL license

for examples in this book, 484
for ZeroMQ, 326

Libero, 403–410
libzmq library, 326

bindings for, 326
reimplementations of, 326
upgrading to version 3.2, 27

licensing
BSD license, 330–332, 335
for examples in this book, 484
GPL license, 330–332, 335, 339, 378
LGPL license, 326, 484
MIT/X11 license, 484

Load-Balancing Message Broker example, 96–
102

load-balancing pattern, 91–102
CZMQ for, 105–110
DEALER and ROUTER combination for,

94–102
REQ and ROUTER combination for, 92–94,

117–121
logging, in distributed environment, 467–473
LVC (last value caching), 250–254
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M
Majordomo Management Interface (MMI), 192
Majordomo pattern, 38, 164–186
Majordomo pattern, Asynchronous, 186–191
MDP (Majordomo Protocol), 164–165, 185, 382
memory leaks, detecting, 62–63
message queues, overflowing, 37, 142, 247, 255
Message-Oriented Pattern for Elastic Design

(MOPED), 372–375
MessagePack, 384–385
messages, 39–41

benefits of ZeroMQ for, 23–27
best practices for, 22
content of, accessing, 39
envelopes for, 75–76, 81–86
flow control for, 77
high-water mark for, 77–78
losing, causes of, 78
multipart, 40–41, 44–45, 382
patterns for sending (see patterns)
reading, 39
receiving, 32, 34–35
releasing, 39
sending, 32, 34–35, 39, 40
size of, 39
string format for, 10–11
as structures, 32, 39
TCP for, 23
writing, 39
zero-length, 41

Mindful General role, 367
MIT/X11 license, 484
MMI (Majordomo Management Interface), 192
monitoring, in distributed environment, 467–

473
MOPED (Message-Oriented Pattern for Elastic

Design), 372–375
multicast messaging (see publish-subscribe pat‐

tern)
multicast transports, 35
multipart messages, 40–41, 44–45, 382

envelopes for, 75–76
high water mark for, 78
zero-copy used with, 74

Multiple Socket Reader/Poller example, 41–44
Multithreaded Hello World example, 65–67
Multithreaded Relay example, 68–70
multithreading, 63–67

best practices for, 64

for client stack, 310–320
exiting, best practices for, 22
I/O threads, 36
for increasing subscriber speed, 258–260
portable thread management, 104
signaling between threads, 68–70

Mystic role, 369

N
Nagle’s algorithm, 186
networks

asynchronous disconnected, 194–206
failure of, 142
plugging sockets into, 32–34

nodes, coordination between, 70–74
(see also client node; server node)

non-blocking reads, 41
non-blocking request-reply, 48–54

O
one-way data distribution pattern (see publish-

subscribe pattern)
one-way heartbeats, 160
Open Door role, 367
open source software

licensing for, 330–332
models for, 325, 328
reasons for, 325, 328

OpenAMQ server, 206
optimization

hand-optimizing high-volume data flows,
385

with heartbeats, 160
zero-copy for, 74–74

P
PAIR socket, 38, 68–70
Parallel Task Ventilator example, 16–20, 57–59
Paranoid Pirate pattern, 151–159, 161–163
path hierarchy, 282
patterns, 37–38

asynchronous client/server (see asynchro‐
nous client/server pattern)

Asynchronous Majordomo pattern, 186–191
Binary Star pattern, 206–222
Black Box pattern, 258–260
Clone (see Clone pattern)
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Espresso pattern, 247–249
exclusive pair (see exclusive pair pattern)
Freelance pattern, 223–243
group messaging pattern, 455–457
Harmony pattern, 452–454
high-level, 38
interoperability between, protocols for, 163
Lazy Pirate pattern, 144–148
load-balancing (see load-balancing pattern)
Majordomo pattern, 164–186
Paranoid Pirate pattern, 151–159, 161–163
pipeline (see pipeline pattern)
publish-subscribe (see publish-subscribe

pattern)
request-reply (see request-reply pattern)
Simple Pirate pattern, 148–151
Suicidal Snail pattern, 254–257
Titanic pattern, 194–206

peer connectivity
blocked peers, handling, 464–466
Harmony pattern for, 452–454

peering interconnection, 121
pgm transport, 246, 250
ping-pong heartbeats, 161–163
pipeline pattern, 37

examples of, 16–20
fair-queuing with, 20
for file transfers, 400–403
reliability for, 143
shutting down cleanly, 57–59
slow joiner syndrome with, 20

Pirate Gang role, 368
Pirate Pattern Protocol (PPP), 163, 164
pirate patterns, 143

Asynchronous Majordomo pattern, 186–191
Binary Star pattern, 206–222
Freelance pattern, 223–243
interoperability between, protocols for, 163
Lazy Pirate pattern, 144–148
Majordomo pattern, 164–186
Paranoid Pirate pattern, 151–159, 161–163
Simple Pirate pattern, 148–151
Titanic pattern, 194–206

port numbers, registered, 424
PPP (Pirate Pattern Protocol), 163, 164
preemptive discovery, 432
production of this book, xiii–xv, 481–484
programming practices, 21–23

projects
FileMQ (see FileMQ project)
using ZeroMQ, list of, 327
Zyre (see Zyre project)

protocol assertions, 470–471
protocol specifications (see unprotocols)
Provocateur role, 369
proxy or broker, 45, 89

(see also server node)
multiple, interconnecting, 119–122
for publish-subscribe pattern, 46–47
for request-reply pattern, 48–54
zmq_proxy() function for, 53–54

psychology of software architecture, 328–330,
333–335, 366–369

PUB (publish) socket, 14–15, 38
publish-subscribe pattern, 37, 245–247

bridging transports, 54–56
clients sharing state for (see Clone pattern)
envelopes used with, 75–76
examples of, 11–15
extended to use a proxy, 46–47
filtering with, 15
group messaging pattern as, 455–457
increasing subscriber speed for, 258–260
last value caching (LVC) for, 250–254
one-way heartbeats for, 160
reliability for, 143, 247

(see also Black Box pattern; Clone pat‐
tern; Espresso pattern; Suicidal Snail
pattern)

scalability of, 246
for sending kill messages, 57–59
slow joiner syndrome with, 14
slow subscribers, handling, 254–257
synchronizing publisher and subscriber, 70–

74
synchronizing publisher and subscriber in,

15
tracing network for, 247–249

publisher (see server node)
PULL socket, 18–20, 38

(see also pipeline pattern)
PUSH socket, 16–20, 38

(see also pipeline pattern)
PyZMQ binding, 326

Q
queue proxy, 148–151, 152
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reactor

Binary Star pattern as, 218–222
Clone pattern using, 292–295
replacing zmq_poll() function with, 104, 108

registered port numbers, 424
reliability, 141–142

Freelance Pattern for, 223–243
for pipeline pattern, 143
for publish-subscribe pattern, 143, 247

(see also Black Box pattern; Clone pat‐
tern; Espresso pattern; Suicidal Snail
pattern)

for request-reply pattern, 142–144
(see also pirate patterns)

reliable request-reply (RRR) patterns (see pirate
patterns)

REP (reply) socket, 5–9, 38, 85, 86–88
REQ (request) socket, 8–9, 38, 85, 86–88
REQ and ROUTER combination, 87

load balancing using, 92–94
load-balancing using, 117–121

Request-Reply Broker example, 50–54
request-reply pattern, 37

asynchronous client/server pattern as, 111–
116

example of, 5–9
extended to use proxy, 48–54, 82–85
load-balancing pattern as, 91–102, 117–121
reliability for, 141–144

(see also pirate patterns)
reply messge envelopes with, 81–86
synchronizing subscribers and publisher,

71–74
valid socket combinations for, 86–88

RFC 2234, 379
Rolling Stone role, 368
ROUTER and ROUTER combination, 88
ROUTER socket, 38, 49, 85, 86, 86–88, 89–91
ROUTER-DEALER proxy, 48–54, 82–85

(see also DEALER and ROUTER combina‐
tion)

RRR (reliable request-reply) patterns (see pirate
patterns)

S
SASL (Simple Authentication and Security Lay‐

er), 410–411

scalability
of publish-subscribe pattern, 246
of sockets, 27–27

serialization of data, 382–392
code generation for, 386–392
framing for, 382
handwritten binary serialization, 385–386
languages for, 383–384
libraries for, 384–385

server node
binding sockets to endpoint, 32–34
high-availability pair of, 206–222
multiple, clients connecting to with proxy,

143
(see also Majordomo pattern; Paranoid

Pirate pattern; Simple Pirate pattern;
Titanic pattern)

multiple, clients connecting to without prox‐
ies, 144, 223–243

role of, 32, 33, 89
single, clients connecting to, 143, 144–148

services
discovering, 191–193
idempotent, 193–194

sessions, for ephemeral values, 284
Shalt, Vadim (contributor), 480
shared queue, 48–54
SIGINT (Ctrl-C), handling, 61–62, 105, 107,

110, 110
signals, handling, 61–62
SIGTERM, handling, 61–62
Simple Authentication and Security Layer

(SASL), 410–411
Simple Pirate pattern, 148–151
slow joiners (see late joiners)
Social Architecture (Hintjens), 328
Social Engineer role, 367
sockets, 32–37

(see also specific socket types)
best practices for, 22
closing automatically, 104
combinations of, 38, 86–89
configuring, 32
connections between, creating, 32–34
creating, 32
destroying, 32
high-water mark handling by, 77
identity of, 89–91
life cycle of, 32
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messages carried by (see messages)
multiple connections managed by, 28
multiple, reading from, 41–44
non-blocking reads of, 41
as not threadsafe, 64
scalability of, 27–27
types of, 34–34, 38
as void pointers, 32

software architecture
C4 contract for, 325, 335
connectedness, 3–4
design models for, 356–364
guidelines for, 327–335
MOPED pattern for, 372–375
open source model for, 325, 328
psychology of, 328–330, 333–335, 366–369
serialization of data, 382–392

SO_REUSEADDR option, 439
specifications (see unprotocols)
split-brain syndrome, 211
state

flow of, for Inter-Broker Routing, 123–126
maintaining, in FileMQ project, 417–418
sharing (see Cone pattern)

state machines, 403–410
string format, 10–11
SUB (subscribe) socket, 14–15, 38

(see also publish-subscribe pattern)
subscriber (see client node)
subtrees, 281
Suicidal Snail pattern, 254–257
Synchronized Publisher example, 71–74
s_recv() function, 10
s_send() function, 11

T
TCP

connections, compared to ZeroMQ, 33
for late joiners, 448
messaging using, 23
sockets, compared to ZeroMQ, 34

tcp transport, 35
testing

assertions for, 457
best practices for, 21
up-front testing, 458–459
for Zyre project, 457, 459–463

threads (see multithreading)
time to live (TTL), for ephemeral values, 284

Titanic pattern, 194–206
TOD (Trash-Oriented Design), 359–361
topic tree, 282
transports, 33, 35, 35

(see also specific transports)
bridging, 54–56
multicast, 35
unicast, 35

Trash-Oriented Design (TOD), 359–361
TTL (time to live), for ephemeral values, 284

U
UDP

beacon message format with, 450–452
cooperative discovery using, 434–438
discovery using, 448–448

udplib library, 438
unicast transports, 35
unprotocols, 163, 375–382

for FileMQ project, 413–414
for Zyre project, 475–475

up-front testing, 458–459

V
valgrind, 62–63

W
Weather Update Proxy example, 54–56
Weather Update Server example, 11–15
website resources

ABNF, in RFC 2234, 379
C4 contract, 325, 335
CHP (Clustered Hashmap Protocol), 306
code examples, xv
Digital Standards Organization (Digistan),

328
FileMQ project, 414
FILEMQ protocol, 414
for this book, xvi
Fork + Pull Model, GitHub, 335
Foundation for a Free Information Infra‐

structure (FFII), 328
IANA, 424
iMatix, xiii
MessagePack, 384
Nagle’s algorithm, 186
OpenAMQ server, 206
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PPP (Pirate Pattern Protocol), 163, 164
public ZeroMQ contracts, 163
PyZMQ binding, 326
SASL, 410
Social Architecture (Hintjens), 328
udplib library, 438
ZeroMQ community, 327
ZRE protocol, 475

WiFi, 427–432
worker (see client node)

X
XML, 383–384
XPUB (extended publisher) socket, 46, 54–56
XPUB-XSUB proxy, 46–47
XSUB (extended subscriber) socket, 46, 54–56

Z
zero-copy, 74–74
zero-length messages, 41
ZeroMQ, xiii, 3–4, 23–27

best practices for, 21–23
community for (see community)
high-level API for, 102–110
version of

assumed for this book, 5
determining, 11
upgrading to version 3.2, 27

zhelpers.h file, 11, 39
zloop reactor, CZMQ, 108–110
zmq_bind() function, 32–34
zmq_connect() function, 32–34
zmq_ctx_destroy() function, 21, 28

hanging, 22
non-fatal errors from, 57

zmq_ctx_new() function, 21, 28
zmq_ctx_set() function, 28, 36
zmq_ctx_set_monitor() function, 28
ZMQ_DONTWAIT option, 27, 57
zmq_errno() function, 56
ZMQ_IDENTITY option, 89
zmq_init() function, 28
ZMQ_IO_THREADS option, 36
zmq_msg_close() function, 39

zmq_msg_copy() function, 40
zmq_msg_data() function, 39
zmq_msg_init() function, 39, 40
zmq_msg_init_data() function, 41, 74–74
zmq_msg_init_size() function, 39
zmq_msg_recv() function, 6, 28, 34–35, 39, 57,

62
zmq_msg_send() function, 6, 28, 34–35, 39, 40,

62
zmq_msg_size() function, 39
zmq_msg_t objects, 39
ZMQ_NOBLOCK option, 27
zmq_poll() function, 41–44

interrupts affecting, 62
with multipart messages, 45
replacing with a reactor, 104, 108

zmq_proxy() function, 53–54, 247–249
ZMQ_RCVMORE option, 45
zmq_recv() function, 27
ZMQ_ROUTER_MANDATORY option, 91
ZMQ_ROUTER_RAW option, 36
zmq_send() function, 27
zmq_setsockopt() function, 14, 89
zmq_strerror() function, 56
ZMQ_SUBSCRIBE option, 255
zmq_term() function, 28
zmq_version() function, 11
ZMTP protocol, 40
ZRE protocol, 449, 475–475
Zyre project, 448–450

assertions for, 457, 460
beacon message format for, 450–452
blocked peers, handling, 464–466
content distribution, 473–475
disconnections, heartbeating detecting, 454–

455
FileMQ project used in, 449
future directions for, 476
group messaging in, 455–457
logging and monitoring for, 467–473
peer connectivity, Harmony pattern for,

452–454
testing, 457–466
ZRE protocol for, 449, 475–475
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Colophon
The animal on the cover of ZeroMQ is the fourhorn sculpin (Myoxocephalus quadri‐
cornis). The fourhorn sculpin is mostly found in arctic coastal waters around North
America and northern Eurasia, but it can also be found in some freshwater lakes in
Europe. This fish is named for its four bony protuberances on its head.

The fourhorn sculpin has a dark and slightly flattened body with eyes close to the top
of its heads, a large pelvis, and a distinctive large mouth. It usually reaches about 30 cm
in length. One way to distinguish between males and females of this species is that males
have a yellowish brown belly and females have a white belly. This fish mostly feeds on
organisms at the bottom of the sea, crustaceans, and fish eggs.

The fourhorn sculpin reproduces in the winter. During this time males will typically dig
a pit that females will put all their eggs into. Once eggs are laid into a pit, males will
guard the eggs during the three month incubation period.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.
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